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This note is a companion to the author's papers

[1] C.A., A Galois-theoretic proof of the differential transcendence of the incomplete 
Gamma function, J. Algebra 389, 119-127 (2013);

[2] C.A., Computation of the unipotent radical of the differential Galois group of a 
parameterized second-order linear differential equation, Adv. Appl. Math. 57, 44-59 
(2014);

[3] C.A., Computing the differential Galois group of a parameterized second-order 
linear differential equation, Proceedings of ISSAC 2014, 43-50 (2014).

Together with

[4] T. Dreyfus, Computing the Galois group of some parameterized linear differential 
equation of order two, Proc. Amer. Math. Soc. 142, 1193-1207 (2014),

these papers comprise a complete algorithm to compute the parameterized differential 
Galois group associated to a linear differential equation of the form

d2

d x2  y C r1
d

d x
 yC r0 y = 0,

where r1 and r0 belong to F x , the field of rational functions in x with coefficients in a
computable ∏-field F of characteristic zero, and ∏ is a finite (possibly empty) set of 
pairwise commuting derivations.

In this note we illustrate how MAPLE can be used to carry out the computations 
required by this algorithm in some concrete examples with F = ℂ(t) and ∏ = v

v t
. 

The MAPLE computations carried out below may serve as the basis for a full 
implementation of the algorithm.



(1)(1)

> > 

These examples follow the method proposed in [3], to first apply [2, 4] to compute the 
PPV group of an associated unimodular equation (i.e., an equation as above with 
r1 = 0), and then use the data of the unimodular PPV group to recover the PPV group 
of the original equation.

The first three examples correspond to the first case of Kovacic's algorithm: the 
differential operator associated to the unimodular equation factors over Falg x ,  which
is equivalent to the statement that the PPV group is upper-triangular. This is the only 
case of Kovacic's algorithm in which the PPV group may be non-reductive (in all three 
examples considered here, the group is indeed non-reductive). The computation of the 
unipotent radical of the associated unimodular PPV group follows [2, Theorem 3.2] 
(see also [1]): if the reductive quotient is differentially constant, we apply [4, Section 
2.1] to find the non-zero differential operator defining the unipotent radical as a 
subgroup of Ga, which operator arises as the solution to a hyperexponential creative 
telescoping problem; if, on the other hand, the reductive quotient is not differentially 
constant, then the unipotent radical is either trivial or all of Ga, and we apply [1, 
Lemma 4.3] to decide between these possibilities.

The last example concerns the second case of Kovacic's algorithm, where the 
differential operator correponding to the associated unimodular equation only factors 
over a quadratic extension of Falg x . In this case, the unimodular PPV group is of 
dihedral type (see [4, Section 2.2]), and the task of recovering the PPV group of the 
original equation is comparatively easier (see [3, Porposition 4.1]).

1. Example 1: Incomplete Gamma Function.

The PPV group in this example is computed via different methods in [1]. The 
incomplete Gamma function

g t, x d
0

x
st K 1eKs ds

 
satisfies the second-order linear differential equation

v
2

v x2  g t, x K
tK 1K x

x
v

v x
 g t, x = 0.

So we set
r[1] := -(t-1-x)/x; r[0]:=0;

r1 := K
tK 1K x

x
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r0 := 0

And then compute the coefficient q of the associated unimodular equation

d2

d x2  yKqy = 0.

q := simplify(r[1]^2/4 + diff(r[1],x)/2 - r[0]);

q :=
1
4

 
t2 K 2 t xC x2 C 2 xK 1

x2

Which is used as input for Kovacic's algorithm
with(DEtools): S:= kovacicsols([-q,0,1],x);

