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DUAL BRAID PRESENTATIONS AND CLUSTER ALGEBRAS
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Supervising Professor: Nathan Williams, Chair

Presentations for Coxeter groups and their braid groups are encoded by Dynkin diagrams.
In their foundational work on cluster algebras, Fomin and Zelevinsky defined an operation
on quivers (oriented Dynkin diagrams) called mutation. It is reasonable to ask if a quiver
mutation-equivalent to (an orientation of) a Dynkin diagram also encodes a presentation of
a Coxeter or braid group. By explicitly writing down a set of relations, Barot and Marsh
constructed such presentations for Coxeter groups, which Grant and Marsh generalized to
the corresponding braid groups. We explain and generalize these results for simply-laced
types using presentations encoded by reduced factorizations (into reflections) of a Coxeter
element—the results above are recovered by specializing to certain two-part factorizations
(in bijection with vertices of the cluster exchange graph) and certain compositions of Hurwitz

moves (paralleling quiver mutation).
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CHAPTER 1

INTRODUCTION
1.1 Background

1.1.1 Braid and Symmetric Groups

Informally, a braid on n strands is an isotopy of diagrams which represents n ‘braided’ strings
in a 3-dimensional Euclidean space, whose endpoints are fixed at their top and bottom at
n distinct points, with the restriction that the strings may not pass through each other or

double back. For example, is a schematic diagram of one such braid on 3 strands.

/

)

Figure 1.1. Example of a braid on 3 strands.

For any fixed integer n, there are infinitely many such braids on n strands and given
any two such braids we can stack them on top of each other and obtain a new braid on
n strands. These braids form a group, known as the braid group under concatenation (or

stacking), see |[Figure 1.2) where the identity element is the braid whose strands are all

untangled. Formally we can define a braid group as follows.

Definition 1.1.1 (Braid group on n strands). Let p1, ..., p, be n distinct points in R?. Let

(f1,.-., fa) be an n-tuple of functions

fi:]0,1] — R?



\—/

D

)

N\

)

Figure 1.2. Concatenation of two braids on 3 strands.
such that
fi(0) = p;, fi(1) = p; for some j =1,...,n,
and such that the n paths
[0,1] —R?* x [0,1]
t —(fi(t),1),

called strands, have disjoint images. These n strands are called a braid. The braid group B,
on n strands is the group of isotopy classes of braids. The product of a braid (f1(¢), ..., fu(1))
and a braid (g;(t), ..., gn(t)) is defined by

where j is such that f;(1) = p;.

In (Artin, |1947), Artin gave the following presentation (now known as the Artin’s pre-

sentation) of the braid group on n strands.

B, = (s1,...,8,-1|8i8i+18; = 8i4+18iSi11, 8iS; = 8;5;)



where 1 <7 <mn—2andi—j > 2 Heres; and s;' can be visualized as [Figure 1.3 and
respectively. It is easy to see how any braid on n strands can be produced by

taking products of s1,...,s,_1 and their inverses.

1st ith i+ 1th nth

y
f

Figure 1.3. A visualization of the braid s;.

1st Z'th i+ 1th nth

[
)

Figure 1.4. A visualization of the braid s; .

By forgetting how the strands in a braid twist around each other, and only focusing on
where the strands start and end, every braid on n strand determines a permutation on n
elements. By assigning the braids s; and s;' to the transposition (i,i + 1), we obtain a

surjective map from the braids on n strands to the set of bijective functions from a set with

n elements to itself. This map is compatible with the composition defined in [Equation (1.1)]

therefore we obtain a surjective group homomorphism from the braid group on n strands to

the symmetric group
S, = © §:Si118: = Si118:Ss g, — §:5: §2 —
n = <317 s Sn—1 ¢ 8iSi+158i = Si+15iSi+1, SiSj = 5584, 8; = 6>

where 1 <i<n—2andi—j > 2.



1.1.2 Artin and Coxeter groups

A finite Coxeter group is an abstract group generated by a set of simple reflections, denoted

by S, with a presentation of the following form:

57 =57 =e,
W:=(S5: 5i8jSi " = 8j8;Sj ", for Si, S5 € S with s; 7& S (1.2)
N—— N —
m;; terms m;; terms

where 2 < m,;; < oo. For example, symmetric group &,, is a Coxeter group. The relations
5i5j8; -+ = 5;5;5; - -+ are called braid relations.

The spherical Artin group corresponding to a finite Coxeter group W is given by Artin’s

presentation:
B(W) := <S’ :8;8;8; - = 8;8;8;--+, for s;,5; € S with s; # sj> : (1.3)
—— N——
m;; terms m;; terms

where S is a formal copy of the generators S, subject to only the braid relations. Coxeter
groups are closely related to Artin groups—each Coxeter group is a quotient of the corre-
sponding Artin group in a natural way. Braid group B,, is an example of an Artin group.
For a given presentation of a Coxeter group W, the corresponding Artin group B(W) has
a similar presentation, obtained by simply forgetting the involutions in the Coxeter group’s

presentation (Deligne, [1972; |Brieskorn and Saito, (1972)).

1.1.3 Presentations from Quivers

Artin’s presentation for an Artin group B(W) and the Coxeter group W is encoded by
Dynkin diagram—vertices correspond to generators, edges to braid relations, and missing
edges to commutation relations (for example, see .

Orienting the edges of a Dynkin diagram gives a directed graph called a quiver, for
which Fomin and Zelevinsky (Fomin and Zelevinsky, 2002)) have defined a notion of quiver

mutation—input a quiver Q and any vertex v of Q, and the output is a new quiver pd"V(Q)



518281 = 828152
S1 — S2 — S3 < 81,892,833 . 898389 = 838983 = B,
8183 = 8381

Figure 1.5. Artin’s presentation for the braid group B, encoded by a Dynkin diagram of
type As.

with some local changes to edges near v (see [Definition 8.1.2). A cluster exchange graph

is a connected graph whose vertices are labelled by quivers and edges by quiver mutations.
A quiver Q is said to be mutation equivalent to another quiver Q' if one can be obtained
from the other by a finite number of quiver mutations, and the set of all quivers, mutation
equivalent to the quiver Q is called the mutation class of Q.

Since Dynkin diagrams encode a presentation of the corresponding Coxeter group W
(and the Artin group B(W)), it is reasonable to ask if a quiver mutation-equivalent to (an
orientation of) a Dynkin diagram also encodes a presentation.

Building on work of Barot and Marsh (Barot and Marsh| [2015), Grant and Marsh (Grant

and Marsh, |2017) constructed such presentations (see{Theorem 11.0.1)) from Dynkin diagrams

of simply-laced type, showing that each quiver Q in the same mutation class as a Dynkin
quiver encode a presentation B(Q) of the Artin group of the same Dynkin type as Q. The
validity of these presentations was checked by giving an isomorphism between B(Q) and
B(udv(Q)). This is illustrated in Using different approaches this result has also
been independently proved in (Qiu, 2016|) for simply-laced type, and in (Haley et al., 2017)

for finite type.

1.1.4 Coxeter Elements, Factorizations, and Hurwitz Moves

Let us write t* = sts™! and ¢ = s~ 1ts. The set of reflections of a finite Coxeter group W is

defined to be the closure of simple reflections S under conjugation, and is generally denoted



8183 = 8351

S2
818281 = 828182
Q _ B(Q) = 31, 327 83 . 828387 = 838283
S1 53

Quiver mutation

t3 titot, = tot ity

AN . totsts = tatsts

/Q’\ > B(Q) = ( t1,ta, 5 : titst) = titit
tlt2t3tl = t2t3tlt2 - t(itltZtS

t1—>t2

<~—R—

Figure 1.6. An example demonstrating the isomorphism between two groups—B(Q) and
B(Q')—obtained using Grant and Marsh’s presentation encoded by quivers Q and Q', which
are mutation equivalent.

by T,

T:={s":s€SweW}.

Any element w € W can be written as an expression in the alphabet S or T. An S-
decomposition of w is any expression s1S - - - §; such that w = s1s9 - - - s; with s1,59,...,5 € S.
Similarly, a T'-decomposition of w is any expression tity---t; such that w = tit5---t; with
t1,ta,...,t; € T. An S-decomposition (resp. T-decomposition) of w is reduced if it is of
minimal length among all S-decompositions (resp. T-decompositions) of w.

A Cozeter element in a Coxeter group W is a product of all the simple reflections (each
appearing exactly once) in any order—associating these simple reflections to the vertices
of a Dynkin diagram, the order (up to commutation) is equivalent to orienting the edges
to obtain a quiver. For example, for a reduced S-decomposition ¢ = s;---s, of a Coxeter
element, if s; appears before s; in ¢ and if their corresponding nodes in the associated Dynkin

diagram share an edge, then we will orient it from the node corresponding to s; to the node

corresponding to s;, (see [Figure 1.7)).



Reduced S-decomposi-
tions of Coxeter elements

(12)(23)(34) &
(23)(12)(34) &
(34)(23)(12) &
(12)(34)(23) &

Figure 1.7. Reduced S-decompositions of Coxeter elements in &4 encode quivers.

Quivers

Given a T-decomposition tity - - - tgtgr1---t, of a Coxeter element ¢ we can perform a

Hurwitz move on tity - - - titgrq - - - t, at k to obtain a new T-decomposition

pp(tity - byt - o) = ity - 0 - . (1.4)

By proposition 1.6.1 in (Bessis, 2003)), the set of reduced T-decompositions of a Coxeter ele-
ment is connected under Hurwitz move, i.e. if we keep performing Hurwitz moves on a given
T-factorization of a Coxeter element, then we will eventually get possible T-decomposition of
c. We have already seen how the S-decompositions of Coxeter elements encode quivers which
in turn encode presentations of Artin groups, it is natural to ask if the T-decompositions of
a Coxeter element also encode ‘meaningful’ presentations of the corresponding Artin group.
In this dissertation we answer this question for the simply-laced finite Coxeter groups—the

groups of types A, D and F.

1.2 Presentations from Factorizations of Coxeter Elements

Our first result gives presentations of the Artin group B(W) encoded by reduced T- decom-

positions of a Coxeter element ¢ in a Coxeter group W.

Theorem 1.2.1 (Theorem 5.1.2)). Let ¢ be a Coxeter element in W and let tity---t, be a

reduced T'-decomposition of c. Define



B(tl,tg, . ,tn) = <t1,t2, Ce ,tn|Rel(t1, e 7tn)> (15)

where
titj = tjtz' iftz' H tj7
titjti = tjtitj if t; th,
Rel(ty, ... ,tn) =
iy tiy - ti, -t = if i Ntay - N ta, Ntau Sty
ti; | tiy, fork#3j—1,5+1.
then

B(t1>t27"' 7tn) = B(W)

where ty || ty and t,)t, denote that t, and t, commute and don’t commute, respectively.

By Grant and Marsh’s result [Theorem 11.0.1] quivers in the same mutation class encode

presentations of an Artin group. By [I'heorem 1.2.1] reduced T-decompositions of a Coxeter

element also encode presentations of an Artin group. Our second result relates these two

presentations. We will refer to the presentations arising from Grant and Marsh’s result as

in [Theorem 11.0.1] as quiver presentations, and presentations arising from [Theorem 1.2.1]

factorization presentations.

1.3 Quiver Presentations from Factorization Presentations

For our second result we use a combinatorial model of the cluster exchange graph to recover
quiver presentations as a special case of factorization presentations. This model consists of
two-part factorizations (in bijection with the vertices of the cluster exchange graph) and
factorization mutations (paralleling quiver mutation).

For a given reduced S-decomposition ¢ of a Coxeter element ¢ we define a total order

on the set of reflections, called the Cozeter order by [Definition 9.2.70 We write t; <. t,




for any two reflections t; and ts, if ¢; precedes t, in the Coxeter order. For the symmetric
group &,, and the reduced S-decomposition (12)(23)---((n — 1)n) of a Coxeter element in
S, the Coxeter order on the reflections is just lexicographic order on the transpositions (ij)
for 1 <i < j <mn. That is, (ij) <. (kl) if and only if i < k or ¢ = k and j < k. For a
given Coxeter element ¢ € W and a reduced S-decomposition ¢ = sy ---s, of ¢, a two-part

factorization is a reduced T-decomposition ¢y - - - £;ry - - - r; of ¢, which can be written as
- lilry -1,
such that
O <c¢--Z<clyry < - Z<crj, by biry--orj=c, and i+ j =n.

Clearly, a Hurwitz move on a two-part factorization may result in a factorization that is not a
two-part factorization, for example, consider the reduced S-decomposition ¢ = (12)(23)(34)
of a Coxeter element in &,. The Hurwitz move, (23)(34)|(14) £ (24)(23)|(14) gives a
reduced T-decomposition which is not a two-part factorization (because (23) <. (24)). Fac-

torization mutation is a particular sequence of Hurwitz moves on a two-part factorizations

that preserves two-part factorizations (see |Definition 10.0.14). To perform a factorization

mutation we choose a reflection on the left-hand side of the two-part factorization and
through a series of Hurwitz moves, ‘move’ it to a new position on the right-hand side of the
two-part factorization such that the resulting decomposition is still a two-part factorization.
For example, a factorization mutation on the reflection (23) is the following sequence of

Hurwitz moves

(23)(34)[(14) £ (24)(23)](14) £ (24)](14)(23).

Since two-part factorizations of a Coxeter element are a special type of reduced T-
decompositions, and factorization mutations are repeated Hurwitz moves, therefore by

the factorization presentations arising from all the two-part factorizations form



a subset of the factorization presentations arising from all the reduced T-decompositions.

