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1. Introduction

This proposal is for a research program on the combinatorics of braid groups and
fundamental groups of complexified arrangements, with strong applications to geometric
group theory and classical combinatorics. This point of view yields an interconnected
library of concrete combinatorial problems especially suitable for graduate
and undergraduate students (see Section 5, as well as Section 8), while its broad
perspective allows for consequential results and relevance to other fields.

Algebraic combinatorics interprets classical combinatorial identities or objects in the
highly structured setting of algebra, with the expectation of removing unnecessary hy-
potheses and generalizing. A few successful examples, both recent and classical:

• generating functions become the Hilbert series of a graded algebra;
• symmetric functions are interpreted as a Weyl character formula or Schubert poly-
nomials for the Grassmannian, while symmetric function theory is recalled to be
a particular case of invariant theory; and
• q-analogues generalize enumerative formulas using the general linear group over a
finite field, a Hecke algebra, or even a quantum group.

As experience with the above examples illustrates, there are difficulties associated with
moving from a well-understood special case to a more general framework—but such dif-
ficulties can leave interesting combinatorics undiscovered.

The difficulty addressed in this proposal comes from replacing a real
hyperplane arrangement with its complexification.

For example, moving from real to complex reflection groups further requires the sacrifice
of many valuable tools rooted in the real geometry—simple generators and inversion sets
are no longer accessible, which nullifies many proof techniques and geometric intuition.
Indeed, classical objects like the braid group become alien when the real geometry is
forgotten [BKL98, Bes03]. The prospect of leaving the real geometry behind has resulted
in a general combinatorial neglect of the area; notable exceptions are David Bessis and
his Ph.D. student Vivien Ripoll, as well as Vic Reiner and his recent Ph.D. student
Theodosios Douvropoulos (whose talk at FPSAC this year solved a conjecture from my
thesis) [Rip12, Bes06, Dou17, Dou18b, Dou18a, Wil13].
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Recall that a topological space X is called a K(π, 1) (or Eilenberg-MacLane space) for
the group G if π1(X) = G and all higher homotopy groups vanish. A natural first question
is to relate two different combinatorial K(π, 1) models for complexified real hyperplane
complements. These two models arise from different choices of basepoint—the Salvetti
complex is constructed relative to a real basepoint, while Bessis’s model comes from a
complex one (I review these models in Sections 3.4 and 4.2). Since a K(π, 1) is unique up
to weak homotopy equivalence:

Problem 1. Give an explicit homotopy between Salvetti’s and Bessis’s K(π, 1) models
for the braid groups and pure braid groups of finite Coxeter groups.

Although a purely topological statement, this problem has combinatorial meaning. A
certain subset of the vertices of each model represent different Coxeter-Catalan object—
the sortable elements live as vertices of Salvetti’s model, while the noncrossing partitions
are vertices of Bessis’s model. So besides providing a tangible connection between the
two different presentations of the same group, such a homotopy would lend a sense of in-
evitability to the bijections between these Coxeter–Catalan objects [Rea07a]. The Loday–
Reading pulling triangulation of the permutahedron and associahedron, which relates the
associahedron to the order complex of the noncrossing partition lattice will serve as a
useful guide in constructing this homotopy [Lod07, Rea11].

As further evidence that this area is underexplored, it seems remarkable that the fol-
lowing fundamental question is open:

Problem 2. Let W be a finite Coxeter group. Give explicit presentations for the pure
braid group P (W ) := π1(V reg

C ).

The history of work on this problem is quickly outlined:

• In [Art25, Art47], Artin worked out a presentation of the pure braid group in type
A using the usual model as strands (five families of relations);
• the dihedral groups are trivial (having only one family of relations);
• Classical work of Fadell and Neuwirth on the braid group extends to hyperplane
arrangements of fiber type [FN62, FR85]; since type B is of fiber type, its pure
braid group is an iterated semidirect product of free groups—yet even so
• Cohen worked out an explicit presentation in type B [Coh01, Theorem 1.4.3],
pointing out an erroneous presentation for type B in [Lei93, Section 3.8]; and also
• Digne and Gomi derived a different explicit presentation for type B (but did not
succeed in type D) [DG01]; while finally
• in their second survey article [FR00], Falk and Randell point out that the presen-
tation for type D published in [Mar91] is incorrect.

One of the difficulties in writing down these presentations correctly comes from the
sheer number of relations (for example, [Lei93] gives 23 families of relations in type B,
while [Coh01] and [DG01] each have nine families) with fewer organizing principles than
would be desired. But by combining the classical combinatorial K(π, 1) models of Deligne
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and Salvetti with Coxeter-Catalan combinatorics, I have recently developed a new, con-
trolled method to compute presentations of these pure braid groups. This approach
has been overlooked due to a focus in the area on variants of the Zariski-van
Kampen method1 for computing presentations of fundamental groups of hy-
perplane arrangements: although an arrangement may always be generically projected
to a line arrangement in C2 while preserving the fundamental group, different projections
give different presentations and the original geometry is obscured.