S := x  x
K

1
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 t
 e

1
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 x
,

1
t tC 1

e
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 x
 e
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1
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 x
 x
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 t K 1
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1
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 tC
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 tC
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 tC
1
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,

x  x  x
K

1
2

 t

We first compute the reductive quotient of the unimodular PPV group following [4, 
Lemma 3]. Since
type(S[1],radalgfun(ratpoly(complex,[x,t])));

false

this reductive quotient is infinite, and the operator defining it as a subgroup of Gm arises
as the soution to the following creative telescoping problem:
u := simplify(diff(S[1],x)/S[1]); L[1]:= Zeilberger(diff(u,t),t,x,
Dt)[1];

u := K
1
2

 
tK 1K x

x
L1 := Dt

Since
evalb(degree(L[1],Dt)>0);

true

the reductive quotient is not differentially constant, and it follows from [2, Theorem 
3.2] (see also [1, Proposition 4.4]) that the computation of the unipotent radical of the 
Galois group is reduced to determining whether or not the following inhomogeneous 
equation admits a solution which is a rational expression in x.
UnipEq := diff(y(x),x) - 2*u*y(x) = 1;

UnipEq :=
d
dx

 y x C
tK 1K x  y x

x
= 1

evalb(nops(ratsols(UnipEq,y(x)))=1);
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true

Since no rational solution exists, we set
L[2]:=0;

L2 := 0

which is equivalent to the statement that the unipotent radical is the whole additive 
group Ga [1, Lemma 4.3]. This concludes the computation of the unimodular PPV 
group. We now follow [3, Section 3] in recovering the original PPV group from these 
data. We first verify that
z:= simplify(exp(int(-r[1]/2,x))); type(z,radalgfun(ratpoly
(complex,[x,t])));

z := e
K

1
2

 x
 x

1
2

 t K
1
2

false

which implies that the quotient of the original PPV group by the determinant map is 
infinite. The operator defining this quotient as a subgroup of Gm arises as the solution to
the following creative telescoping problem:
L[3]:= Zeilberger(diff(r[1],t),t,x,Dt)[1];

L3 := Dt

Since
evalb(L[1]=L[3]);

true

we check whether the following system admits a solution over the integers (see [3, 
Theorem 4.2(i) and Corollary 4.3(i)])
Sys := {seq(E[a]*residue(u,x=p) + E[e]*residue(r[1]/2,x=p) - c[p]=
0, p in discont(u,x) union discont(r[1],x))};

Sys := Ea 
1
2
K

1
2

 t CEe 
1
2
K

1
2

 t K c0 = 0

In order to do this, we use the following procedure, which first finds rational solutions 
to the same system with Ea = 1 and then finds a solution over the integers with smallest 
possible gcd.
R:=SolveTools[RationalCoefficients](add(C[p]*residue(u,x=p), p in 
discont(u,x) union discont(r[1],x)),[-add(C[p]*residue(r[1],x=p)/2,
p in discont(u,x) union discont(r[1],x)), seq(C[p], p in discont(u,
x) union discont(r[1],x))]);

R := K1, 0

and set
E[a]:= ilcm(op(map(denom,R))); E[e]:=R[1]*ilcm(op(map(denom,R))); 
c_0:= R[2]*ilcm(op(map(denom,R)));

Ea := 1

Ee := K1

c_0 := 0
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We then conclude that the parameterized differential Galois group associated to the 
incomplete Gamma function coincides with the set of matrices of the form (see [3, 
Theorem 4.2(1)]):
Matrix([[e(t)*a(t),e(t)*b(t)],[0,e(t)*a(t)^(-1)]]);

e t  a t e t  b t

0
e t
a t

such that
{e(t)*a(t)<>0, eval(diffop2de(L[1],A(t),[Dt,t]),A(t)=diff(a(t),t)/a
(t))=0, diffop2de(L[2],b(t),[Dt,t])=0, eval(diffop2de(L[3],B(t),
[Dt,t]),B(t)=diff(e(t),t)/e(t))=0, a(t)^E[a]=e(t)^E[e]};

0 = 0,

d2

dt2
 a t

a t
K

d
dt

 a t
2

a t 2 = 0,

d2

dt2
 e t

e t
K

d
dt

 e t
2

e t 2 = 0, a t =
1

e t
,

e t  a t s 0

2. Example 2.

We now consider the equation

d2

d x2  yK
2 t t xK tC x

x xK 1
d

d x
 yK

t 2 t3 xK t3 K 2 t x2 K 2 x2 C 2 xK 1
x2 xK 1 2  y = 0.