By associating quivers to two-part factorizations—as in [Definition 10.0.16|—we show that if

two two-part factorizations are connected by a factorization mutation then their associated

quivers are connected by quiver mutation (see [Theorem 10.0.17)). Using these observations,

we show that the factorization presentations arising from these two-part factorizations of

a Coxeter element (using [Theorem 1.2.1]) recover Grant and Marsh’s quiver presentations

arising from the associated quivers (see |[Chapter 11).

Theorem 1.3.1 (Theorem 11.0.2). Let s;---s, be a reduced S-decomposition of a Cozeter

element c. Let Facty(c) denote the set of all two-part factorizations of ¢ and Q denote the

quiver associated to the two-part factorization sy - - - s,|-. Then the factorization presentations

arising from the reduced T-decompositions in Facty(c) using|Theorem 1.2.1] are precisely the

quiver presentations arising from the quivers in the mutation class of Q using Theorem 2.12.

in (Grant and Marshl, |2017).

1.4 Dual Braid Presentation from Factorization Presentations

Our third result draws a parallel between our presentations and Bessis’ dual braid presenta-
tion. Building on work of Birman-Ko-Lee (Birman et al., [1998), Bessis (Bessis, [2003)) gave
a second, different presentation for Artin groups associated with finite Coxeter groups, by
replacing the set of simple reflections S by the set of all the reflections 7', leading to a ‘dual’

presentation for the Artin group B(W) called the dual braid presentation.
B(W) = (T|t;it; = tyt;, for t;,t;,t; € T with t;t; = tyt; and t;t; <7 c) (1.6)

where T is a formal copy of the set of all the reflections 7" and ¢ is a Coxeter element. In

we prove that Bessis’s dual braid presentation is the ‘union’ of all the presentations

given by [Theorem 1.2.1}]

10



Theorem 1.4.1 (Theorem 7.0.6). For a Cozxeter element ¢ in W, the dual braid presentation

of the Artin group B(W) is generated by T (a formal copy of the set of reflections), subject

to the relations {Rel(ty,...,t,) : t1---t, is a reduced T-decomposition of c}.

11



CHAPTER 2

BACKGROUND ON ARTIN AND COXETER GROUPS

This chapter is a review of the theory of Artin and Coxeter groups. Most of this material
has been well studied and a much detailed exploration of this material can be found in
(Humphreys|, 1990; Bourbaki, 2002). We will first establish the standard conventions and
notations for Coxeter and Artin groups and their connection with abstract reflection groups,
followed by a review of how they are encoded and classified by Coxeter-Dynkin diagrams.

We will conclude by defining two different types of orders on the set of elements of a Coxeter

group.

2.1 Finite Real Reflection Groups and Finite Coxeter Groups

Definition 2.1.1 (Reflection). Let E be an n-dimensional Euclidean space. A mapping

t: E— FEisa reflectionin E if t

1. is an isometry
2. is an involution
3. fixes a hyperplane pointwise

4. swaps the half-spaces defined by the hyperplane.

Definition 2.1.2 (Finite reflection group). Let E be an n-dimensional Euclidean space. A
finite reflection group is a group generated by reflections in E such that the hyperplanes

fixed by these reflections pass through the origin.

If the requirement that the hyperplanes pass through the origin is relaxed then we have
affine reflection groups. If we allow the underlying space to be a finite complex vector space
then we will have complex reflection group. In this dissertation, all reflection groups are real

and finite.

12



Definition 2.1.3. A Cozxeter group is a group with the following presentation:
W = (s1,82,...,8, 1 (8i8;)" = e)group,

where m;; € NU {oo}, m;; = 1 when ¢ = j and m,; = oo when s;s; is of infinite order.

For m;; < oo we have finite Cozeter groups. When i # j and m,; > 2, the relations

(sis;)™ = e (also written as s;5;s;--- = s;5;8;--) are braid relations. When i # j and
——
mi; terms m;; terms

m;; = 2, the relations (s;s;)™ (also written as s;s; = s;s;) are commutation relations. The
collection (W, S), where S := {s1,...,s,} is called a Cozxeter system of rankn := |S|. Denote
the closure of S under conjugation by T := {wsw™t|s € S,w € W}.

Every reflection group in an n-dimensional Euclidean space is isomorphic to some Coxeter
group (Coxeter}, 1934) and every finite Coxeter group is isomorphic to some reflection group
in an n-dimensional Euclidean space (Coxeter, [1935). In these isomorphisms the set 7" in
the Coxeter group always maps to the set of reflections in the reflection group, therefore T'
is called the set of reflections and S—the set of simple reflections or simple generators. In

this dissertation all Coxeter groups are of finite type.

Definition 2.1.4. A pair (A,T4) is called an abstract finite real reflection group, if there

exists a faithful representation p : A — GL(Vg) satisfying
Va € A, codim(ker(p(a) - IdGL(VR))) =lsaeTy

where A is a finite group, T4 a generating subset of A and Vi a finite dimensional R-vector

space.

In this dissertation all abstract reflection groups will be finite and real, therefore we
will simply call them abstract reflection groups. From this definition, it is clear that every
abstract reflection group is also a finite Coxeter group (since every abstract reflection group

is isomorphic to a finite reflection group). Thus, given any abstract reflection group (A, T'x)

13



we can choose a set S4 C T4 such that (A, Sy) is a Coxeter system (the choice of Sy is not

unique), and given any Coxeter system (W, S), the pair (W,T) where T = {wsw™' : w €
W,s € S} is an abstract reflection group. In this dissertation we will denote an abstract

reflection group by (W, T') and its corresponding Coxeter system by (W, S).

Definition 2.1.5. Given a finite Coxeter system (W, .S) there is a corresponding spherical
Artin system (B(W), S)—an Artin group B(W), generated by a formal copy of the simple
reflections S denoted by S, subject to only the braid relations and commutations (Deligne),

1972)) (Brieskorn and Saitol, [1972)).

B(W) :=(S:8;8;8; -+ =8;88; ", 5,5; €5, # ;) group
—_— Y
mij mij

Similarly, an Artin group presentation becomes a Coxeter group presentation upon adding
the relations s? = e for each s in the generating set. Since the relations in the presentation
are between positive words therefore this same presentation can also be seen as a monoid

presentation, namely positive Artin monoid

Example 2.1.6. The symmetric group &,, (the group of bijective functions from a set with
n elements to itself) is a Coxeter group. The corresponding Artin group is the braid group
on n strands, B,,. In particular, &3 and Bj3 are the Coxeter group and braid group with the

following presentations, respectively:
Sa = . _ 2 Q2 B, = . _
3 = (81,52 1 515281 = 525152, 5] = S5 = €)group; 3= (81,821 815281 = $28182)group

The reflections s; and se correspond to the transpositions (12) and (23) respectively. The

set S = {s1,s2} is the set of simple reflections, whereas the set of reflections is T =
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{s1, 82, 818251} where s15281 corresponds to the transposition (13). The elements s; and
S in the braid group Bj may be visualized as 3 strands with two of them crossing each

other in a particular way as illustrated in [Figure 2.1}

/ /
( (

S1 S2
Figure 2.1. A visualization of the elements s; and s, in the braid group Bjs. s; twists the

first two strands whereas s, twists the second and the third strands.

The braid relation in Bj is illustrated in [Figure 2.2

58

Figure 2.2. Braid relation: s;8189 = $18981.

The corresponding positive braid monoid B:}‘L has the exact same presentation as that of

the group Bs.

2.2 Coxeter-Dynkin Diagrams

Coxeter groups are encoded by Coxeter-Dynkin diagrams—vertices correspond to simple

reflections of the Coxeter group, while edges encode the relations as follows: if s; and sy are

3

two simple reflections such that (s;$2)° = e then their corresponding vertices are connected

by an unlabeled edge ( e e ), whereas if (s157)® = e then the corresponding vertices

don’t share an edge ( o o ). If (s152)™% = e where m;; # 2 or 3 then the corresponding
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vertices share an edge with an assigned weight of m;; ( T

e ). By this convention the
lowest assigned weight to an edge in a Coxeter-Dynkin diagram is 4.

In [Figure 2.3 we show the Coxeter-Dynkin diagram and the corresponding hyperplane
arrangement for the Coxeter group &,. In (Coxeter, 1935) H. S. M. Coxeter classified all the
finite Coxeter groups in terms of Coxeter-Dynkin diagrams thus classifying the corresponding
Artin groups as well, see

A Coxeter-Dynkin diagram with no assigned weights to its edges is called a simply-laced
Coxeter-Dynkin diagram. Thus Coxeter-Dynkin diagrams of type A,,, D,, and E,, are simply-
laced Dynkin diagram and the corresponding Coxeter groups are called simply-laced Cozeter

reflection group.

S$95159
5152 5251
S9 S1
e
S92 S1

Figure 2.3. The Coxeter group &3 encoded by a Dynkin diagram of type A, with its corre-
sponding hyperplane arrangement.

2.3 Weak Order

For any group (G, e) and any subset H C G, an expression h{*h5?---hi* (or the sequence
(h1*, hg?, ..., hi¥)) is an H-decomposition of an element g € G if h{' ®@h3*e- - -ehi* = g, where
hi, ha, ..., hy (not necessarily all distinct) are in H and a; = £1. Sometimes, we also use the

phrases—“a word in H” or “an H-word” for an element ¢ to denote the H-decomposition
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F, o—oéo—o
Gy o''e
Hy, =GP =1 oo
H, oo
H, oéo—o—o
I = G oo

Figure 2.4. Types of finite Coxeter groups and their Coxeter-Dynkin diagrams.
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of g. H is called a generating set if every element in GG can be expressed as a word in H.
In this context elements in the subset H are sometimes referred to as letters. Note that a
generating set for a given group may not be unique. We will use sans-serif font to distinguish
words from elements. For example, if w denotes an element then we may use w to denote
a particular H-decomposition of w. The length of an H-decomposition is the length of the
H-decomposition as a sequence. An H-decomposition of g € G will be called reduced H -
decomposition if it is of minimal length among reduced H-decompositions of g, and the set
of all such reduced H-decompositions of g will be denoted by Redy(g). The length of an
element g € G is the length of any reduced H-decomposition of g, denoted by Iy (g).

In this way we can define S-decomposition, T-decomposition and all the other related
concepts for a Coxeter system (W,S). Two words w and w' in S (or in 7') are called
commutation equivalent if one can be written as the other by a sequence of commutations
of consecutive commuting letters, and we will write w = w’. A word u is initial in a word
w if u appears as a prefix of a word w’ such that w' = w where u, w and w' are S-words (or
T-words). Similarly a word v is final in a word w if v appears as a suffix of a word w’ such
that w' = w where v, w and w' are S-words (or T-words).

In a Coxeter system (W, S) a factorization w = w.v is a reduced S-factorization (where
u, v, w are elements in W) if Ig(w) = lg(u) + lg(v). Here we must make a clear distinc-
tion between the words S-factorization and S-decomposition. S-decomposition denotes a
factorization into elements in S, whereas S-factorization denotes just any factorization with
the condition that the sum of the length of each of the factors add up to the length of the
original element.

u € W is S-initial in w € W if there exists a v € W such that the factorization
w = w.v is a reduced S-factorization. Similarly u € W is S-final in w € W if there exists
a v € W such that the factorization w = v.u is a reduced S-factorization. The weak order
Weak(W) = (W, <g) is defined by u <g w if and only if u is S-initial in w as elements.

Weak order is analogously defined for B™.
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2.4 Absolute Order

The absolute order Abs(W) = (W, <r) is defined by u <7 w if and only if there exists a
v in W such that u.v = w and Ir(u)+Ilr(v) = lr(w). Observe that if v € W is T-initial in
v € V then u is not necessarily S-initial in v—because Ir(v) may not be equal to lg(v). If u
is T-initial in v then u is also T-final in v, because if uv’ = v then there exist a v” = wv'u™!

such that v"u = v where Ip(v"”) = lp(v’). This is not true for S-factorizations i.e. if u is

S-initial in v then u is not necessarily S-final in v.
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CHAPTER 3

ROOT SYSTEMS

In this chapter we establish the notations and conventions for root systems. Roots are vectors
in a vector space equipped with some additional properties which make them the generators
of finite Coxeter groups. Therefore the study of finite root systems is closely related to the

study of finite Coxeter groups. A detailed treatment can be found in (Humphreys, [1990)).

3.1 Root Systems and Weyl Groups

Definition 3.1.1 (Root System). For any standard Euclidean space E (with a positive
definite inner product (-,-)), a finite subset R of E will be called a root system, if it satisfies

the following axioms

1. 0 ¢ R and R spans E.

2. If v e R and kv € R, where k € R then either k=1 or k = —1.

3. For u,v € R, 2<<vu;j;> VA

4. For u,v € R, (u - 2<“’”>v> € R.

(v,v)

Using axiom {| we can define a linear mapping ¢, : F +— FE (see [Figure 3.1)) by

u,v
ty(u) :=u— 2< ’ >U,Vu € E.
(v, v)
For any vector v € E if we denote the hyperplane orthogonal to v by H, then one can see

that %U is the projection of the vector v onto the line through v, consequently the map

t,(u) produces the reflection of the vector u on the hyperplane H,. In particular, t,(v) = —v
and t,(u) = u for v € H,, therefore the mappings ¢,’s are reflections in E. We can now

restate axiom Y| as—for u,v € R, t,(u) € R.
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1 ™
[ (u,v)

2ow)

Figure 3.1. Reflection of u onto the hyperplane perpendicular to v.