In [Rea11], Reading defined a delicate slicing procedure on simplicial hyperplane ar-
rangements that cuts hyperplanes into several pieces called shards, geometrically modeling
the lattice-theoretic properties of weak order. The fundamental observation that allows for
control over the presentations is that although a reflection in a hyperplane has many lifts
to the pure braid group—corresponding to where a loop wraps around a hyperplane—the
homotopy classes of such loops are actually indexed by these shards (see Theorem 9). My
method exploits this observation, and I have written explicit presentations in types A and
B. In type A, I recover and explain a compact rephrasing of Artin’s presentation due to
Margalit and McCammond [MM09] without drawing a single braid (see Theorem 5). In
principal, there is no reason the method shouldn’t work in general, but the computations
become longer; part of this proposal is therefore to perform these computations.

The resulting presentations are explainable in the language of Coxeter-Catalan combi-
natorics, but not overwhelmingly elegant. Instead, they serve as a starting point towards
writing down beautiful, simple presentations for pure braid groups (resembling the elegant
presentations arising from Garside theory for braid groups):

Conjecture 3. Let W be a finite irreducible Coxeter group. Then P (W ) =
〈

T : [c]
〉
,

where c is the full twist (the generator of the center of P (W )), T is a certain lift of the
reflections of W to P (W ) coming from Bessis’ dual braid monoid, and [c] is the relation
equating all words in T for c. Furthermore, these words for c are exactly those reflection
orderings with respect to which the noncrossing partition lattice is EL-shellable.

By apply rewriting rules to the presentations given by my method above, I have made
some partial progress towards proving Conjecture 3 by confirming it in types A and B. For
the other types—because the computations become increasingly lengthy in the presence
of larger parabolic dihedral subgroups—I propose to automate this rewriting process. I
am confident this method will settle my conjecture for the remaining Coxeter groups.

This is not just an empty exercise in group presentations—while the method above will
allow me to prove the presentations in Conjecture 3 for finite Coxeter groups, it strongly
suggests that there ought to be a conceptual, geometric proof: the order complex of the
noncrossing partition lattice has a strong connection to Bessis’s K(π, 1), which embeds

1In [Zar37, Zar36], Zariski showed that for a choice of a projection of an algebraic hypersurface in com-
plex projective space to a generic hyperplane preserves the fundamental group. As recounted in [VK33a],
Zariski asked van Kampen to develop a topological method to compute the relations among generators
of the fundamental group which had previously been determined by Enriques [Enr24]. Zariski’s question
directly led to van Kampen’s famous theorem [VK33b, Gra92].
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into the complexified hyperplane complement. A shelling of the complex should therefore
somehow specify a homotopy class of loop representing the full twist. Such a geometric
proof should address a natural generalization of Conjecture 3 to the class of complexified
real central hyperplane arrangements, whose details I omit in the interest of space.

Problem 4. Prove the natural generalization of Conjecture 3 to give explicit presentations
for any complexified real central hyperplane arrangement.

1.1. Further Directions. It will be worthwhile—though considerably more speculative—
to see if this new perspective and new methods give any insight into classical unsolved
problems in the area. In particular, I am interested in considering:

• the orderability of fundamental groups of complexified real hyperplane arrange-
ments (thus proving torsion-freeness) [Deh95],
• the K(π, 1) problem for braid groups of infinite Coxeter groups (my work on
Garside shadows seems particularly relevant to this problem [HNW16]), and
• the CAT(0) conjectures for braid groups of finite type [CD95].

I would also like to interpret my work on zeta/sweep maps [TW18b] using Ion’s result
that double affine braid groups can be realized as the fundamental group of a certain
complex hyperplane arrangement related to the usual affine Weyl arrangement [Ion03].

1.2. Organization. The remainder of this proposal is structured to explain the state-
ments of Problem 1, Problem 2, and Conjecture 3, as well as my approach towards their
resolution. In Section 2, I give a historical overview in the setting of the symmetric group,
the braid group, and the pure braid group. In Section 3, I generalize to finite Coxeter
groups and their braid groups, introducing shards and Bessis’ K(π, 1). I define the Sal-
vetti complex in Section 4 and summarize my approach towards Problem 2,. In Section 5,
I give an example of the sorts of problems I have given students by summarizing the
result of an REU project I supervised this summer (and discuss related future work).
Finally, Section 8 addresses the broader impacts of my work.

2. The Symmetric Group, Braid Group, and Dual Braid Group

Before generalizing to Coxeter groups in Section 3, I first give a brief introduction to the
symmetric group, and its associated braid and pure braid groups. In Section 5, I highlight
the sort of combinatorial question and research directions that arise; many problems are
accessible to and suitable for undergraduate and graduate students.

2.1. The Symmetric Group. For n ≥ 1, write S = {(1, 2), . . . , (n−1, n)} for a set of
abstract generators. Then the symmetric group Sn has the Coxeter presentation

Sn =

〈
S :

(i, i+1)(j, j+1) = (j, j+1)(i, i+1) if |i− j| > 1
(i, i+1)(j, j+1)(i, i+1) = (j, j+1)(i, i+1)(j, j+1) if |i− j| = 1

(i, i+1)(j, j+1) = e if |i− j| = 0

〉
.
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As an example of interpreting classical combinatorial objects in the framework of the
symmetric group, the 231-avoiding permutations in the symmetric group are enumerated
by the Catalan numbers

Cat(n) :=
1

n+ 1

(
2n

n

)
−→ 1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . .

The Tamari lattice Tamn first appeared in Tamari’s 1951 thesis as a partial order on the
parenthesizations of a product of n+1 variables (the connectedness of the underlying graph
under the “flip” a(bc) → (ab)c is equivalent to associativity of the product). It may also
be defined as the one-skeleton of the associahedron, which Stasheff discovered in 1961 in
his thesis work on homotopy theory. As shown by Bjorner and Wachs [BW97], restricting
weak order (an orientation of the permutahedron, or the Cayley graph of Sn with respect
to the generating set S) to the 231-avoiding permutations gives Tamn. Starting with this
classical object, combinatorial problems abound (see Section 5).

2.2. The Braid Group. A permutation can be drawn as a pairing of n upper points
with n lower points (each numbered from 1 to n), with multiplication given by stacking
two pairings. Replacing a pairing with non-intersecting strands leads to the classical
definition of the braid group Bn—elements (now called braids) are equivalence classes of
n non-intersecting strands (up to non-intersecting deformations).

Writing S = {(1,2), . . . , (n−1,n)} for a new set of generators, Artin proved in [Art25,
Art47] that Bn has presentation

Bn =

〈
S :

(i, i+1)(j, j+1) = (j, j+1)(i, i+1) if |i− j| > 1
(i, i+1)(j, j+1)(i, i+1) = (j, j+1)(i, i+1)(j, j+1) if |i− j| = 1

〉
.

Remarkably, Artin’s presentation for Bn is obtained from the Coxeter presentation of
Sn simply by forgetting that generators square to the identity (this presentation was
obtained before Coxeter’s work). In his single mathematical publication [Gar69], Garside
laid the foundations for his eponymous Garside theory—roughly, the idea is to use the
long permutation w◦ = n · · · 21 of Sn (the Garside element) and the lattice property
of weak order to construct a normal form for any braid, solving the word problem for
Bn [Del72].

At the level of presentations, Garside’s work can be interpreted as the beautifully
compact presentation Bn =

〈
S : [w◦]

〉
, where RedS(w◦) is the set of all reduced words for

w◦ in the generators S, and [w◦] for the relation that replaces the generators in S by the
corresponding generator in S and setting all such words equal. For example, the relation
in B3 sets the two reduced words for 321 equal, while the relation in B4 sets equal the 16
reduced words for 4321.

It is natural to wonder if there is an analogue of the 231-avoiding permutations in Bn,
now counted by the Fuss-Catalan numbers 1

mn+1

(
(m+1)n

n

)
. In [STW15], Stump, Thomas,

and I describe exactly such a generalization using the restriction of the interval [e, wm◦ ]
in the weak order on the positive braid monoid B+

n to certain sortable elements (these
elements have a reduced word with a special form; see Definition-Theorem 6). The interval
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[e, w2
◦] for B

+
3 is illustrated on the left-hand side of Figure 1, with the sortable elements

shaded in gray.
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e

s t

st

sts

sts · ssts · t

sts · ts

sts · sts

s · s t · t
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Figure 1. Left—the interval [e, w2
◦] in B

+
3 with the sortable element high-

lighted in gray; center—the restriction to sortable elements gives
Camb2(S3).

2.3. The Pure Braid Group. The kernel of the natural projection Bn → Sn obtained
by remembering only the underlying pairing of the upper and lower points defines the
pure braid group Pn (i.e. those braids that pair the upper point numbered i with the
lower point numbered i), giving the short exact sequence 1 → Pn → Bn → Sn → 1. For
1 ≤ i < j ≤ n, define the braids

(ij) :=
(

(i, i+1) · · · (j−1, j)
)

(j, j+1)
(

(j−1, j) · · · (i, i+1)
)
and (ij) = (ij)2,

and write T =
{

(ij)
}

1≤i<j≤n, T :=
{

(ij)
}

1≤i<j≤n, and T :=
{

(ij)
}

1≤i<j≤n+1
for the trans-

positions of Sn and certain lifts to Pn and Bn. Artin proved that Pn was generated by
T, subject to a somewhat complicated set of five relations. Margalit and McCammond
derived an easier equivalent presentation from Artin’s original presentation [MM09]: say
that two transpositions (ij) and (rs) are noncrossing if they are noncrossing when drawn
as arcs in a circle connecting boundary vertices labelled 1, 2, . . . , n, and crossing other-
wise. Say that three (ordered) transpositions (ij), (ik), (jk) are noncrossing if i < j < k.
Then the Margalit-McCammond presentation is:

Theorem 5 ([MM09, Theorem 2.3]).

Pn =

〈 (ij)(rs) = (rs)(ij) if (ij) and (rs) are noncrossing
T (ij)(ik)(jk) = (ik)(jk)(ij) = (jk)(ij)(ik) if (ij), (ik), (jk) are noncrossing

(ij)(js)(rs)(js)−1 = (js)(rs)(js)−1(ij) if (ij) and (rs) are crossing

〉
.