We begin by setting
restart: r[1] := -( 2*t*( t*x - t + x ))/( x*( x - 1 )); r[0] := -(
t*( 2*t^3*x - t^3 - 2*t*x^2 - 2*x^2 + 2*x - 1 ))/( x^2*( x-1 )^2);

r1 := K
2 t t xK tC x

x xK 1

r0 := K
t 2 t3 xK t3 K 2 t x2 K 2 x2 C 2 xK 1

x2 xK 1 2

And then compute the coefficient q of the associated unimodular equation

d2

d x2  yKqy = 0.

q := simplify(r[1]^2/4 + diff(r[1],x)/2 - r[0]);

q :=
t t3 x2 C 2 t2 x2 K 2 t2 xK 2 t xK x2 C tC 2 xK 1

x2 xK 1 2
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This q is used as input for Kovacic's algorithm
with(DEtools): S:= kovacicsols([-q,0,1],x);

S := xK 1 t2 xt, hypergeom K2 tC 1, 2 t2 , 2K 2 t , x  xt xK 1 t2 xK2 t C 1

We first compute the reductive quotient of the unimodular PPV group following [4, 
Lemma 3]. Since
type(S[1],radalgfun(ratpoly(complex,[x,t])));

false

this reductive quotient is infinite, and the operator defining it as a subgroup of Gm arises
as the soution to the following creative telescoping problem:
u := simplify(diff(S[1],x)/S[1]); L[1]:= Zeilberger(diff(u,t),t,x,
Dt)[1];

u :=
t t xC xK 1

x xK 1

L1 := Dt2

Since
evalb(degree(L[1],Dt)>0);

true

the reductive quotient is not differentially constant, and it follows from [2, Theorem 
3.2] (see also [1, Proposition 4.4]) that the computation of the unipotent radical of the 
Galois group is reduced to determining whether or not the following inhomogeneous 
equation admits a solution which is a rational expression in x.
UnipEq := diff(y(x),x) - 2*u*y(x) = 1;

UnipEq :=
d
dx

 y x K
2 t t xC xK 1  y x

x xK 1
= 1

evalb(nops(ratsols(UnipEq,y(x)))=1);
true

Since no rational solution exists, we set
L[2]:=0;

L2 := 0

which is equivalent to the statement that the unipotent radical is the whole additive 
group Ga [1, Lemma 4.3]. This concludes the computation of the unimodular PPV 
group. We now follow [3, Section 3] in recovering the original PPV group from these 
data. We first verify that
z:= simplify(exp(int(-r[1]/2,x))); type(z,radalgfun(ratpoly
(complex,[x,t])));

z := et ln x  t C ln x K 1

false

which implies that the quotient of the original PPV group by the determinant map is 
infinite. The operator defining this quotient as a subgroup of Gm arises as the solution to
the following creative telescoping problem:
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L[3]:= Zeilberger(diff(r[1],t),t,x,Dt)[1];
L3 := Dt2

Since
evalb(L[1]=L[3]);

true

we check whether the following system admits a solution over the integers (see [3, 
Theorem 4.2(i) and Corollary 4.3(i)])
Sys1 := {seq(E[a]*residue(u,x=p) + E[e]*residue(r[1]/2,x=p) - c[p]=
0, p in discont(u,x) union discont(r[1],x))};

Sys1 := Kt2 EeC t Ea K c0 = 0, t2 Ea K t EeK c1 = 0

In order to do this, we use the following procedure, which first finds rational solutions 
to the same system with Ea = 1 and then finds a solution over the integers with smallest 
possible gcd.
R:=SolveTools[RationalCoefficients](add(C[p]*residue(u,x=p), p in 
discont(u,x) union discont(r[1],x)),[-add(C[p]*residue(r[1],x=p)/2,
p in discont(u,x) union discont(r[1],x)), seq(C[p], p in discont(u,
x) union discont(r[1],x))]);