Definition 3.1.2 (Weyl Group). Weyl group W (R) is the reflection group generated by the
reflections ¢,, for all v € R. Sometimes we may denote it by just W when the corresponding

root system is understood.

Since all reflection groups are finite Coxeter groups therefore Weyl groups are also finite
Coxeter groups consequently, Weyl groups can be classified by finite Coxeter groups—the
type of a root system is determined by the type of finite Coxeter group it is isomorphic to.
However, all finite Coxeter groups are not isomorphic to a Weyl group—there are no root
systems of the type Ho, Hz, Hy and Iy(m) for m > 7. The root system of B,, and C,, have

the same underlying Weyl group.

Theorem 3.1.3. If u and v are two roots in R such that u is not a scalar multiple of v and

l|lul| < ||v|| then one of the following is true

1. The angle between u and v is T and the ratio between ||ul| and ||v|| is unrestricted.

vl

2. The angle between u and v is 5 or 2 and ||u|| = [|v]
3. The angle between u and v is = or 2= and ||v|| = v/2||ul|
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4. The angle between u and v is = or 2= and ||v|| = v/3||ul|

Proof. Using Schwartz inequality we get

2(u,v) 2(v,u)  4u,v)(v,u)

(v,0) (u,u) (v, v){u,u)

4 2
_ Muwop
[o]][Ju]

The equality implies that v and v are collinear, making them scalar multiples of each other

2(v,u)

(excluded by assumption). Since by axiom 2<<“’1;> and Ty 1OUSE be integers therefore

<<U“Z;> 2&;‘; < 4 implies 2<<v“;j;> 2&’;‘; =0,1,2 or 3, consequently 4cos?f = 0,1,2 or 3, where 6§

[\

is the angle between u and v. Thus

29 _ 1 2 3
cos’d = 0 i i 4
_ 1 L V3
cos) = 0 +5 j:\/5 %
— T 2n w 3mm 5m
0 = § Fors g Jors Torg

Now we will look into the lengths ||u|| and ||v||, in particular, the relation between them.

204 — (), then the

) (uwu)

There are two possibilities, either %M =0 or # 0. Clearly, if 2<<

v) (wu)

angle between them must be 7 and the vectors v and v can be of any length. If however

2&“;? 2<< # 0 then by symmetry we may assume that << >> = 41, +2 or
. Since 2< 5 and 2 v> are either both positive or both negative therefore
o)
) 1,2, or 3
(v,v)
(v,u)
BRI, .
2] = [l ~
[EIR
— UUH = [lull, ||v]| = \/§I|UI| or ||v]| = \/§|IU|1-
9:% or 2?” 0:% or %Tﬂ 0:% or ‘%’
Thus we have proved all our claims. O
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3.2 Bases

Definition 3.2.1 (Base). Let E be the standard Euclidean space and R be a root system
of FE, a subset A C R is called a base of R if

1. A is a basis for E, as a vector space.

2. Any v € R can be expressed as v = ), kju;, where u; € A and k;’s are all of the same

sign (or zero).

It is not obvious that such a base exists. However with the help of [['heorem 3.2.5| we can

show that a root system will always have a base. Let x be any vector in F such that x is not
perpendicular to any of the roots in R. Such an x exists, because the total measure of all
the hyperplanes corresponding to all the roots in R is 0. A root v will be called z-positive
if (v, ) > 0. In other words v is z-positive if v lies on the same side of the half-space as x,
defined by the hyperplane perpendicular to x see |[Figure 3.2 For a given vector x in £ which
is not perpendicular to any r in R, we say, v € R is x-indecomposable if v is x-positive and
v can’t be written as a sum of other xz-positive roots i.e. v can’t be written as »_ u; where

u;’s are x-positive roots.

Lemma 3.2.2. Ifu,v € R for a root system R then

Ty < 0 then v+ v is a root.

[~

2. 2&“;}; > (0 then u — v s a To0t.

Proof. As stated in the proof of[Theorem 3.1.3, by symmetry we may assume that % =+1.

2(u,v)
(v,0)

Since (v,v) is positive therefore has the same sign as (u,v). Additionally

2(u, v) u+wv, if (u,v) <0
to(u) — = =
(v, v) .
u—uv, if (u,v) >0
=1
u+ v and u — v are in R by axiom [ O
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Figure 3.2. A root system and its z-positive roots.

Lemma 3.2.3. Let v be an x-positive root in R, for a vector x € E not perpendicular to

any root in R, v can be written as
v = E Uj,

where u;’s are x-indecomposable. As a result, the set of x-positive roots span E.

Proof. Let S, be the set of all those r € R such that r is z-positive. Let S} be the subset
of S, corresponding to a root v in S, such that if v € S? then (u,z) < (v,z). We will prove
this through induction on |SY|. For any v € S,, if |SY| = 0, then v is z-indecomposable,
thus the base case is true. Let us assume that our claim is true for any v € 5, if |SY| < k.
Now, if for some v € S,, SY = k+ 1, v = u + w for some u,v € S, then since (u,z) < (v, z)
and (w,x) < (v,x) we have [S¥| < |SY| and |S¥| < |S?|, consequently S¥ < k and S¥ < k,
thus using induction hypothesis we can say that u and w can be written as sum of z-
indecomposable roots, as a result v can be written as a sum of z-indecomposable roots.

Since any root in the half-space defined by the hyperplane perpendicular to x can be written

as a sum of z-indecomposable roots therefore any vector v in the same half-space can also
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be written as a sum of these x-positive roots, and any vector in the other half-space can be

written as a sum of negative z-positive roots. Therefore x-positive roots span E. O

Lemma 3.2.4. If u and v are x-indecomposable then (u,v) <0

Proof. Let x be any vector not perpendicular to any root in R. By |Lemma 3.2.2if (u,v) > 0

then r = u—wv is a root, and thus either r or —r is in the same half-space as x, i.e. either r or
—r is in z-positive. If r is x-positive then u = v+r, else if —r is z-positive then v = u+(—r),

a contradiction, thus (u,v) < 0. O
Theorem 3.2.5. Fvery root system R has a base A.

Proof. We will show that for any vector x € E not perpendicular to any of the roots in R, the
set of z-indecomposable roots is the base for R. Let us denote the set of x-indecomposable
roots by V.

We will first show that the set V is linearly independent. If not then there exist non-
zero k;’s such that > kju; = 0, w; € V. Since k;’s are non-zero therefore we can rewrite

summation as

> aii =) bu;.
where a;’s and b;’s are positive real numbers. Since u;’s are in V, therefore by _!m
<(Z am) ) (Z bjuj>> = Z a;bj(ui, u;) < 0.
Since Y au; = Y bjuy,
<<Z (liUi) ) (Z bjuj>> = (Z aiui)Q >0

therefore Y a;u; = 0, a contradiction. Thus V is linearly independent. Additionally, by
Lemma 3.2.3, V spans .

Now for the second condition in the definition of a base, observe that for a given vector

x (not perpendicular to any of the roots in R) every x-positive root can be written as a
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sum of z-indecomposable roots, i.e. all the roots in the half-space defined by the hyperplane
perpendicular to z can be expressed as > wu;, where u;’s are roots in the same half-space.
Therefore any vector v in the same half-space can be expressed as Y k;u; where k;’s are all
positive or zero, and any vector u in the other half-space can be expressed as > {;u; where

¢;’s are all negative or zero. O]

Definition 3.2.6 (Positive roots Rt C R). Fix a vector x in E such that z is not perpen-

dicular to any root r in R. This fixes a base in R. A root r € R is positive if (r,z) > 0.

Positive roots in a root system are not unique, it is dependent on the choice of a base in
the root system. An equivalent but alternative definition avoiding the choice of a vector x

is as follows:

Definition 3.2.7 (Positive roots Rt C R (Alternative definition)). For a root system R
choose a base A of R. A root r € R is positive if  can be written as r = ) k;u; where k;’s

are greater than or equal to 0 and wu;’s are in A.

Definition 3.2.8 (Negative roots R~ C R). For a root system R and a base A C R, a root

r € R is a negative root if it is not a positive root.

Definition 3.2.9 (Simple roots .S). The roots in the base of a root system are called simple

roots.

The existence of such indecomposable roots in A is ascertained by [Lemma 3.2.3] The
set of simple roots correspond to the simple reflections in the corresponding Coxeter group.
Instead of first developing a base for the root system one can first define the set of simple

roots as follows.

Definition 3.2.10 (Simple roots (alternate definition)). For any root system R in the stan-
dard Euclidean space E, the set of hyperplanes H, perpendicular to v for each v in R
decompose F into finitely many simplical cones. Choose one of these simplical cones, the set

of all outward normal roots to the facets of the chosen simplical cone are the simple roots.
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The sum ) v, where vy, are the simple roots, give us all the positive roots. Taking the

negative of the positive roots give us the negative roots.

Definition 3.2.11 (Rank of a root system). The rank of a root system is the number of

simple roots in it.

Example 3.2.12. In the root system As, (see[[tem 2|) for the choice of base A = {u, v}, the
simple roots are S = {u, v}, the positive roots are R™ = {u, v, u+ v}, the negative roots are

R~ ={—u,—v,—(u+v)} and the set of roots is R = RT U R™.

3.3 Drawing all Rank-2 Root Systems.

Starting with any two non-collinear vectors in a root system R we can generate all the other

roots in R simply by taking all the linear combinations with only the scalar multiples 1 and

-1. We also know from [I'heorem 3.1.3|that only certain angles and length ratios can occur.

2(u,v) 2(v,u)
(v,0) (u,u)

both negative therefore there are 6 cases to consider.

is positive therefore 2<<U“Z;> and 2<SJ5>> are either both positive or

Additionally since

2(u,v) 2(v,u)
oy = 1 and Ty = 1, 2 or 3
2et) —1and 299 = 1, —2 or -3

(v,v) (u,u)
We can further reduce this to three cases with the following observation. If w = ¢,(u),

ie.w=mu— 2<<“’”>v — u — 28V then w is in the same R as v and v
v,V) (v,v)

2(u,v)
2w, v) 2 <u — <;’:;§ v,v>
(v,v) (v,v
<u,'U> - <%U5ru>
(v, v)

_9 <U, U) - 2(<Ulf;j;> <'U7 U)

=2




Therefore, whenever necessary, we can replace v by w and thus the only cases to consider

2(v,u)

A Tu)

=—1, -2 or —3.

1. If 2<<JL:>> = 0 then v and v are perpendicular and could be of any length. This gives us

a A; x Ay type root system with a Dynkin diagram.

v

-

—U — =P U

—v

Figure 3.3. Root system A; x A;.

2. If 2<<;’J>> = —1, then the angle between w and v is 27/3 and ||u|| = ||v||. Additionally
2
tu(v) =v — <<ulf’17>>u =v+u.

This gives us a Ay type root system.

N
/ N\

[ 4
—U—U —v

Figure 3.4. Root system A;, &—® .

3. If 2&“5; — —2, then the angle between them is 37/4 and ||v|| = v/2||u||. And
2
tu(v) =v — <u,v>u = v+ 2u.
(u, u)

This gives us a root system of type By or (.
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+u v+ 2u

AN
/

—v —2u —v—u —

/.
N

Figure 3.5. Root system By, e .

v+ u

) v+ 2u

-V —U

Figure 3.6. Root system C,, =@ .

4. If 2<§f5>> —3, then the angle between them is 57/6 and ||v|| = v/3||u||. Also

2(v, u)
(u, u)

u=v+ 3u.

This gives us a root system of type Gb.

With the help of the background we reviewed so far we now prove an important result
which we will later use in in order to prove one of our main results. We will use
the notation s)(t to denote sts = tst and the notation s || t to denote st = ts, for reflections

s and t.
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2v 4+ 3u

v v+ U v+ 2u v+ 3u

—v — 2Uu —Uv—Uu —v
—v — 3u

—20 — 2u

Figure 3.7. Root system G5, &=® .

Lemma 3.3.1. Fizx a finite, simply-laced Coxeter reflection group W, and let t1,... ts be
reflections occurring in a reduced T-decomposition of a Coxeter element such that t; || t; for

Z?’éjil andt1><t2><---><ts_1><ts><t1. Then [thtg"'ts"'tg] = €.

Proof. Pick roots vy, vs, ..., v, orthogonal to the hyperplanes corresponding to the reflections
t1,...,t;. These are linearly independent, since Coxeter elements have trivial fixed spaces
(see, for example, (Athanasiadis et al., 2007, Lemma 3.11)). By replacing v; with —v;, we
can assure that ¢;(v;11) = v; + v;41 for 1 <i < s—1. On the other hand, we only know that
t1(vs) is either vs + v1 or vy — vy.

But we are assuming that [t1,fy--ts---ts] # e, which may be written equivalently as

t1 - ts_1(vs) #to - -ts_1(vs). We compute

t2"'ts—1<vs) :rU2—i_"'Us7é

ti(ta - ts1(vs)) = ta(va + - +v5) = v +v2 + -+ + 11 (vs),
so that t1(vs) = vs + vy.
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By comparing coefficients by linear independence, we observe that the powers

(tlt? e 'tS)k(US)

produce an infinite number of distinct roots of W, contradicting the assumption that W was

finite. O

3.4 Dynkin Diagrams

Root systems are encoded by Dynkin diagrams which can be constructed as follows. If R*NS
denotes the set of positive roots in a given root system, then we construct a graph whose
vertices are in bijection with the roots in R* N S and the edges are decided as follows. If

two roots in R™ N S are at an angle of

7/2, then the corresponding vertices are non-adjacent (don’t share an edge).