As outlined in Section 4, I recently found a new proof of this presentation that does
not rely on Artin’s presentation (and my method extends to other types). The proof uses
the combinatorics and geometry of the Tamari lattice inside of weak order.
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Artin used his presentation to give a normal form for pure braids (“combing”) and
hence solve the word problem for Pn: any pure braid can2 be written as a product w =
w1w2 · · ·wn−1, where wi belongs to the subgroup of Pn generated by {(ij) : n ≥ j > i}. In
modern language, this algorithm uses the exact sequence (forgetting the last strand)

1→ Fn−1 → Pn → Pn−1 → 1, to show that Pn = Fn o (Fn−1 o (· · ·o F1) · · · )

is an iterated semidirect product of free groups, where Fn−1 is the free group on n−1
generators. As Bn is a finite extension of Pn by Sn, this solves the word problem in Bn.

2.4. Dual Presentations of the Braid Group. I now return from the pure braid group
back to the braid group. In 1998, Birman, Ko, and Lee had the remarkable insight to
use T to give a new presentation of Bn, simultaneously giving a new solution to the word
problem [BKL98]. Their presentation can be written as

Bn =

〈
T :

(ij)(rs) = (rs)(ij) if (ij), (rs) are noncrossing
(ij)(jk) = (ik)(ij) = (jk)(ik) if 1 ≤ i ≤ j ≤ k

〉
.

Sergiescu somewhat anticipated these results in [Ser93], describing finite positive braid
group presentations arising from a planar graph—Artin’s presentation is read from a
path graph (a Dynkin diagram of type A), while the Birman-Ko-Lee presentation comes
from a complete graph [HK02]. Steinberg had previously considered presentations of
the symmetric group (and, more generally, Coxeter groups) using all reflections, but the
“obvious” suggested extension to a presentation for the braid group—obtained by dropping
the relations that reflections square to the identity—is incorrect.

In the language of Garside theory, the Birman-Ko-Lee result replaces the long element
w◦ of Sn by the long cycle c = (1, 2, · · · , n) (a Coxeter element), which we can again
interpret at the level of the presentations. Writing RedT (c) for the set of all reduced words
for w◦ in T and [c] for the relation replacing the generators in T by the corresponding
generator in T and setting all such words equal, we again recover a simple presentation

Bn = 〈T : [c]〉 .

By treating the blocks of a noncrossing partition as the cycles of a permutation, we
obtain a special subset of elements of the symmetric group Sn called the noncrossing
partitions—those set partitions of [n] := {1, 2, . . . , n} whose blocks have disjoint convex
hulls when drawn on a circle (explaining the nomenclature for noncrossing transpositions).
Ordering the noncrossing partitions by refinement yields a lattice; and this lattice property
turns out to be the reason why Garside theory applies. There are nn−2 maximal chains in
the noncrossing partition lattice underlying the Birman-Ko-Lee presentation (in bijection
with the reduced factorizations of the cycle c into transpositions), and so such chains are
in bijection with trees, parking functions, etc.

2Artin writes: “Although it has been proved that every braid can be deformed into a similar normal
form the writer is convinced that any attempt to carry this out on a living person would only lead to violent
protests and discrimination against mathematics. He would therefore discourage such an experiment.”
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Historically, the study of the chains in the noncrossing partition lattice go back to
1901 work of Hurwitz regarding the number of ramified covers of compact Riemann sur-
faces [Hur01] (the enormous amount of subsequent work on Hurwitz numbers, including
connections to combinatorial map theory, is well beyond the scope of this section); they
received further attention in a famous 1974 letter from Deligne to Looijenga [Del74]. The
structure underlying the Birman-Ko-Lee presentation has been the subject of combina-
torial attention since the work of Kreweras in 1972 [Kre72, Sim00, Rei97, Ede80, BW02,
Bes03], and saw a surge of renewed interest with the appearance of [BKL98].

3. Coxeter Groups and their Braid Groups

I now generalize Section 2 from the symmetric group to finite Coxeter groups.

3.1. Coxeter Groups. A Coxeter system (W,S) is a group W with a given generating
set of simple reflections S, subject to the Coxeter presentation:

(1) W =

〈
s1, . . . , sn :

s2
i = e

sisj · · ·︸ ︷︷ ︸
mi,j generators

= sjsi · · ·︸ ︷︷ ︸
mi,j generators

〉
.

Denote the set of all reflections in the hyperplanes by T := {wsw−1w ∈ W}, and let W
act in the reflection representation on a real vector space V ; associated to W is a real
hyperplane arrangement H := {Ht}t∈T ⊂ V ; the simple reflections S may be chosen to
be the reflections in the walls of a particular chamber. Writing V reg := V \

⋃
α∈Φ+ Hα, we

may identify elements of W with the connected regions of V reg. The inversion set of an
element w ∈ W is the set of reflections whose corresponding hyperplanes separate w from
the identity; ordering elements by inclusion of inversion sets gives the weak order, and for
finite Coxeter groups the long element w◦ is the unique maximal element of weak order.
A cover reflection is a t ∈ T such that there is a cover tw l w in weak order. A Coxeter
element c = sπ1 · · · sπn−1 of W is a product of the simple reflections of W in any order.