R := FAIL

Since no rational solution exists, there is no integer solution either. We must now 
decide whether the following linear system (from [3, Theorem 4.2(ii)])
Sys2 := {seq(residue(sum(a[i-1]*diff(u,t$i),i=1..degree(L[1],Dt))+
sum(b[j-1]*diff(r[1]/2,t$j),j=1..degree(L[3],Dt)),x=p)=0, p in 
discont(diff(u,t),x) union discont(diff(r[1],t),x))};

Sys2 := 2 t a0 C 2 a1 K b0 = 0, K2 t b0 C a0 K 2 b1 = 0

in the variables
Var2 := {seq(a[i-1],i=1..degree(L[1],Dt)),seq(b[j-1],j=1..degree(L
[3],Dt))};

Var2 := a0, a1, b0, b1

admits a solution over F
T:=table([op(solve(Sys2 union {a[1]=0,a[0]=1},Var2))]);

T := table a1 = 0, a0 = 1, b0 = 2 t, b1 = K2 t2 C
1
2

Since it does admit a solution, we choose the unique solution with the smallest number 
of ai non-zero and with the first non-zero ai set to 1. We then conclude that the PPV 
group in this example coincides with the set of matrices of the form
Matrix([[e(t)*a(t),e(t)*b(t)],[0,e(t)*a(t)^(-1)]]);

e t  a t e t  b t

0
e t
a t

such that [3, Theorem 4.2(2)]
{a(t)*e(t) <> 0, eval(diffop2de(L[1],A(t),[Dt,t]),A(t)=diff(a(t),t)
/a(t))=0, diffop2de(L[2],b(t),[Dt,t])=0, eval(diffop2de(L[3],B(t),
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(37)(37)

(1)(1)
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(28)(28)

(36)(36)

(40)(40)

> > 

(39)(39)

> > 

[Dt,t]),B(t)=diff(e(t),t)/e(t))=0, eval(sum(T[a[i]]*diff(A(t),t$i),
i=0..(degree(L[1],Dt)-1)),A(t)=diff(a(t),t)/a(t))=eval(sum(T[b[j]]*
diff(B(t),t$j),j=0..(degree(L[3],Dt)-1)),B(t)=diff(e(t),t)/e(t))};

0 = 0,

d
dt

 a t

a t
=

2 t 
d
dt

 e t

e t
C K2 t2 C

1
2

 

d2

dt2
 e t

e t
K

d
dt

 e t
2

e t 2 ,

d3

dt3
 a t

a t
K

3 
d2

dt2
 a t  

d
dt

 a t

a t 2 C

2 
d
dt

 a t
3

a t 3 = 0,

d3

dt3
 e t

e t

K

3 
d2

dt2
 e t  

d
dt

 e t

e t 2 C

2 
d
dt

 e t
3

e t 3 = 0, e t  a t s 0

3. Example 3.

We now consider the equation

d2

d x2  yK
2 t
x

d
d x

 yC
4 t2 C 4 tC 1

4 x2  y = 0.

We begin by setting
restart: r[1] := -2*t/x; r[0] := (4*t^2 + 4*t + 1)/(4*x^2);

r1 := K
2 t
x

r0 :=
1
4

 
4 t2 C 4 tC 1

x2

And then compute the coefficient q of the associated unimodular equation

d2

d x2  yKqy = 0.

q := simplify(r[1]^2/4 + diff(r[1],x)/2 - r[0]);

q := K
1

4 x2

This q is used as input for Kovacic's algorithm
with(DEtools): S:= kovacicsols([-q,0,1],x);