27/3, then there is an edge between the corresponding vertices ( e—e ).

37/4, then there are 2 arrows between the corresponding vertices directed from the

vertex corresponding to the long root to the vertex corresponding to the short root

(o==e ).

57/6, then there are 3 arrows between the corresponding vertices directed from the

vertex corresponding to the long root to the vertex corresponding to the short root

(e=»).

We don’t have to consider any other angles between the roots because we know that these are
the only angles that appear between roots in a root system. Note that though we can draw
hyperplane arrangements corresponding to a Coxeter group of Hy (with the angle between
two hyperplanes 7/5 or 47 /5), but there is no root system with an angle of 47/5 between

the simple roots.
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F, o—eo=9o

Goy | ==

Figure 3.8. Dynkin diagrams illustrating the types of reduced root systems.
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CHAPTER 4

DUAL COXETER SYSTEM AND HURWITZ MOVES

In this chapter we define Coxeter elements, and Hurwitz moves on reduced 7T-decompositions
of Coxeter elements. Most of this material can be found in (Bessis, 2003)). The main focus
of this chapter will be to prove that reduced T-decompositions of a Coxeter element are
connected under Hurwitz move. This will form the foundation of [Chapter 5| where we will
develop presentations for Artin groups encoded by reduced T-factorizations of a Coxeter

element.

4.1 Coxeter Element and Dual Coxeter System

Definition 4.1.1. For an (abstract) reflection group (W, T') a chromatic pair is an ordered
pair (L, R), L,R C T, such that L N R = ¢, the subgroups (L) and (R) are abelian, and

(W, LU R) is a Coxeter system.

Definition 4.1.2. For a given Coxeter system (W, .S), a Cozeter element c is the product

C:HS

seS

where each simple reflection appears exactly once in the product.

Definition 4.1.3. Let sz := [[.., s and sg := [[,.z s where (L, R) is a chromatic pair for
a reflection group (W, T), then the elements of the form ¢y p := spsg are called bipartite

Cozxeter elements.

Definition 4.1.4. If (W, T) is a reflection group and c is a Coxeter element in (W, T) then

we call the triple (W, T, c) a dual Coxeter system.

For a given abstract reflection group (W,T) one can choose a set S C T such that S

generates W and the conjugacy closure of S is T', then (W, S) forms a Coxeter system. In
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the “dual” approach (as discussed in (Bessis, [2003))) we instead choose a Coxeter element ¢
(which is equivalent to choosing the generating set S in the classical approach) in order to
obtain a dual Coxeter system (W, T, c¢) (which is equivalent to the Coxeter system (W, .5)).
Since all the Coxeter elements form a single conjugacy class (Lemma 1.7, (Reading, 2007))

we can define the following:

Definition 4.1.5. In a dual Coxeter system (W, T, ¢) the Cozeter number (denoted by h) is

the order of any Coxeter element.

Lemma 4.1.6 (Steinberg). For an irreducible abstract reflection group (W, T), and a chro-
matic pair (L, R), the closure of S := L N R under the conjugacy action of the Cozeter
element cp r is T'. Additionally, if 0 C T is an orbit of any reflection under the conjugation
action of cp g then either |0] = h and [N S| =2 or |§] =% and | N S| =1, where h is the

Cozeter number.

Proof. Let L = {s1,...,st}, R = {Sk+1,...,S,} then an expression for ¢, p = s1--- sp.
0] < h, since ¢} p = e. If s; and s; belong to the same orbit under conjugacy of ¢ g then
there exists an m such that s;cf’p = ¢f'gs;. Since ¢}, RtCZZZ =t for any t € T', therefore for
any orbit 6, |0| < h, which in turn implies that m < h. We will show (through contradiction)

that m > |h/2]. If m < [h/2] then (s, ---s,) is a reduced S-word for the element c7'j.

)mfl

Let us first assume that s; € L for some i < kthen sy -« §;---s,(s1- - Sp is a reduced

S-word for SiCT' R (where s; stands for deleted s;). Since SiCl'p = CI RS therefore a reduced

)mfl

S-word for cf'p would be (s;--- sy, S1---8; - Sy, (Where §; stands for deleted s;) i.e.

s; € R, (because if s; ¢ R then (s ---5,)™ 's1 - s,5; would be a reduced S-word for ¢} s;

and Is(sic]' r) # ls(c' gs;) which is a contradiction). Even though sy -« ;- -« sp,(s1- - 5,)™ "

)mfl

and (s1--- s, §1+-+8; sy are reduced S-words for the same element still s; is initial in

later expression but not in the former expression, which is a contradiction.
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If we instead assume that s; € R then s;(sy - -s,)™ is a reduced S-word for SiC]' p- Since
sicr,r = cr,gs; therefore the word (s ---s,)™s; is a reduced S-word for ¢, g, which in turn

implies that s; € L. Since we have assumed that m < |h/2] therefore

Sk+1...Sn(sl...sn)msl...sk

is a reduced S-word for the element cﬁéﬁ.}]. Since s; € R and s; € L therefore another reduced

S-word for CT%TLI} would be

~

2 m
8k+1...Si...snsi(sl-..sn> Sjsl'..sj'..sk‘

Therefore the subword s;(sy---s,)™s; is a reduced expression. Now, since s;(s1 -+ s,)" =

(s1---8n)™s; therefore s;(s1---s,)"s; = (s1---,)™ which is a contradiction. Thus we have
shown m > |h/2].
The reflections in the orbit of ¢ can be written in an infinite sequence by conjugating ¢

infinitely as

L {ho1}, —{h-1) 1 {ho1}, —{h-1)
01; - <t7cL7RtCL,R7"'7CL,R tCL,R 7t7cL7RtCL,R7"'7CL,R tCL,R g .

where all the reflections in the orbit of ¢ appear at least once in the first h terms of the
sequence. Since m > |h/2] therefore at most 2 simple reflections appear in the first h terms
of the sequence which gives us the inequality % > h/2 and |# N S| =1 or 2 for any orbit
6. If for a particular orbit 6, |§ N S| = 2 since |#] < h we must have |§| = h. If [N S| =1
then it follows that h/2 < || < h. Since % = 2 and each of the orbits maintain this orbit
the same ratio therefore the closure of S is T

We can conclude that the orbit containing only 1 simple reflection, contains h/2 reflection

in them. L]

The next lemma tells us how we can obtain a Coxeter system from a given dual Coxeter

system.
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Lemma 4.1.7. For a given dual Cozeter system (W,T,c) of rank n and t € T there exists
a chromatic pair (L, R) such that ¢ = ¢ r and t € L. In particular there ezists a reduced
T-word ¢ = ty---t, for the Coxeter element ¢ such that t, = t and (W, {t1,...,t,}) is a

Coxeter system.

Proof. Let (L,R) with L = {l4,...,1;} and R = {ry,...,7;} be a chromatic pair such that
¢ =cpp. Foranyt e T, by|Lemma 4.1.6, t = c*t'c™ with ' € LU R. If ¢ € L then the
chromatic pair (ckLc*k, cch*k) is such that ¢t € c*Lc¢™ and ¢ = Cek Lo~k ck Re—k- NOW assume

t" € R. An expression [y - - - l;ry - - - 1; for the Coxeter element ¢y r can be rewritten as:

CL7R:l1.er1..7"]
:rlrflllrl--~rf1lir1-~rj

= rlrzrglrflllfrlm . ~r§1rf1lir1 Ce Ty

..Tflllrl .../r].)...(/r',_l.

-1
j ..7"1 117"171])

—1
= 3351}11133 e slgllisR

= CRys3' Lsg

Thus, with the new chromatic pair (R, s5'Lsg), t € R and ¢ = CRs7'Lsn ]

4.2 Parabolic Subgroup and Parabolic Coxeter Elements

Definition 4.2.1. Let (W, T') be an abstract reflection group, and (W, S) be the correspond-
ing Coxeter group with S as the set of simple reflections that generate W. For any I C S
the subgroup (Wy,Ty) is a parabolic subgroup of the abstract reflection group (W, T) where
Wy = (I)and Ty ;=T NI. An element w € W will be called a parabolic Coxeter element if

w is a Coxeter element in some parabolic subgroup (Wp,T7).
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Lemma 4.2.2. For any dual Coxeter system (W,T,c) the element tc where t € T is a

parabolic Cozeter element.

Proof. By , there exists a chromatic pair (L, R) such that L = {l,...,[;},
R = {r,...,r;} and ¢ has a T—decomposition l; ---l;r;---7; with [; = t. Therefore
tly---lyry---7; is a reduced T-decomposition of tc. Therefore the ordered pair (L \ ¢, R)
is a chromatic pair in the Coxeter system (W, L \ ¢t U R) which implies that tc is a Coxeter
element in the subgroup generated by L \ t U R, consequently, tc is a parabolic Coxeter

element. O

Lemma 4.2.3. Let (W, S) be a Coxeter system, there exists a Coxeter element ¢ such that

w <7 c if and only if w is a parabolic Coxeter element.

Proof. 1f w is a parabolic Coxeter element then clearly w < ¢ because there exists a reduced
T-decomposition of w = (w; ---wy) and a reduced T-decomposition of ¢ = (¢; -+ ¢) such
that {wq,...,wx} C{e1,...,a}

Now if w <7 ¢ then w can be written as wv = ¢ for some v € W with lp(w)+Ilr(v) = lr(c).
This also implies that there exists some v € W such that v'w = ¢ with lp(v') + Ip(w) =
I7(c). Using induction on I7(v") we will show that v'c is a parabolic Coxeter element where
Ir(v'c) = lr(c) = lp(v'). I lp(v') = 1 then v/c is a parabolic Coxeter element by [Lemma 4.2.2
For the inductive hypothesis we assume that vc is a parabolic Coxeter element if I7(v") = n.
If l7(v') = n + 1 then v = tu where Ir(t) = 1 and Ir(u) = n. Since Ip(u) = n therefore uc is
a parabolic Coxeter element. Since tu <7 c and t ﬁT u thus t <7 uc, which implies that tuc

is a parabolic Coxeter element. O

4.3 Hurwitz Moves

Definition 4.3.1. Let (W, S) be a Coxeter system and let T" be the set of reflections. For a

positive integer n consider B,,—the braid group on n strands with generators o1, 09, ...,0,_1.
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Hurwitz action is a group action of B,, on T" defined as,
Oilte, oy ticty iyt oo tn) > (b oo i, B by L)
In a similar way we define Hurwitz move on a word
pi(ty - tigtitig - ty) = (tr - 'ti—ltzﬂti coty)

We can use Hurwitz move to ‘alter’ a given reduced T-decomposition of a Coxeter element.
Let ¢ be a Coxeter element of W and let t; ---t;t;11---t, be a reduced T-decomposition of

c. Performing a Hurwitz move at t; on ¢ = t;---t;t;11---t, gives a new T-decomposition

=t -t;jrlti -+ +t,, which corresponds to the Hurwitz action o;(t1,...,t;,tix1, .-, ts).
Since the product map 7" — W defined as (ti,...,¢,) — [[i_, ¢ is invariant under the

Hurwitz action therefore Hurwitz moves only produce different reduced T-factorizations of

a given Coxeter element without affecting the Coxeter element.

Example 4.3.2. Let us perform a Hurwitz move on the reduced T-decomposition (12)(23)(34)

of a Coxeter element in &3, at (23).

¢ = (12)(23)(34)
— (12)(23)(34)(23)(23)

= (12)(24)(23)

Lemma 4.3.3. If t;---t, is a reduced T-decomposition of a Coxeter element c, then the
decomposition

k k
c c
tl ...tn

1s also a reduced T'-decomposition of ¢ and is in the orbit of ty---t, under Hurwitz move.
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Proof. First we will show (using induction) that in a Coxeter system of rank m performing
m successive rotation on the leftmost reflection of a reduced T-decomposition t; ---t, of a
Coxeter element ¢ gives a new reduced T-decomposition of ¢ in which ct,c™! is the right
most reflection.

For the base case consider the Coxeter element ¢ = t1t5 and the reduced T-decomposition

(&)

c = tity. On rotating #; we get ti't;. On rotating t5' we get t, ° ti'. Here, the right most

o o ), 4
reflection in the factorization tg ? )tgl is:

th = titaty ! = titototy ']t = ctyc!

Now consider a Coxeter element ¢, _; = t1ty---t,_1 in a rank n — 1 Coxeter system. On
performing n — 1 rotations on the leftmost reflection (successively) of the T-decomposition

tity - - - t,—1 we obtain a new T-decomposition of ¢,_; which can be written as:

tflt§2 e tn—1Pn71

For our induction hypothesis we assume that P, _1t,,_1 = ¢,_1, which would imply tfjﬁ’ll =
t"—". Observe that this is true in the base case where P, | =, and t,,_1 = to

Now for the inductive step consider a Coxeter element ¢, = tits---t,_1t, obtained by
concatenating t, to the right of ¢, ;. Performing n successive rotations on the leftmost

reflection of the reduced T-decomposition (t,” ) (tn-s nfl)tlpl -+ +t,_1"1 we obtain (using

the same notation as in the n — 1 case):

O e IR
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where

(tnP"_l)(tnilpnil) = (Paatn1Py ) (PoatnBL) (Pn—ltn—lpg—ll)il
= Py ittty P

= Fpoalp-atn (tntr_Ll) tr_LiIPn_—ll
——
=e
= Py 1ty_1tutat, 1 P, (using induction hypothesis)
1
=Cn—1 —c

=Cp—1

= Cpatntat; et
S~ - —

= —1
Cn —c;

= cplnc, !