Each irreducible finite Coxeter group has an associated W -Catalan number, which
comes in three levels of generality (stated, for simplicity, only for crystallographic Coxeter
groups), corresponding to interpretations in the Coxeter group itself, the Artin group,
and the rational Cherednik algebra (or affine Weyl group):

Cat(W ) :=
n∏
i=1

h+ di
di

,Cat(m)(W ) :=
n∏
i=1

mh+ di
di

, and Cat[b](W ) :=
n∏
i=1

b+ di − 1

di
,

where d1 < d2 < · · · < dn are the degrees of W and h := dn is its Coxeter number. The
parameters m and b are positive integers, and b is coprime to h. These are related by
Cat(W ) = Cat(1)(W ) and Cat(m)(W ) = Cat[mh+1](W ). In particular, Cat(Sn) = Cat(n) is
associated to the symmetric group, and counts—in addition to the 231-avoiding permu-
tations and noncrossing partitions—the number of triangulations of a convex (n+ 2)-gon.
Catalan numbers beautifully generalize to all other finite Coxeter groups: triangulations
become finite-type clusters [FZ03] and 231-avoiding permutations become sortable ele-
ments [BW97, Rea07a, Rea07b, RS11]. Despite having uniform definitions, there are only
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Figure 2. On the left is an illustration of the shards in type A2—they are
in bijection with the join-irreducible elements s, t, st, ts. On the right is the
1-skeleton of the Salvetti complex for the dihedral group I2(4) drawn over
its hyperplane arrangement.

type-by-type proofs (using recursions or combinatorial models) that the noncrossing par-
titions, clusters, and sortable elements are counted by Cat(W ). I have a beautiful open
conjecture regarding a general bijection from clusters to nonnesting partitions (checked
up to rank eight for all choices of Coxeter element) stated in [Wil14].

3.2. Shards. I now review a geometric construction of Reading [Rea11] that will return
in Section 4.2. A hyperplane H in a subarrangement of the reflection arrangement is
called basic if the connected region containing the fundamental chamber is bounded by H
in the subarrangement. For any two hyperplanes H,H ′, define A(H,H ′) to be the subar-
rangement consisting of all hyperplanes containing H∩H ′. One says that H ′ cuts H if H ′
is a basic hyperplane of A(H,H ′) while H is not. In this way, all hyperplanes are cut into
shards, defined as the closures of the connected pieces H \

⋃
H′ cuts H H

′ of hyperplanes.
The left of Figure 2 illustrates how the reflection arrangement of type A2 is sliced into
shards. A lower shard for an element w ∈ W is a shard Σ belonging to a hyperplane Ht

such that t is a cover reflections of w and tw l w crosses Σ. Reading proved that shards
are in bijection with join-irreducible elements in weak order [Rea11, Proposition 4.7].

3.3. Braid Groups. The theory of the braid group has a beautiful generalization to all
finite Coxeter groups:

(2) B(W ) := π1 (V reg
C /W )

thm
=
〈
S : sisj · · ·︸ ︷︷ ︸

mi,j generators

= sjsi · · ·︸ ︷︷ ︸
mi,j generators

〉
= 〈S : [w◦]〉,

where the first explicit presentation follows from work of Deligne and Brieskorn-Saito [Del72,
BS72]; van der Lek proved that one still has this presentation for any Coxeter group, when
V reg

C is replaced by (V + iI)reg
C , where I is the Tits cone [VdL83]. The second presentation
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〈S : [w◦]〉 should be read as follows: for w ∈ W , let w ∈ B(W ) be obtained by writing
any reduced word for w in S and replacing all generators by their equivalents in S; write
[w◦] for the relation setting all reduced words in S for the long element w◦ equal.

The most important idea Stump, Thomas, and I advance in [STW15] is that the correct
setting for the Fuss–Catalan numbers is provided by the positive braid monoid B+(W ).
Our construction allows us to not only give a uniform treatment of previous work, but also
supply a missing definition of sortable elements at the Fuss-Catalan level of generality.

Definition-Theorem 6 ([STW15]). Let W be a Coxeter group and B+(W ) the cor-
responding positive braid monoid. The c-sorting word w(c) of an element w ∈ B+(W )
is the lexicographically first subword of c∞ that is a reduced word for w. An element
w ∈ B+(W ) is c-sortable if w(c) yields a decreasing sequence of subsets of positions in c.

Then forW finite, there are Cat(m)(W ) many c-sortable elements in the interval [e,w◦
m].

3.4. Dual Presentations and K(π, 1). In the early 2000s Bessis and—independently—
Brady-Watt generalized the work of Birman-Ko-Lee and showed that the dual braid group
Bc(W ) ' B(W ) admitted a presentation using all reflections, now depending on the choice
of a Coxeter element c:

(3) B(W ) := π1(V reg
C /W )

thm
=
〈
T : rt = trr if rt ≤T c

〉
= 〈T : [c]〉,

built from the noncrossing partition lattice NC(W ) := [e, c]T with Garside element the
image of the Coxeter element c. Note that this is not the group obtained by taking all
relations satisfied by the reflections in W . As Bessis points out, the difference between
the presentations in Equation (2) and Equation (3) is the choice of real versus complex
(an eigenvector of Coxeter element) basepoint.