S := x , x  ln x

We first compute the reductive quotient of the unimodular PPV group following [4, 
Lemma 3]. Since
type(S[1],radalgfun(ratpoly(complex,[x,t])));

true
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(36)(36)
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(43)(43)

we conclude that the reductive quotient of the parameterized differential Galois group 
for the associated unimodular equation is finite of order
E[a]:=Algebraic[Degree]({convert(S[1],RootOf)});

Ea := 2

It will be convenient to define
u := simplify(diff(S[1],x)/S[1]); L[1]:=1;

u :=
1

2 x
L1 := 1

In order to decide whether or not the unipotent radical is trivial, we must decide 
whether or not the following inhomogeneous equation admits a solution which is a 
rational expression in x
UnipEq := diff(y(x),x) - 2*u*y(x) = 1;

UnipEq :=
d
dx

 y x K
y x

x
= 1

evalb(nops(ratsols(UnipEq,y(x)))=1);
true

Since there is no such solution, we know that the unipotent radical is not trivial [1, 
Lemma 4.3]. Since
evalb(diff(u,t)=0);

true

the following telescoping problem has a solution, and its output is the differential 
operator that defines the unipotent radical as a subgroup of Ga [4, Section 2.1, p. 1200].
L[2]:= Zeilberger(1/S[1]^2,t,x,Dt)[1];

L2 := Dt

This concludes the computation of the unimodular PPV group. We now follow [3, 
Section 3] in recovering the original PPV group from these data. We first verify that
z:= simplify(exp(int(-r[1]/2,x))); type(z,radalgfun(ratpoly
(complex,[x,t])));

z := xt

false

which implies that the quotient of the original PPV group by the determinant map is 
infinite. The operator defining this quotient as a subgroup of Gm arises as the solution to
the following creative telescoping problem:
L[3]:= Zeilberger(diff(r[1],t),t,x,Dt)[1];

L3 := Dt

By [3, Corollary 4.3(i)], it is not necessary to check whether [3, Theorem 4.2(i)] holds.
Similarly, it follows from (45) that [3, Theorem 4.2(ii)] does not hold. Since
evalb(E[a]<=2);

true
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we need to decide whether or not the linear system from [3, Theorem 4.2(iii)]
Sys:={seq(sum(a[i]*diff(residue(1/S[1]^2,x=p),t$i),i=0..(degree(L
[2],Dt)-1))+sum(b[j]*diff(residue(diff(r[1],t),x=p),t$j),j=0..
(degree(L[3],Dt)-1))/2=0, p in discont(1/S[1]^2,x) union discont
(diff(r[1],t),x))};

Sys := a0 K b0 = 0

in the variables
Var:={seq(a[i],i=0..(degree(L[2],Dt)-1)),seq(b[j],j=0..(degree(L
[3],Dt)-1))};

Var := a0, b0

admits a solution in F:
T:=table([op(solve(Sys union {a[degree(L[2],Dt)-1]=1},Var))]);

T := table b0 = 1, a0 = 1

We then conclude that the PPV group in this example coincides with the set of matrices
of the form
Matrix([[e(t)*a(t),e(t)*b(t)],[0,e(t)*a(t)^(-1)]]);

e t  a t e t  b t

0
e t
a t

such that [3, Theorem 4.2(3)]
{e(t)*a(t)<>0, eval(diffop2de(L[1],A(t),[Dt,t]),A(t)=diff(a(t),t)/a
(t))=0, diffop2de(L[2],b(t),[Dt,t])=0, eval(diffop2de(L[3],B(t),
[Dt,t]),B(t)=diff(e(t),t)/e(t))=0, a(t)^E[a]=1, sum(T[a[i]]*diff(b
(t),t$i),i=0..(degree(L[2],Dt)-1))=eval(sum(T[b[j]]*diff(B(t),t$j),
j=0..(degree(L[3],Dt)-1)),B(t)=diff(e(t),t)/e(t))};

a t 2 = 1,

d
dt

 a t

a t
= 0,

d2

dt2
 e t

e t
K

d
dt

 e t
2

e t 2 = 0, b t =

d
dt

 e t

e t
,

d
dt

 b t = 0,

e t  a t s 0

4. Example 4.

We now consider the equation

d2

d x2  yC
2 t

xK 1
d

d x
 yC

16 t2 x2 K 16 t2 xK 16 t x2 C 3 x2 K 2 xC 3
16 x2 xK 1 2  y = 0.