Now, we will show (again using induction) that in a Coxeter system of rank m, and a
Coxeter element ¢ = ty - - - t,,, performing m successive rotations on the leftmost reflection
of the reduced T-factorization t; - - - t,,, gives t---t5,.
First consider the Coxeter element ¢ = t1t5 and the reduced T-decomposition tity. On

1
rotating ¢, we get t5't;. Now again on rotating ¢ we get t$t2 )ttQI.

ty -1
tEtQ ) _ 1N =ttty ety T = bttty T = ctye

H =ttty = titototy 7! = clyc

Let ¢,,_1 = tity- - - t,,_1 be a Coxeter element of rank n—1 Coxeter system and let tity---t, 1
be a reduced T-decomposition of ¢. On performing rotations on the left most reflection,

successively for n — 1 times the final factorization can be written as:
el ..

-1
n—1

We assume here that tkP’“ = ¢p_1trC for each 0 < k < n — 1. With this as our induction

hypothesis we will show that in a rank n Coxeter system, if ¢, = t1ty---t,,_1t, is a Coxeter
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element then performing similar successive rotations on the left most reflection of the reduced
T-factorization tyts - - - t,_1t, for n times would give us t{"t5" - - - t;" to".

If we just concatenate the reflection ¢,, to the right of the Coxeter element c,_1, we obtain
a Coxeter element ¢,. Using the same notation as in the n — 1 case we obtain the following

factorization:

P"

COLRICO RN

)tPn

n

-1
n—1

By induction hypothesis tf’“ = ¢p_1tiC 0 < k < n and using the fact that tﬁ" = cptnc, 1

(from the first part of the proof) we have:

<tf’v)(tn ) _ (Cn—ltkC;il)(cntncgl)

— (CntnC;l) (Cn—ltkc;zll) (CntnC;Ll)_l

—1 —1 -1 -1
=cpln ¢, Cnatpc,_icnt, ¢,
—— ——

tot tn

= Cptot, Mttt et
M~ =
e e
_ -1
= cplic, - ]

Theorem 4.3.4 (Proposition 1.6.1 in (Bessis, 2003)). The set of reduced T'-decompositions

for a Cozxeter element c is transitive under the action of Hurwitz moves.

Proof. Let (W, S) be a Coxeter system of rank n with 7" being the set of reflections. We will
prove this through induction on the rank n. It is vacuously true for Parabolic subgroups of
rank 1. For the induction hypothesis we assume that the set of reduced T-decompositions
for a Coxeter element in a parabolic Coxeter group of rank n — 1 is transitive under the
action of B,,_1. Now let ¢ be a Coxeter element in W. We can write

U t - Redy(tc) = Redr(c)

teT
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where ¢ - Redr(tc) denotes the set of reduced T-words for tc with ¢ concatenated to the front
of each of those words. By [Lemma 4.2.2] tc is a Coxeter element in a parabolic Coxeter group
of rank n — 1 therefore Redr(tc) is transitive under the action of B, ;. If u € Redy(tc)
then ¢ - u € Redr(c). Now since the B,,_j-orbit of u contains the entire Redr(tc) therefore
the B,-orbit of ¢ - u contains the entire ¢ - Redr(tc) (since B,_; is a restriction of B,,).
Thus it suffices to show that there exists an element ¢ € Redr(c) such that its B,-orbit

contains at least one factorization of the form t.u for every t € T. Now let ¢ = s185--- 5,

be a reduced T-decomposition of ¢ then (si,...,s,) € Redr(c). It is easy to see that
oyt --0; Y (s1,...,8,) starts with the reflection s;. Using [Lemma 4.3.3| we can say that

nk —1

((opy - o)™ oy -0, (s1,...,5,) starts with c*s;c*. By [Lemma 4.1.6| every ¢t € T can

ks,c7* therefore we have demonstrated a series of Hurwitz moves

be written in the form ¢
on ¢ that will enable us to have a factorization that starts with our choice of ¢ € T'. This

completes the proof. O

In summary, for a given Coxeter group W and a Coxeter element ¢ € W there exists
a set S C W such that (W, S) is a Coxeter system and c is a bipartite Coxeter element in
(W, S). If a Coxeter element ¢ is not a bipartite Coxeter element in the Coxeter system
(W, S) then we can find a different set S’ C W such that ¢ is a bipartite Coxeter element
in (W, S"). Since the set of reduced T-decompositions for a Coxeter element ¢ is transitive
under Hurwitz moves, therefore the reduced S’-decomposition of ¢’ can be obtained from the

reduced S-decomposition of ¢ by simply performing Hurwitz moves on it.
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CHAPTER 5
A PRESENTATION FROM REDUCED 7T-DECOMPOSITIONS OF

COXETER ELEMENTS.

This chapter introduces the main result—presentations for Artin groups arising from reduced

T-decompositions of a Coxeter element.

5.1 The Presentation

Let W be a simply-laced Weyl group and let (W, S) be the corresponding Coxeter system.
Let ¢ be a Coxeter element of W and let ¢ = t1ty---t, be a reduced T-decomposition of c.

We define a group presentation

B(tl,t27 e ,tn) = <t1,t2, C.e ,tn‘Rel(tl, Ce ;tn)>group (51)
where 1, ts, -+ ,t, are a formal copy of the reflections t;,%s, - - - , t,, subject to the following
relations

titj = tjti if t; H tja
titit; = titit; if 4 )15,
Rel(ty,....tn) =4 ! (5.2)

i iy - tiy -t =€ i iy Nty (o iy Nt N

ti; || tiy, for k#j—1,5+1.

Since we can perform Hurwitz moves on a reduced T-decomposition of ¢ to obtain new reduced
T-decompositions of ¢, therefore there are as many group presentations as the cardinality of the
orbit of (¢1,t2,...,t,) under Hurwitz action (by all the reduced T-decompositions of
c are in the same orbit under Hurwitz action). Let ujus - - - uy, be another reduced T decomposition
of ¢ obtained by performing Hurwitz move on tity - - - t, at tg, i.e. ug(tite---t,) = ugug - - - uy. We

have the following group presentation

B(ui,ug,. .. up) = (U1, u2,...,upn : Rel(ur, ..., un))group -
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where

UU; = UjU; if w; || ug,
WU U; = U U if ui S uj,
Rel(ui,ug, ..., uy) =
[uilvuiQ Crr Uy u’z_gl] =e ifu, X%X : 'Xuisfl Xuis Xuiw
ug; || ugy, for k#j—1,5+ 1.

\

Using we can rewrite the last relation as

-1 : 2
[uil,uiZ UG, -uiQ ] =eif (uiluiQ ot U U Ugg_q -uiz) = €.

s

Since
therefore, ti, = ugy1, t}i’j_l = ur and u; = t; when ¢ # k or k + 1. Using these we also get

-1
U1 = Up g URUR41-

Theorem 5.1.1. Let tito - - -t, be a reduced T-decomposition of a Coxeter element ¢ in a Coxeter
group W. If ujug---u, be another reduced T-decomposition of ¢ such that o(ti,ta,... t,) =

(ur,ug,...,up). If B(ty,ta,...,t,) and B(uy,us,...,uy,) are the groups whose presentations are

obtained using [Fquation (5.1)| from the decompositions tits - - -t, and ujus - - - uy, respectively, then

B(tlat27"'atn) = B(ul,u2,...,un).

Proof. Define a map ¢y : B(t1,ta,...,tn) — B(ui,ug,...,u,) by

.
Uk+1 ifi=k

Pr(t;) == u,;ilukukﬂ ifi=k+1
u; otherwise
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The definition of ¢y, is motivated from how ¢; and u; are related in W, where oy (t1,to, ..., t,) =
(u1,ug,...,uy). We will show that the groups B(t1,to,...,t,) and B(uj,ug, ..., u,) are isomorphic
by showing that ¢ is a bijective homomorphism. The proof for homomorphism will be shown in

Chapter 6| For the bijection we will show that ¢y is invertible. Define ¢y : B(uj,ug, ..., uy) —

B(ti,ta, ... tn) byl

titpat, ifi=k

Vr(ui) = 4 t ifi=k+1

t; otherwise
\

We will now show that v is the inverse of ¢ by showing that ¢; o ¥ and ¥, o ¢ are identity
maps. Let i # k, k + 1, then ¢y o ¢¥r(u;) = ¢p(t;) = u;. For i = k we obtain
ok 0 Ui (ug) = dp(trtpsaty ")
= Gn(t)or(ter1)or(ty )
= U1 U WU U
= uy.

Now fori=k+1

bk o Ui (upy1) = dn(tr)
= Uky1-
Therefore ¢y o 1y is the identity map of B(uq,us, ..., uy).

Next we will check 1y, 0 ¢, is the identity map of B(t1,to,...,t,). Again we check for i # k, k+1

and obtain ¥y o ¢x(t;) = ¥x(u;) = t;. For i = k we obtain

IThis definition is motivated from the inverse Hurwitz action,
1 u
Uk (ula-"7uk717uk7uk}+17"-aun):(u17"'7u7€717uk+17 k+1uk)"'7un)

Setting (t1, -, th1,thy thats---rtn) = (Uly ooy Up—1, Ukt 1, " 1 Ukgy - - -, Uy ) WE geb Upay = tg, “FHlup =ty
and t; = u; when i # k or k 4+ 1. Using these we also get uy = tktk.l,_lt;l.
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Vi 0 O (tr) = Yr(ups1)

= t5.
When ¢ = k + 1, we obtain

Uk 0 Grltryr) = Vi (up ) wpups)
= (L) Uk () Ve (wps)

=t "tptpat, 't

=t

Therefore, ¢y o ¢y, is the identity map of B(t1,te,...,t,), and consequently ¢y is a bijection.
This, along with the homomorphism implies that ¢y is an isomorphism from B(ty,ta,...,t,) to

B(uj,ug,...,uy), so B(ti,ta, ..., ty) = B(uj,us,...,u,) and our proof is complete. O

This isomorphism has been illustrated through

tl .. -tktk—l—l .. tn—> <t1, . ,tn|Rel(t1, ce 7tn)>

.

to Gt

é

UL oo Uplpgq - - Uy —= (U . wg | Rel(ug, . uy))

Figure 5.1. Diagram illustrating isomorphism between the two groups defined by presenta-
tions arising from reduced T-decompositions of Coxeter elements.

This brings us to our main theorem:
Theorem 5.1.2. Let ¢ be a Cozeter element of a simply-laced Weyl group W and suppose
(tl,tz, - ,tn)
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1 a reduced T-factorization of c. If

B(ty,ta, ..., ty) = (t1,t2,..., ta|Rel(ty, ... 1))

where
titj = tjti Zf t; || tj7
Rel(ty, ... ,tn) =
[ir,tiy - ti, -t =€ if iy Ntay - N tao, Ntiu Sty
ti, ||ty for k#j—1,j+1.
then

B(t17t27"- 7tn) = B(W)

Proof. Using induction along with [Theorem 5.1.1} we can say that B(t1,...,t,) and B(t},...,t)

are isomorphic if the two reduced T-decompositions—t; - - - t,, and ¢} - - - ¢/, —of the Coxeter element
¢, are in a single orbit under Hurwitz move. By all reduced T-decompositions
of the Coxeter element ¢ are in the same orbit under Hurwitz move, in particular any reduced
S-decomposition of ¢, say s; -+ s, is also in the same orbit therefore the group B(t1,...,t,) is iso-
morphic to B(si,. .., Sy), consequently B(ti,...,t,) is isomorphic to B(W). Notice that our pre-
sentation for B(sy, ..., sy) is exactly the same as the Artin-braid presentation B(W') because there
are no cycles of the form s;, {si, \- - - 84\, X i, in (W, .S) (W being simply-laced) where s;,, Si,, . . ., S;

n

are in S. ]
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CHAPTER 6

PROOF OF HOMOMORPHISM

For a finite, simply-laced Coxeter group W, and a Coxeter element ¢ € W with a reduced T-

decomposition (t1,ts,...,t,), one can write a group presentation using [Equation (5.1)|

B(ty,ta, ..., t,) = <t1,t2, ooty Rel(ty, ... ’tn»group

and a presentation

B(uj,ug,...,uy) = (u1,u2,...,u, : Rel(uy,... ,un)>group
where
okt te, ... ty) = (u1,ug,y ..., up)
which implies
.
Uk11 ifi==k
ti=ufupues ifi=k+1
U; otherwise

or alternatively

titerrty, ! ifi=k

Ui = § tg fi=k+1

t; otherwise.

Define a map ¢y, : B(ty,to,...,t,) = B(uy,u,...,u,) by

.
Uk+1 lf'L = k

P (ti) = u,;l_lukukﬂ ifi=k+1
u; otherwise.

\

Theorem 6.0.1. ¢y is a homomorphism from B(ty,ta, ... t,) to B(uj,ug,...,uy).
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Proof. Define t; € B(uy,ug,...,up)

Uk+1 i=k
t = ul upu i=k+1
k+1 %Pk Yk+1 -
u; otherwise

We will show that for any relation R(ti,...,t,) in Rel(¢1,...,t,), the relation R(t~1, ..., t,) holds

in B(uy,ug,...,u,). Let us first get the trivial cases out of the way. If txtr11 = tgr1tg then t; = u;

for all the i’s, thus there is nothing to show. Therefore in this chapter we assume t, \tg41.
Another trivial case is when ¢j 1 is not involved in a relation. If R(¢1,to,...,t,) € Rel(t1,...,t,)

be a relation such that £y, is not involved then
R(tl,... ,tk,tk+1,...,tn) = R(tl,. . .,tk,e,...tn),
and also the relation R(t1,...,tg, tgt1,---ty) holds in W, therefore

R(tl,...,tk,tk+1,...tn) :R(tl,...,tk,e,...,tn).