The noncrossing partitions are enumerated by Cat(W ), and through work of Armstrong
(generalizing a construction of Edelman) [Arm09, Ede80], they admit Fuss–Catalan ex-
tensions as m-multichains in NC(W ) enumerated by Cat(m)(W ). It is an open problem
to give uniform generalizations of noncrossing partitions to objects counted by Cat[b](W ).
Recently, Michel found a uniform proof for the number of factorizations of a Coxeter
element for Weyl groups using Deligne-Lusztig theory [Mic14].

In proving theK(π, 1) conjecture for finite complex reflection groups, Bessis constructed
simplicial complexes homotopy equivalent to V reg

C /W and V reg
C : in the first case, the i-cells

are indexed by i-chains in the noncrossing partition lattice; in the second case, the i-cells
are indexed by an element of W and an i-chain.

4. Presentations of Pure Braid Groups: Problem 2

4.1. Pure Braid Groups. As for the symmetric group, the pure braid group P (W ) :=
π1 (V reg

C ) is the kernel of the natural map B(W ) → W . As before, the pure braid is
generated by the squares T of the elements of T (depending on the choice of Coxeter
element)—for t ∈ T, I will abbreviate its square by t = t2. It is remarkable that the
problem of giving a presentation of P (W ) has not been solved.



GEOMETRY OF BRAID GROUPS IN COMBINATORICS 11

One would like to apply Garside theory to P (W ) to derive a presentation, with the
role of Garside element played by the full twist c = w2

◦ = ch. Unfortunately, this naive
hope cannot work because the interval [e, c] in B+(W, c) is not generally a lattice. I still
optimistically conjecture the analogues of the right-most presentations in Equations (2)
and (3) given in Conjecture 3—that P (W ) = 〈T : [c]〉 , where [c] is the relation equating
all reduced words in T for the full twist c.

What makes such a presentation even more enticing is that I have found an elegant
conjectural description of the reduced words for the full twist, inspired by Bessis’s proof
that the complements of complexified arrangements are K(π, 1). To state this description,
recall that any reduced word for the full twist defines a total ordering on the reflections
of W . On the other hand—as a portion of the Cayley graph of W with respect to T—the
noncrossing partition lattice comes equipped with a labeling by reflections and is EL-
shellable with respect to a natural ordering on this labeling coming from w◦(c). Define
ELc as the set of total orderings of T for which NCc(W ) is EL-shellable.

Conjecture 7. The orderings of T defined by the reduced words for the full twist in
Redc(c) are exactly the orderings of T in ELc.

The method of proof should be geometric: an element of ELc coincides with a shelling of
the order complex of the noncrossing partition lattice; but this complex embeds in Cn, and
the statement reads that a shelling coincides with a homotopy class of loop representing
the full twist. Thomas has recently given a short proof that ELc are exactly those orders
of T that cyclically respect the rank two orderings on the reflections given by w◦(c).

4.2. The Salvetti Complex and Shards. ForW a Coxeter group and A ⊆ S, writeWA

for the parabolic subgroup ofW generated by A. The Salvetti complex Sal(W ) is the order
complex of the poset W × {A : A ⊆ S,WA is finite}, with relations (w,A) ≤ (w′, A′) if
A ⊂ A′, (w′)−1w ∈ WA′ , and (w′)−1w is a minimal coset representative of (w′)−1wWA.The
vertices of Sal(W ) are indexed by group elements, and its 1-skeleton coincides
with the weak order on W with each edge doubled (see Figure 2). There is an
action of W on Sal(H) defined by u · (w,A) = (uw,A).

Theorem 8 ([Sal87, Theorem 1],[Del72]). ForW a finite Coxeter group, the Salvetti com-
plex Sal(W ) embeds in V reg

C , and is a deformation retract of V reg
C . The W -action induces

a homotopy equivalence between Sal(H/W ) and V reg
C /W . Furthermore, both Sal(W ) and

Sal(H/W ) are K(π, 1) spaces.

By definition, the group P (W ) is generated by certain loops indexed by the edges of
the Hasse diagram of weak order. We may write these generators as the set

Tedge := {tw,i := w · s2
i ·w−1 : w ∈ W, si a descent of w}.

If Σ is a shard corresponding to the join-irreducible element wΣ with unique descent si,
we define the loop tΣ := wΣ · s2

i ·w−1
Σ . Write Tshard := {tΣ : Σ a shard}.

The main technical tool in finding presentations is the following observation:

Theorem 9 (W. 2018). Each tw,i ∈ Tedge is homotopic to a unique tΣ ∈ Tshard.
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This generating set Tedge can be reduced in size—in fact, it turns out that P (W ) is
generated by a set indexed by the hyperplanes in H in the following way: any reduced
word for the long element w◦ := s1s2 · · · sN specifies a set of pure braids

Tw◦ =
{(

s1s2 · · · si−1

)
s2
i

(
s−1
i−1 · · · s−1

2 s−1
1

)}N
i=1
.