We begin by setting
restart: r[1] := 2*t/(x-1); r[0] := ( 16*t^2*x^2 - 16*t^2*x - 16*t*
x^2 + 3*x^2 -2*x + 3)/( 16*x^2*(x-1)^2);
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(36)(36)

> > 

> > 

(57)(57)

(60)(60)
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(58)(58)
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(62)(62)

r1 :=
2 t

xK 1

r0 :=
1
16

 
16 t2 x2 K 16 t2 xK 16 t x2 C 3 x2 K 2 xC 3

x2 xK 1 2

And then compute the coefficient q of the associated unimodular equation

d2

d x2  yKqy = 0.

q := simplify(r[1]^2/4 + diff(r[1],x)/2 - r[0]);

q :=
1
16

 
16 t2 xK 3 x2 C 2 xK 3

x2 xK 1 2

This q is used as input for Kovacic's algorithm
with(DEtools): S:= kovacicsols([-q,0,1],x);

S := xK 1  x1 / 4 
K1C x

x C 1

t

, xK 1  x1 / 4 
x C 1

K1C x

t

We now define
u:=simplify(diff(S[1],x)/S[1]);

u :=
1
4

 
4 x tC 3 x3 / 2 K x

x3 / 2 xK 1

Since the degree of the minimal polynomial
p:=gfun[algfuntoalgeq](u,z(x));
p := K16 x4 C 32 x3 K 16 x2  z2 C 24 x3 K 32 x2 C 8 x  z C 16 t2 xK 9 x2 C 6 xK 1

of u over C x, t  is
degree(p,z);

2

we are in case II of Kovacic's algorithm (see [3, p. 45, col. 1] and [4, Section 2.2]). To
conclude the computation of the PPV group of the associated unimodular equation, we 
follow [4, Section 2.2]
L[1]:= Zeilberger(diff(u,t),t,x,Dt)[1];

L1 := Dt

Now we follow [3, Section 4.1] in computing the PPV group of the original equation. 
First, we verify that
z:= simplify(exp(int(-r[1]/2,x))); type(z,radalgfun(ratpoly
(complex,[x,t])));

z := xK 1 Kt

false

which implies that the quotient of the original PPV group by the determinant map is 
infinite. The operator defining this quotient as a subgroup of 



> > 

(8)(8)

(63)(63)

(65)(65)

(1)(1)

> > 

> > 

(28)(28)

> > 

(36)(36)

(64)(64)

(55)(55)

> > 

> > 

Gm arises as the solution to
the following creative telescoping problem:
L[2]:= Zeilberger(diff(r[1],t),t,x,Dt)[1];

L2 := Dt

We now conclude from [3, Proposition 4.1] that the PPV group of the original equation
coincides with the set of matrices in
{Matrix([[e(t)*a(t),0],[0,e(t)*a(t)^(-1)]]), Matrix([[0,-e(t)*a(t)
],[e(t)*a(t)^(-1),0]])};

0 Ke t  a t

e t
a t

0
,

e t  a t 0

0
e t
a t

such that
{a(t)*e(t)<>0,eval(diffop2de(L[1],A(t),[Dt,t]),A(t)=diff(a(t),t)/a
(t))=0, eval(diffop2de(L[2],B(t),[Dt,t]),B(t)=diff(e(t),t)/e(t))=0}
;

d2

dt2
 a t

a t
K

d
dt

 a t
2

a t 2 = 0,

d2

dt2
 e t

e t
K

d
dt

 e t
2

e t 2 = 0, e t  a t s 0