Since
R(t1, ..., thytis1,---tn) = R(u1, ..., up_1, uk+1,u,;11ukuk+1, Ukt2 -+ 5 Up)
and
R(t1, ... tiyeyeostn) = R(UT, ooy U1, Upt1, € Ukt 2y - -+ 5 Up)
therefore
R(ug, ... Up—1, Ukt1, u,;ilukukﬂ, Ukt -+ 5 Up)

is the same as
R(ula coy Ug—1, Uk+1, €, Uk+2, - - 7un)-

Consequently

R(t1, ... b1t byt trsa - - oo bn)

holds in B(uy,ug,...,uy).

Therefore it suffices to show,
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1. titj = tjti — lej :Z]Zl
tpriti =ttty — %’kﬂa :¥i¥k+1 where i # k. See |[Lemma 6.0.3
2. titjti = tjtitj — ZZZJ%/Z :ZJZEJ

Case 1: titk+1ti = tk+1titk+1 — ?ﬁkﬂfi = »Ek+1»£i»£k+1’ where ¢ 75 k. See |[Lemma 6.0.4

Case 2: tptpr1ty =ttt — Zﬂkak = fi/k_;,_l’i/k’tvk_,_l. See [Lemma 6.0.5

~ ~ ~—1

B [biysbiy o ti, -t =€ = [ty by b, - 8

s i . i, | = €. See|Lemma 6.0.6

Case I: [tk, tk—i—l ce tis s tl;il] =€
= [tp,tppr -t - %,;il] = e (t; and t;11 appear right at the beginning)
Case II: [ti17ti2 SRR 7% 79 B 't;—ll—ltlzl ce tiz] =e

~ ~ ~ ~ ~ ~1 ~—1 ~
= [ti;,tiy - tetpypr - ti, -t gty - ti,] = e (ty and tp1; don’t appear at the

beginning or at the end, but somewhere in between)

Case IIL: [t;,,ti, - -tktkﬂt;l et =e

12

~ o~ e s B
= [ti, ti, - tptpity, ---t;, | = e (tx and ¢34, appear at the end)

Case IV: [tpy1,ti, -t -t ] =e

s 12

~ ~ ~ ~1

= [tpy1,tiy--ti,---t;, | = e (tp+1 appears at the beginning and t;, is absent)

Case V: [ti, tiy - tppr - tiy -ty -t

1=e

~ ~ ~—1

. [:Ei17ti2 . ':Ek+1 ety ‘Zk+1 --t;, ] = e (tr41 doesn’t appear at the beginning or

at the end, but somewhere in between and tj, is absent)

Case VI: [ti, ti, - tpi1-- 'ti_zl] =e

~ o~ ~1

= [t biy - g1 - t;, ] = e (ty4+1 appears at the end and t; is absent) O
The next lemma will help us in the proofs of the following lemmas.
Lemma 6.0.2. titj*ltktj = t;ltktjti — tl-tjtktj*l = tjtkt]flti.
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Proof.

titjtktj*l = tjtktj*lti
—> ittt 't =ttt
—> titjtpt; 't = gttt e
—> ittt 't = gttt
= tit;ty = titptit;t; !
= titjtit; = titptit;
— t;ltitjtkti = titit;
—> it ty = tptityt !
— tj—lt,-tjtk = tkt]fltitj O
Lemma 6.0.3. ;. 1t; = titp 1 = tpi1t; = titye1 where i # k.

Proof. Since tyy1t; = tityy1 therefore ¢4 || t;. There are two cases to consider ¢; )¢ and ¢; || tx.

Case I: Assume t;)(t;. First, we observe that since w; = t; and ug11 = tg, thus ugpiu; =

Ujug+1 = titg = tit;, a contradiction, thus we get

u; Ukt (6.1)

Next, we observe that

—1
UgUg+1 = telp+1ly, e = tili+y1,

Up 11U = tktktkﬂt;l = lp+1lk-

Therefore upugr1 = upri1ury = titrr1 = tgr1ts, & contradiction, thus get

Upo1 | Uk (6.2)

And finally, upu; = wjup = tptpiity ti = titgtpiaty
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= litktk+1te = ittt
= titptpr1 = trtpartetits
= lilgtk+1 = Uptir1titeti
= lititkle+1 = ter1tititi
= titglitpr1 = Litpr1tuti
= tptk+1ti = tpatiti

= tilk+1 = tey1t.

Therefore upu; = u;up, = t;ty = t;tg, a contradiction, thus we get

uy f u; (6.3)

[Equation (6.1), [Equation (6.2)[ and [Equation (6.3)| together with [Lemma 6.0.2| imply

i § g1 g S wi
-1
— [ui,ukﬂukukﬂ] =e
-1 -1
= Uil Uk U1 = Uy U U1 U

= ¥i¥k+1 = Zk+1¥¢
Case II: Assume t; || tx. We observe that

T 7 —1
it = Uy URUKL1 U,
7 —1
titht1 = ity | UKL
therefore to show that Zk+1zi = 'Z{Ekﬂ, it suffices to show that uj and uw; commute and w4

and u; commute. It is clear that wiy; and w; commute as ugy; = ¢ and w; = ¢; and by

assumption tit; = t;tr. So we only need to show that u; and uw; commute. We will do so by
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showing that u; and u; commute.

UpU; = tktk+1tkti
= titklr+1tk
= U;Uk
As t; commutes with both t511 and tg. Therefore, u; commutes with both w11 and ug. So
%,Hﬁi = ¥i¥k+1 when #; and t; commute. ]
Lemma 6.0.4. tithrlti = tk+1titk+1 - ijk+1¥i sz+1zizk+1 where tz‘ 7& tk.
Proof. Since t;tyi1t; = tii1titgs1 therefore t; \tpy1.
Case I Assume ty )t;. First, we will argue that u; and u; commute by showing that uj and
u; commute. Since w;ur = titptpr1tr and upu; = trptr1tit; it suffices to show that ¢; and
trptk+1ty commute. Now using our assumptions t )tx+1 and tg \t; we have ¢; ) tg X te+1 Xti,
thus invoking [Lemma 3.3.1| we get [t;, titxr1ti] = e, consequently u; and u; commute.

Next we note that w; and ug11 do not commute since u; = t; and ug4+1 = tx and we assumed

that tx )t; thus we have u; {ug,1, consequently u; and ug1 do not commute.

Using these two results we obtain,

T 33 1 ~1
terititetn = Uy URUEH 1 UUy | UK UL 41
_ ~1 ~1
= UpUE 41Uy, UjUL U1 Uy
_ -1
= UpUE+1U; U1 U

—1
= URU UL 1 U,

Similarly

I7 7 -1
Litkr1ti = wiuy | UpUE U
_ -1,
= UjULUE 11Uy, Us;

-1
= ukuiuk+1uiuk
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Therefore, ?i?k+1¥i = Zk+1?i?k+1 .

Case II: Assume ¢y || t;. We will show that u; and w1 commute whereas u; and u; do not.

First, we will show that u; and w; don’t commute by showing uy { u;.

If wyup = ugu;

= titktgr1ty = tetratnti
= tlitplpy1 = titpr1 (trtite)
= litglp+1 = tptpra1ts

= (trtitp)try1 = tpsits
= titk+1 = 1t

which is a contradiction, thus wu; ) ug, consequently uj, and w; do not commute. Next we
observe that ui11 and u; commute as u; and ug,1 commute (as u; = t; and ug4q, = tx and

t; || tx by assumption).

By establishing these relations, we observe:

T IF -1 -1
trprtiti1 = wp U (Upr Uy ) UrUg

_ .1

= uy ) (UpUiug) Uk

-1

= (g, wi)ur(wittyr1)

_ —1

= uiukﬂukukﬂui

ik

Therefore ¥2;k+ 1%/7; = fk+1¥i¥k+1 . ]
Lemma 6.0.5. tptpr1ty =ttt — ¥k¥k+1¥k :¥k+1¥k?k+1
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Proof. Since tgtpi1ty = tir1tptip1 therefore ty ) tg11. First, we will show that uy and w41 don’t

commute by showing that u; and ugy; don’t.

Uk U1 Uk = bt (Tt tetus1tr
= tp(ter1tutet1)te
=t (trtrsite)te

= Up4+1UEUk+1

Thus we have the relation ugug1uy = vp1uUrUrL1 — UkUk+1uI;1 = u;ilukukﬂ. Now,

T 37 1 1

terititir = U Ut (Uk1 Uy ) UkUg 1
1

(U Uk U4 1) Uk UL 11

= wpp1(u), U)Wk 41

= UpUk+1Uk+1
= uk+1u§i1ukuk+1uk+1
= trtpiith
Therefore Zk¥k+1¥k = ¥k+1¥kzk+1 . ]
_ ~ ~ ~—1
Lemma 6.0.6. [t; ti, -t -t =e => [ty b, -t t, | =e

Proof. We will use several cases to address all the possible positions of ¢; and tyy; in the re-
lation [t;,, ¢, - - -tis~--ti_21] = e. In all the following cases we assume that in the sequence

(tiy, tin, - tiy_4,ti,) each reflection commutes with every other reflections except for the two re-

flections that appear adjacent to it in the sequence. Also ¢;, doesn’t commute with ¢;_.

Case I: Assume that ¢;, = t; and t¢;, = tx4;. First we observe that since u; = tktkHt,:l,

u;, = t;, and w;, = t;, therefore u,;l doesn’t commute with wu;, and u; , but commutes with
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every other reflection u;,, which implies [u,;l, Uiy oWy - ui3] = e. Using these results we

~ ~—1

will show that |::E]c7:£k+1 RS 'tk+1] = e. To this end

T T 713 —1 -1, -1

tk:-f—l v tis e tk—‘,—ltk — uk+1ukuk}+1 e uis v uk:-l—luk' uk+1uk+1
- —-1 -1, -1
= UpUp 41U, Uiz -7 U, - U Uy Uy U1 UL+
= UpUp+1Wig - Ui, - UgUy, Up Uy Ug1UR]

Now, it can be easily seen that upuriiur = ugti1urugs+1 by checking that upuppiug =

Uk4+1UEUL+1, and using this result we may replace u,;lu,;ilu,:l by u];llulzlu,;l_l, therefore

-1, ,—1 —1
UpUp+1Wig - Ujg - Uig Uy Uy Uy U 1 U]
= UpUy1 - Ugy o Uig Uy U Uy U 1 UL+
_ . —1 —1
= UpUp41 - Wi, - Up Uy Ugy
_ . —1 -1
= UpUp41 - Wi, - Uy Uy Uk
_ -1 ‘ 1,1
= Up+1Up U UE+1 - Uy - Up Uy Ut

~~ ~ ~—1
pr— tktk+1---t25 u..tk+1

Thus we have shown:
~ o~ ~ ~1 ~ ~
tithir o ti oty = tear o tin b ts

Case II: We assume that ¢;, =t and t;_,, = tg41, where 1 <r <n. We intend to show that

'~ o~ ~ ~1 ~—1 ~

ti17ti2"'zk;k+1"'tis"'tk-{-ltk ot =e

To this end

~ o~ ~ ~] ~— ~

o~ 1
[ZPRZPRRRE 771 NI 7NERRE JIY IR 72

-1 -1 -1 -1
= Ui  Ujy " " - uk+1uk+lukuk+1 o Ug, ukHuk uk+1uk+1 U,
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Again, invoking the relation uiug1ur = Up1uruk,1 in a slightly different form we obtain

—1 -1 -1 -1 -1
u’i1ui2 e uk+1uk+1ukuk+l e uis e uk+1uk uk+1uk+1 e ui2

-1 -1

1,,—1 —1
s Wy o Uy

UL, BT

= Ui Ujy - U U U1, -0 Uy i1 ia

T Vot b P

= Ui, Uy * - uir_luku“_‘_z SRR/ P uir+2fu,k g in

Here we used the fact that w41 commutes with w;,_,, w;,,, ..., u;,, thisis because up1 = t;,

Ui, = t;,. Now we also observe that up = txtr1t; does

E]

and ’LLiT_‘_2 = tir+2,uir+3 = ti,«+3a ..

not commute with u;,_, = t; _, and u; ., = t; ., but commutes with w;, for [ # ri,r + 2.