It turns out that Tw◦ is a generating set for P (W )—any element of Tedge can (explicitly)
be written as a product of elements of Tw◦ and their inverses. A first step towards a proof
of Conjecture 3 is then a complete list of relations. In fact, by a theorem of Salvetti, we
only need one family of relations [A]Tw◦ for each full rank-two subarrangement A of H,
encoding homotopic loops for the small full-twist cA of A. When an element te used to
express the relations for cA is not a generator from our chosen TTw◦ , we must rewrite te
in terms of the elements TTw◦ . The difficulty in writing down simple presentations
for π1(V reg) is concentrated in this step [Ran82, Ran85].

Coxeter-Catalan combinatorics now comes to the rescue: having chosen a set of shards
through a choice of Coxeter element c, giving the c-sorting word w◦(c) and generators
Tw◦(c), the relations from rank-two c-noncrossing subspaces can be easily expressed us-
ing Theorem 9. On the other hand, most rank-two subspaces can be realized as a non-
crossing subspace for some Coxeter element c. The theory now allows control over the
presentations, and rewriting gives a method of attack for proving Conjecture 3.

5. REU Project: Hurwitz Presentations

In the interest of space, I will not give a long list of the problems I have for students
and instead summarize an REU project I proposed and supervised this past summer.

In [Kra08], Krammer came up with a family of presentations of the braid group, a special
case of which used triangulations of an n-gon. His construction can be placed in the setting
of cluster algebras as follows: the Dynkin diagram of a simply-laced Coxeter group W
encodes a presentation for the braid group where vertices correspond to generators, edges
to braid relations, and missing edges to commutations, as in the top line of Figure 3.
Orienting the edges of a Dynkin diagram gives a quiver, for which Fomin and Zelevinsky
have defined a notion of mutation. The input is a quiver Q and any vertex v of Q, and the
output is a new quiver µv(Q). Building on work of Barot and Marsh [BM15], Grant and
Marsh [GM17] showed that each quiver Q in the same mutation class as a Dynkin quiver
encoded a presentation BQ(W ) ' B(W ). For example, Figure 3 illustrates a mutation of
a quiver and the corresponding presentations of the braid group B3.

By associating the simple reflections to the vertices of a Dynkin diagram, a Coxeter
element specifies an orientation of the edges—giving a quiver. Similarly, there is a sort of
mutation available. Given a factorization of c into reflections, we can perform a Hurwitz
move to obtain a new factorization:

(4) µk(t1t2 · · · tktk+1 · · · tn−1) = t1t2 · · · ttkk+1tk · · · tn−1, where ts = sts−1.

It turns out that clusters and the cluster exchange graph can be modeled as certain
special “two-part” factorizations of a Coxeter element into reflections [ST13, STW15]—and
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s1 s2 s3
//

µs2
��

〈
s1, s2, s3 :

s1s2s1 = s2s1s2

s2s3s2 = s3s2s3

s1s3 = s3s1

〉

µs2

��

t1

t3

t2

//

〈
t1, t2, t3 :

t1t2t1 = t2t1t2

t2t3t2 = t3t2t3

t1t3t1 = t3t1t3

t1t2t3t1 = t2t3t1t2 = t3t1t2t3

〉

Figure 3. The top line illustrates how the Dynkin diagram of type A3

encodes a presentation of the braid group B3. The left column gives an
example of mutation between two quivers; the right column gives the cor-
responding group presentations for B3 derived from these quivers.

mutation factors as a composition of a sequence of Hurwitz moves on the factorization.
It is therefore natural to wonder if any factorization of the Coxeter element encodes a
presentation of the braid group. This summer, my REU student Reed Hubbard and I
proved that this was the case, generalizing the Grant-Marsh result to a much larger family
of presentations [Del74, Rea08, Bes03].

Theorem 10 (Hubbard, W. 2018). Factorizations of Coxeter elements in a finite simply-
laced Coxeter group encode presentations of B(W ).

In generalizing, our theorem explains results in [BM15, GM17, HHLP17] in the context
of Bessis’s dual braid monoid [Bes03], using the beautiful combinatorics on the factoriza-
tions. Our proof is based upon the theorem that any factorization can be transformed to
any other by Hurwitz moves—one must then check that certain obvious maps between
two groups whose underlying factorization differ by a single Hurwitz move are homomor-
phisms. A natural extension is to tackle other reflection groups.

Problem 11. Extend Theorem 10 to all finite Coxeter groups, to finite complex reflection
groups, and even to infinite Coxeter groups.

The same proof technique should continue to work for the Hurwitz orbit of a factoriza-
tion (for complex reflection groups, use the presentations of Michel-Malle-Rouqier, and
Bessis-Michel as a starting point [BMR97, BM04]), but the subtlety will lie in identifying
the correct definition of the presentations.

6. Prior Support: Not Applicable

I have not held an NSF grant before.
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7. Intellectual Merit

My research is in algebraic combinatorics, with a broad interest in motivation from
other areas of mathematics such as Lie theory, geometric group theory and Artin/braid
groups, and reflection groups. The proposed research project draws on connections be-
tween geometric group theory and Coxeter-Catalan combinatorics to produce elegant and
useful combinatorics.

I believe that my research has had a positive effect on the combinatorics community,
and many results have applied to research problems outside of the context in which they
originally arose. I have a record of producing problems and research areas accessible to
beginning researchers, and I have been selected to give talks on my research at FPSAC
in 2012, 2015, 2016, 2017, and 2018.

My work with Striker in [SW12] has served as a catalyst for the involvement of un-
dergraduate and young graduate students in cutting-edge research at REUs and doc-
toral programs—there were many developments motivated by the appearance of our
paper [SW12]: [CHHM15, EP13, EFG+15, Had14, Hop16, GR14, GR15, GR16, PR15,
Rob16, RS13, RW15, Rus16, DPS17, Str15, Str16]. In 2015, Striker, Propp, Roby and I
organized an AIM workshop that launched a new field of combinatorics that J. Propp has
termed “Dynamical Algebraic Combinatorics”, and many papers have resulted from and
been inspired by our workshop, including [DPS17, EFG+15, JR17, STWW17, HMP16,
GHMP17b, GHMP17a, GP17]. We organized a successful session at the Joint Mathemat-
ics Meetings in 2018, and J. Striker and M. Arnold and I are organizing an AMS special
session in Hawaii in spring 2019. I revisited this area with Thomas this past year in two
papers [TW17, TW18a].

My work with Hamaker, Patrias, and Pechenik [HPPW16]—using K-theoretic Schubert
calculus to resolve a long-standing open bijective problem involving plane partitions—led
to two separate REU projects over the past two years: one at Morrow’s REU at the
University of Washington mentored by Hamaker and Griffith, and one supervised by
Pechenik [BHK16, BHK17]. One of these REU projects resulted in a FSPAC poster.

My work with Thomas inverting sweep and zeta maps [TW18b] solved a long-standing
problem in the field of diagonal coinvariants, and has already found applications outside of
the field [HV17, Proposition 4.4]. Our follow-up project extending this work to resolving
conjectures from [GMV16] has led to further interesting problems related to the Littleman
path model and random walks on weight lattices of simple Lie algebras [LLP12].

8. Broader Impacts

8.1. Education and Service. Although I have only been in my current position at
the University of Texas at Dallas for one year, I have already supervised independent
coursework with Austin Marstaller (masters student), the undergraduate honors thesis
of Kevin Zimmer (undergraduate), and an REU student Reed Hubbard last summer
(undergraduate). I now have a Ph.D. student Amit Kaushal who is currently pursuing
research with me—funding will allow me to support Amit’s research past the initial two
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years of coursework. As a service to the dynamical systems community at UTDallas (and
to my own students), I began a representation theory seminar this fall, for which I provide
written notes; we typically have four graduate students and four professors in attendance.

Other activities over the last year include organizing the Graduate Student Combina-
torics Conference at UT Dallas in 2018 (which hosted over 75 graduate students from
around the country) and appearing as a mathematical consultant in a televised report
(WFAA) regarding the NCAA basketball bracket, which since aired in over 15 cities na-
tionwide. I am interested in continuing to increase the visibility and participation of
women in mathematics at UT Dallas by establishing an AWM chapter. As the only com-
binatorialist at UT Dallas, I have also designed new undergraduate and graduate courses
in combinatorics. I have already had one combinatorics course approved to be part of the
curriculum for our new bachelor’s program in Data Science.

8.2. Mentoring and REUs. Because of its many elementary problems, combinatorics
is a discipline in which undergraduate and graduate students can immediately become
involved in research-level mathematics. I have formulated a large interconnected library
of concrete combinatorial problems especially suitable for graduate and undergraduate
students, and I have substantial past experience in involving students and underrepre-
sented students in research. I will continue to seek out such opportunities with the goal
to eventually build a strong combinatorics program at UT Dallas; for example, our current
Pioneer REU program only allows for four students.

• Beginning in 2018, I am now the Ph.D. advisor of Amit Kaushal.
• In 2018, I mentored a summer Pioneer REU student Reed Hubbard, who produced
some high-quality research on braid groups that we will submit for publication.
• In 2018, I mentored Kevin Zimmer’s undergraduate honors on fixed point theorems
in algebraic combinatorics (he recieved distinction).
• In 2017 and 2018, I pursued an independent study course with Austin Marstaller
on the classification of root systems
• In 2016, I co-mentored Florence Maas-Gariepy on a research/study project in-
volving finite reflection groups, which led to her project report (in French) being
featured on the funding agency’s website [MG16].
• In 2014, I mentored Stephanie Schanack, Fatiha Djermane, and Sarah Ouahib on
an original research problem involving the characterization of the fixed points of
a certain combinatorial set under a cyclic group action. I guided them through a
case-by-case analyses which the three wrote up (in French) [SSD14].

I was also involved with the very successful combinatorics Research Experience for Un-
dergraduates (REU) at the University of Minnesota:

• At the 2011 REU, I provided support to David B Rush and XiaoLin Shi [RS13],
who found a generalization of my work in [SW12].
• For the 2010 Minnesota REU, I helped direct Gaku Liu’s research in partition
identities [Liu] and helped a second group formulate and computationally test
conjectures on a combinatorial reformulation of the four-color theorem [CSS14].
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