Therefore, invoking the relation |w;,, W, -+ Wi, upw, o - Uy, - - u;izuglui_l L u;l] =
T T—
e we get
. . .. . . ... . .. _1 1 _1 .« . _1
Uiy Uiy Ui, URWi, Ui w; Uy Wy u;,
—_— . ... . . RS . 1 71 71 .. 71 .
= Uijy - Wi, UG,y - U, oW Wi U Uiy

=t ‘¥k¥k+1 .. .’{is oty o tigt

Therefore we have shown that

~ o~ ~ ~1 ~—1 ~

titi, - .kakﬂ ottty ot

~ ~ ~1 ~—1 ~ o~

=ti,titpgr ottty ity

Case III: Here we assume that t;, , =t and ¢;, = {5+ and we intend to show that

~ o~ ~ ~ ~—1 ~—1
|:ti1 ) tig o tktk+1tk T tig =€

To this end

77 3! -1 -1

—1 —1
= u’i1ui2 e uk‘—l’u’k‘ukf]_ e uiQ
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We observe that uy = tktk+1t];1 doesn’t commute with u;, = t;, and ug_1 = tx—1, thus we

can invoke the relation [uil,uiz e uk_lukulil e u;l] = e to obtain

-1 -1 _ . —1 -1,
ui1ui2 N uk—lukuk_l e uiQ — u,LQ e uk—lukuk_l . ui2 u21

—1 1y, -1 ~1
= Uiy - W1 (W1 Uy JUR (W Uy Uy g - Uy U

~ ~ ~1 ~ 1~
=t bttty

Thus, we have shown Zilzi2 . -’Eﬁkﬂigl . -?;21 = ZiQ . -’Ek'EkH'E,jl . E;E-l
Case IV: Here we assume that ¢;, = t54; and ¢;, # t;, for 1 <1 < s. Thus we intend to prove

that ¥k+la¥i2 . E e f—l

s 192

} = e. Now,

~ ~—1

iy 7 —1
tk—l—ltiz o 'tis . ti2 = uk+1ukuk+1ui2 UG ui2

As upy1 = tg, therefore ugy; commutes with every u;,, except uy, therefore

-1 -1 _ -1 . , -1
uk+1ukuk+1ui2 e uis e uig = uk+1uku22 e uZS e ru,i2 uk+1

Now, we observe that u; = tktk+1t;1 does not commute with u;, = t;, and u;, = t;,, but

commutes with the rest of the u; thus allowing us to invoke the relation
cu !

[uk,ui2---uis-- ’ll,z2 ] = €.

Using this and the fact that u,;_il_l commutes with every wu;, except uy we get

-1 —1 =1 , —1
uk+1ukui2 e uis PPN ui2 uk‘-‘rl = uk+1u22 PN uzs PPN u’ig ukuk+1

I
£
£

—1,.-1
s " Uy Upy ) UkUpt1
~ ~ ~ 1~

=ttt te

~—1 ~ ~ ~ 1~

Thus we have shown that ¥k+1¥i2 . -ES ety =iyttt



Case V: Here we assume that t;, = {11 where 1 < r < sand t; # t for 1 <[ <s. We

intend to show that

~ o~ ~ ~—1

tilatiz"':zk-f—l”'tis"'Zk-i-l"'tiQ — ¢

I ¥ -1 -1 -1 -1
tlltZth’—‘rltthk‘—‘,-l io :uiluiz“'uk+1ukuk+1“'uis“'uk-Jrluk uk+l...ui2

~

—1 -1 —1
:uk;+1ui1u’i2"'uk”'uis"'uk .“uig uk+1

As upy1 commutes with w;, for all I. Also we use the fact that uy = tktk+1t,;1 doesn’t

commute with u; _, and w;, _, but commutes with every other u;,’s, to invoke the relation

u’ilui2”.uk‘“'uis. i2 .S.

to obtain

-1 -1
uk+1uilui2...uk_...uis...uk ...ul-2uk_+1

s

—1
:uk+1ui2 UL Uy

. -1 , —1 -1 —1,
7u7/2 DY uk+1ukuk+1 PR qu PR uk+1uk uk+1 PR uiQ uZl

~ ~ ~ ~ 1~

:tiz"'zk-‘rl"'t’is"'tk-‘rl"'tiQ t;,

Therefore the relation holds.

Case VI: Assume t;, =t} and t;, # tj, for 1 <1 < s, therefore we intend to prove that

~ o~ ~—1

tilatiz"'¥k+1"'ti2 —e

7 —1
+ 2

_ a1 -1
— uk+1ui1u12 U uiQ Uk+1
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as up4+1 commutes with all the u;,’s except uy. Similar to the previous cases we can invoke

the relation

-1 -1
ulluZQ ..'uk'--ui2 — ulQ -..uk.'-uiQ u’Ll
to obtain
=1 . eyl e ATt P
Up Wiy Wiy Uk W W] = Up Wiy o U+ Wy Wiy Ut
— . ) _1 .« .. _1 .
= Wiy Up UR U1 Uy, Uy
~ ~ ~ ]~
=ty thr1 oy, by
Thus the relation holds. O
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CHAPTER 7
BESSIS’ PRESENTATION AND ITS CONNECTION WITH OUR BRAID

GROUP PRESENTATION

Recall that in a Coxeter system (W, .S), relations of the form s;s;s;--- = s;s;5;---, where s; and
sj are in S, are called braid relations. Invoking a braid relation to rewrite a word in S is called a

braid move.

Theorem 7.0.1 (Matsumoto’s lemma). Let (W, S) be a Cozeter system. Let s, - - s;, and sj, - -+ Sj,

be any two reduced S-decompositions of an element w € W, then s;, ---s;, can be transformed into

k

8j, -+ 8j, by successive braid move.
We observe here that this theorem only takes the S-expressions into consideration.

Definition 7.0.2. Let (W, T,c) be a dual Coxeter system. Relations of the form st = ¢°s, where
s,t € T and st < c are called dual-braid relations. Invoking a dual-braid relations to rewrite a

word in T is called dual-braid mowve.

Theorem 7.0.3 (Dual to Matsumoto’s Lemma (Bessis, [2003))). Let (W, T,c) be a dual Cozeter

system. Let w € W be such that w <t c. Let t;; ---t;, and t;, ---t;, be two T-decompositions of

n

w, then t;, ---t;, can be transformed into t;, ---t;, by successive dual-braid moves.

n

Proof. By since w <7 ¢, therefore w is a Coxeter element in some parabolic subgroup
of (W, T). Thus using [Theorem 4.3.4] we have our result. O

Matsumoto’s lemma states that all reduced S-decompositions of any word w are connected
under braid relations, whereas Bessis’ result states that for a given Coxeter element ¢ the reduced
T-decompositions of any word w <7 ¢ are connected under dual-braid relations.

Building on work of Birman-Ko-Lee (Birman et al., [1998]), Bessis (Bessis, |2003) gave a second,
different presentation for Artin groups associated with finite Coxeter groups, by replacing the set
of simple reflections S by the set of all the reflections T, leading to a ‘dual’ presentation for the

Artin group B(W) called the dual braid presentation.
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Theorem 7.0.4 (Dual-Braid presentation (Bessis|, 2003)). Let W be a Cozeter group and let ¢ be

a Cozxeter element in W, then the corresponding Artin group B(W') has a presentation
B(W) = (T |tit; = tyt;, for ti,tj,ty € T with tit; = tyt; and tit; <7 €)group (7.1)
where T is a formal copy of the set of all the reflections T and t;t; = tit; are dual-braid relations.

Theorem 7.0.5. Let ¢ be a Coxeter element in W and let t1---t, be a reduced T-decomposition

of c. If R(t1,...,t,) is a relation in Rel(ti,...,t,) in [Equation (5.1), then R(ti,...,t,) is a

dual-braid relation.

Proof. The relations in Rel(t1,...,t,) are of the following three types
1. tit; = tjt;,
2. tit;t; = t;tit; and

3. [ty tiy - ti, -]

S 12

For a relation t;t; = t;t; in Rel(tq,...,t,), tit; = t;t; holds in the Coxeter group W. Since
t; and t; are reflections appearing in the reduced T-decomposition 1 ---¢, and they commute,
therefore both t;t; and ¢;t; <7 c.

For a relation t;t;t; = t;t;t; in Rel(tq,...,t,), tit;t; = t;t;t; holds in the Coxeter group W,
which can also be written as either ¢;t; = tfj t;ort;t; = t;i t;. Since t; and t; are reflections appearing
in the reduced T-decomposition t - - - t,,, therefore either t;t; or t;t; <7 c, making t;t;t; = t;t;t; a
dual braid relation.

For a relation [t;,ti, ---t;, ,ti, 2_531 e t;l] = e in Rel(t1,...,t,), the following is true in the

Coxeter group W
tiy XtiQ >< ) 'Xtis—l Xtis Xth and tij H Ly for k 7& J—L7+1

where the reflections t;,, ti,, . .., ti,_,,t;, belong to the set {t1,--- ,¢,}. Using the s equations arising

from we can rewrite the reduced T-decomposition ¢ - - - t,, to show that ¢;,t <7 c. [
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The next result readily follows.

Theorem 7.0.6. Let ¢ be a Coxeter element in W and let m = |Redr(c)|. Let Redr(c) =
{c1,¢9,...,cm} where ¢; is a reduced T-decomposition of c. Let T, denote the set consisting of

the reflections present in the reduced T-word for ¢; and T, denote the corresponding set in the

Artin group. We write down the m presentations of B using as follows

(Te,|Rel(T,))

(Te,|Rel(T,))

(T,,|Rel(Tz,))
Then Bessis’ dual-braid presentation for B is
titj = tjti, Zf titj = tjti S Rel(Tcl) fO?” some 1 € [m],
Uiz, T, titjt; = ttit;, if titjt; = tjtit; € Rel(Ty,) for some 1 € [m)],

(i tiy -t -t =e, if [ty tiy---ti, -

s

-t;zl] = e € Rel(Ty,) for some 1 € [m].
(7.2)
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CHAPTER 8

CLUSTER ALGEBRA AND QUIVER MUTATION

8.1 Quivers

Definition 8.1.1. A graph (denoted by the pair Q@ = (V, E)) is called a quiver if it is a finite
directed graph with integer weights assigned to its edges, where V and E are the sets of vertices
and edges respectively. Additionally if a quiver does not allow any 1-cycle (loop) or 2-cycle, then

we call it cluster quivers.

Since we will be looking at quivers only from a cluster algebra perspective therefore in this text
we will avoid 1-cycles and 2-cycles and we will refer to them as just “quivers”. Sometimes we will
denote the set of vertices and the set of edges for a quiver Q by V(Q) and F(Q) respectively, when
the quiver in question is ambiguous. We will also assume that the quivers in this text contains
only finitely many vertices i.e. |V (Q)| < co. A directed edge from a vertex a to a vertex b with an

assigned weight ‘m’ in a quiver will be denoted by a — b (or equivalently as a <—— b).

Definition 8.1.2 (Quiver Mutation). Let Q be a quiver and let 4,j and k be vertices in Q. A

quiver mutation on Q at k, transforms Q into a new quiver Q' := ,u,zuiV(Q) obtained by

1. reversing the direction of all the edges incident to the vertex k, while keeping the assigned

weights to the edges unchanged, in the quiver Q.
2. replacing every 3-cycle of the form
T N N

in @ (where p and ¢ are non-zero integers, either both positive, or both negative and r is any

integer) with a 3-cycle of the form
Ry Ry Ly
3. keeping all the other edges and their assigned weights unchanged.
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The second bullet in [Definition 8.1.2]is illustrated in

Remark 8.1.3. In [Definition 8.1.2| the second bullet is consistent with the first, since replacing

iS kL j 5 i with LAY AN j 55 i takes care of the first bullet by reversing the arrows incident
to k. Notice that the cycle ¢ Erpd 7 LI can also be written as i —» k —o ¥ 7P, i and
reversing the direction of the edge incident to the vertex k is equivalent to replacing the assigned

quiv

weight to the edge incident to k by its negative. Also notice that, the notation Q “5— uzmv(Q)

as used in |[Figure 8.1| denotes that the quiver ,u,zmv(Q) is obtained as a result of a quiver mutation

quiv

at k on Q. However, a more befitting notation would be Q PN ,uzuiv( Q) taking [Proposition 8.1.4

into account.

J

k quiv k
p/ \e ==~ v/ 4

pg—rT

Figure 8.1. Quiver mutation on a 3-cycle.

Proposition 8.1.4. For a quiver Q, p™ (ui"(Q)) = Q.

Proof. We observe that pg — (pqg — r) = r, and reversing the direction of an edge twice brings us to

the initial orientation of the edge. Thus the claim follows. O

Definition 8.1.5. A quiver Q is said to be mutation equivalent to another quiver Q' if one can be
obtained from the other by a finite number of quiver mutations. The set of all quivers mutation

equivalent to the quiver Q is called the mutation class of Q.

Definition 8.1.6. Let Q be a quiver, and |V(Q)| = n. The exchange matriz of Q is the n x n

skew symmetric matrix B(Q) := (bi;)
(

r if Q contains the edge i — j
bij = 4 —r if Q contains the edge i < j

0 otherwise
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for vertices ¢ and j in Q.

Remark 8.1.7. There is a much general notion allowing exchange matrices to be skew symmetriz-
able. However, since we are only dealing with a simply-laced case, we don’t need that level of

generality.

Proposition 8.1.8. Let Q be a quiver and let B(Q) = (bi;) be the corresponding exchange matri.

If B = B(u%ujv(Q)) = (b;;) is the exchange matriz corresponding to ,uzuiV(Q), then

—bi; i=korj=k

bik|bri i brs .
[Bir[br; +bik B | ’”2 bl o therwise

bi; +
For a quiver Q we will denote the associated exchange matrix by B(Q) and for a skew symmetric

matrix B we will denote the associated quiver by I'(B). With some abuse of notation we will denote

B( ,uzuiv(Q)) by uzuiv(B(Q)) or simply uzuiv(B ) when it is understood that B is an exchange matrix.

Definition 8.1.9. A quiver Q is of finite mutation type if there are finitely many quivers in the

mutation class of Q, otherwise it is called mutation infinite.

Lemma 8.1.10. Let Q be a connected quiver with more than 2 vertices. If Q contains an edge

with assigned weight of 8 or more then Q is mutation infinite.

Proof. Let 1 22,9 be a sub-quiver of @ such that wio > 3. Since Q is connected and contains

w12 w31

more than 2 vertices therefore 1 —2 2 C Q3 C Q such that Q3 =1 2 128, 3 1, where
we can assume that ws; < wog < wig and wog > 0 (if the relations between w1, wo3, and ws; are

different then they can be altered to fit our description by a series of quiver mutations on Q). Now,

p(Qs) = 1 ¢t p g Py

Since wgl = wigWe3z — w31 > 2we3 — w3y > w3y therefore in this way we can increase the assigned
weight to the edge {1, 3} without affecting the assigned weights to {1,2} and {2,3}. Thus we can

increase the weights endlessly creating infinitely many quivers in the mutation class of Q. O
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8.2 Cluster Algebra

Definition 8.2.1. For a quiver O with n vertices a seed is a pair ((u1,...,un), é) where (u1, ..., up)
is an n-tuple of algebraically independent, rational functions in n indeterminates—zy, . . ., ,, (where
the w;’s are in bijection with the n vertices of the quiver @) The n tuple, (u,...,uy) is called a

cluster (variable) of rank n. Define seed mutation (ui) on a seed ((ul, Ceey Up), é) by

o (w1, 00), Q) = (W 1), 4™ (9)

where

i Hui—i-HUj ifi=k

i€k JEkA

where if [ € kr then the vertex associated to u; is incident to the vertex associated to ug with a
directed edge from the vertex associated to wu; to the vertex associated to ug, and if [ € k4 then the
vertex associated to wu; incident to the vertex associated to u; with a directed edge from the vertex

associated to ug to the vertex associated to u; in é

Definition 8.2.2. A cluster algebra A(Q) is the algebra generated by all the cluster variables that
can be constructed from an initial seed ((u1, ..., uy), Q) (generally ((z1,...,x,), Q)) by performing

repeated seed mutations on the initial seed in all possible ways.

Definition 8.2.3. An exchange graph associated to a cluster algebra A(Q) is a graph with seeds

as its vertices where two seeds are adjacent if one can be obtained from another by seed mutation.

Definition 8.2.4. Let Q be a quiver. A cluster algebra A(Q) is of finite type if there are only

finitely many seeds. A quiver Q is of finite type if the associated cluster algebra A(Q) is of finite

type.

Lemma 8.2.5. Let Q be a quiver and let Q' C Q be a sub-quiver of Q such that Q' is not of finite

type then Q is not of finite type.
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Proof. 1f Q' is not of finite type then the associated cluster algebra A(Q’) contains infinitely many
cluster variables. Since the vertices in Q' are also vertices in Q therefore it is easy to see that seed

mutations at these vertices will construct infinitely many cluster variables of A(Q). O

Theorem 8.2.6 ((Fomin and Zelevinsky, 2003)). For a quiver Q, mutation equivalent to an orien-
tation of a simply-laced Dynkin diagram, the cluster algebra A(Q) is of finite type. Conversely if a
cluster algebra A(Q) is of finite type then Q is mutation equivalent to some quiver whose underlying

unoriented graph is a simply-laced type Dynkin diagram.

Theorem 8.2.7 ((Fomin and Zelevinskyl 2003)). For a cluster algebra A(Q) of finite type there
is a bijection between the initial cluster variables of A(Q) and the negative simple roots of the
corresponding root system and a bijection between the non-initial cluster variables of A(Q) and the

positive roots of the corresponding root system.
Lemma 8.2.8. If a quiver Q is of finite type then Q is of finite mutation type.

Proof. If there are infinitely many quivers in the mutation class of Q, then there is an edge in Q
whose assigned weight is at least 3. Seed mutation at the sink of that edge constructs infinitely

many cluster variables. O

Example 8.2.9. In |Figure 8.2| we begin with the initial seed ((z1,z2), ® — e ) and perform

repeated seed mutations in all possible ways to obtain all the 5 seeds and 5 cluster variables. Since

the underlying quiver is of Ay type, therefore this is a cluster algebra of type As.

Lemma 8.2.10. If Q is a connected quiver of finite type and |V (Q)| > 2 then every 3-cycle in Q,

s oriented in a cyclic way.

Proof. First we recall that any quiver (in this case, a 3-cycle) with an edge weight greater than 2 is
mutation infinite by consequently it is also of non-finite type by thus
we only need to check for those 3-cycles whose edge weights are either 1 or 2. Let Q3 C Q be a
connected sub-quiver, with |V (Q3)| = 3 such that Qs is a 3-cycle graph. Let the weights assigned
to the edges of Q3 be either 1 or 2, with the restriction that not all of them are 1. Also we assume

that the edges of Q3 are not oriented in a cyclic way. We will show that Q3 is mutation infinite.
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Since each of these quivers is mutation equivalent to a quiver that has an edge with an assigned
weight of 3 or more, therefore they are all mutation infinite. Thus by Q3 ¢ Q.

Now we will show that every 3-cycle in Q, whose edge weights are 1, are oriented in a cyclic
way. To see this consider a quiver @3 which is a 3-cycle with edge weights equal to 1 and whose
edges are not oriented in a cyclic way. This quiver is of the form 1 — 2 +— 3 — 1 (up to
relabeling of the vertices) and is not of finite type. Since this mutation class doesn’t contain any
quiver whose underlying unoriented graph is a simply-laced type Dynkin diagram, therefore ég is

not a quiver of finite type by |Theorem 8.2.6 Consequently any quiver Q such that ég C @ is not
of finite type. O

Lemma 8.2.11. If Q is a quiver, mutation-equivalent to an orientation of a simply-laced Dynkin

diagram then all its edges have an assigned weight of 1.

quiv

Proof. Consider the sequence of quivers {Q;};=1. ., such that Q;y; = I, (Qi), where k; is any
node in Q; and @1 = Q. It suffices to show that none of the elements of this sequence contain
edges with labels greater than one. This can be proved through induction. The base case is true
since all simply-laced Dynkin diagram have edges with weights never more than 1. We will show
that Q,, which is the same as pui(Q,—1) does not have edges with labels greater than one.

Let Q, = ur(Qp—1). From the definition of quiver mutation we know that the mutation on
the quiver 9,1 at k affects only those edges which are incident to the node k£ and edges between
nodes i and j whenever there is a path involving two other nodes i to j of the form i — k — j (up
to relabeling of nodes). So if an edge with a label greater than 1 shows up in Q,, due to mutation
on 9, 1 it has to be an edge that is either incident to the node k or in between the nodes ¢ and j.

If Q,, has an edge with the label p > 1 of the form 4 LN k, (or i L k) then Q,,_; has an oriented
edge of the form i & k (or i LN k). By induction hypothesis p = 1.

Now, let there be an oriented path of the form ¢ — k — j in Q,, with an edge oriented from j
to 7, with a label p > 0, see As we have already shown, the edges i — k and k — j can
have a label of at most one since these edges are incident to the node k. Note that the edge between

the nodes 7 and j must be oriented from j to 7 i.e. 7 & j (see |Figure 8.3) such that all the edges in
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Figure 8.3. A 3-cycle in the quiver Q,,.

the 3-cycle are oriented in a cyclic way, as required by [Lemma 8.2.10, Now, ux(Q,) = Qn—1. Thus
mutating O,, at k we obtain 9,,_1 as shown in

k k
SN — /N
z<7pj i?]

Figure 8.4. A quiver mutation on the sub-quiver given in at k.

By our induction hypothesis and [Lemma 8.2.10|either p—1=0orp—1=—-1 = p=1or

p = 0, which completes the proof. O
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CHAPTER 9

ROOT ORDER, REFLECTION ORDER AND COXETER ORDER

For a given word xixa - - - X, & subword is an expression x;, X;, - - - X;,, where the sequence {i1,2,...,0m}
is a sub-sequence of the sequence {1,2,...,n}. Recall that in a Coxeter system (W, S) the element

c=s; - -si, where s;; € S, 5;, # s, for j # £ and [S| = ls(c), is called a Coxeter element. Fix a

n

reduced S-expression ¢ = s - - -5, for a Coxeter element ¢ in W. Let ¢ be the infinite word

C® =51 -Sp|s1 - Spls1 - Su| -

Definition 9.0.1. For an element w € W the c—sorting word for w for a given reduced S-expression
c for a Coxeter element ¢ € W is the lexicographically first subword of ¢* that is a reduced

expression for w.

Notice that the c—sorting word for an element w depends on the choice of the particular
reduced S-word c for ¢. However, for two reduced S-words, c; and cs for ¢, the c;—sorting word is
commutation equivalent to the ca—sorting word for w. This is because all reduced S-words for ¢
are commutation equivalent. We will denote the c—sorting word for w by w(c). When the actual
ordering of the letters in the word w(c) is not important we will use the notation w(c) to denote any
reduced S-word that is commutation equivalent to w(c). For s € S if s <g ¢, then the c—sorting
word for an element w € W begins with s if and only if s <g w. We can keep repeating this

argument iteratively as follows, to compute the entire c—sorting word for w.

sw/(scs)  if s <g w, where w = sw’ and it is an S-factorization
w(c) =
w(scs) if s £gw

The following lemma follows immediately from this discussion

Lemma 9.0.2. Letu=s1---51 € BT andu <gw € BT. If s1---s) is initial in the word c>, for

a Coxeter element ¢ in W, then sy ---s| is also initial in the word w(c).
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Example 9.0.3. The c—sorting word for the permutation 4231 in &3 is the word s;sgss|se|s; for
c = s1s9s3, where s; = (12),s0 = (23) and s3 = (13) are transpositions in S3. Observe that

subjecting the permutation 4231 to its c—sorting word—
4231 25 4132 225 4123 % 3124 225 2134 25 1234

‘sorts’ the permutation in the numerical order (think bubble sorting), hence the name ‘c—sorting’.

9.1 Geometric Interpretation of the Length Function /g

Recall, from every root system R in a standard Euclidean space E has a base A—A is
a basis for E' and every vector v € R can be expressed as a linear combination of roots in A with
either all positive (and 0) or all negative (and 0) coefficients. Recall that the roots in R can be
partitioned into positive roots R™ and negative roots R~ i.e. R = RT LU R~ such that R~ = —R™.

(u,)

Also recall that the group generated by the reflections ¢, : R — R defined by t,(u) = u — 2 o) Vs

where u,v € R is called a Weyl group W (R). We will call the pair (W (R), S(A)) (or simply (W, 5)),
where S(A) = {t,,|vi € A} a Weyl system. Since a Weyl group is also a Coxeter system, therefore
we will use Coxeter terminology while talking about Weyl groups.

Consider the set Ry, := Rt nw ' (R™). If A = w™(R™) then w(A4) = R~, i.e. w'(R™) are
the roots that become negative roots when acted on by w € W, consequently R Nw~!(R™) is the
set of positive roots that when acted on by w become negative roots. Let us find out the different

characteristics of these sets for different elements in W, starting with the simple reflections

Lemma 9.1.1. For a Weyl system (W(R),S(R)) if s, € S(R) where v be the root in A corre-

sponding to s, then Rs, = {v}.

Proof. Since s,(v) = —v therefore v € R, . If possible let u € Ry, and u # v. u € RT therefore u

can be written as a linear combination of roots in A with positive coefficients

U= Z ¢;0;, where ¢; >0
5, EA
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Since v € A so we can write

u=cv+ Z ¢;0;, where ¢,¢; >0
3, EA\v

Since s,(u) = u — 2 EZE;U = u=sy(u) + 2235?”

d;€A\v
{u, v)
= sy(u) +2<v,v>v =cv+ Z ¢;0;
0, EA\v
{u, v)
v = -2 107
= sp(u) <v7v>v+cv—|— Z ¢id
(5—L‘€A\v
= sp(u) = <_2<u,v> —|—c> v+ Z cid;
(v,v) 5.Em

Thus we have expressed s,(u) as a linear combination of roots in A. Since s,(u) is a root therefore
either all the coefficients are positive (or zero) or all coefficients are negative (or zero). Since all
the ¢;’s are positive (or zero) therefore all the coefficients are positive (or zero), consequently s, (u)
is a positive root.

Thus R, = {v} and |Rs,| = 1. O

Since the number of roots in R, is just one and there is a bijection between A and S, therefore

the next result follows.

Corollary 9.1.2. The root v € A corresponds to the simple reflection s € S(A), of the Weyl group
W(A), if and only if s(v) = —v, where S(A) is the set of generators in W(A) that corresponds to

the roots in A.

Theorem 9.1.3. Let (W,S) be a Weyl system, then lg(wt,) > ls(w) <= w(v) € R" and
Is(wty) < lg(w) <= w(v) € R, where t, € T (T is closure of S under conjugation) and v € R

is the root corresponding to the reflection t,.

Proof. First we will use induction on lg(w) to prove that Ig(wt,) > ls(w) = w(v) € RT.

ls(w) = 0 is a trivial case. Let us assume that the statement is true for k& < lg(w). If Ig(w) > 0
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then there exists s € S such that [g(sw) < lg(w) (observe that if w = s1---s, is a reduced S-
decomposition then setting s,, = s implies lg(sw) < lg(w)), in particular lg(sw)+1 = lg(w). Which

implies

ls(sw) < lg(w) < lg(wty)

= lg(sw) < lg(w) — 1 < lg(wt,) — 1 < lg(swt,)

where Ig(w) — 1 < lg(wt,) — 1 follows from the inequality lg(w) < lg(wt,) (the hypothesis of the
proof) and for the inequality lg(wt,) — 1 < lg(swt,) we observe that if s is S-initial in wt, then
ls(wty) — 1 = lg(swt,) and if s is not S-initial in wt, then lg(wt,) + 1 = lg(swt,), combining
these we get our desired inequality. Using our induction hypothesis we get lg(sw) < lg(swt,) =
sw(v) € RT, (since lg(sw) = k). If possible let w(v) € R, then w(v) = a where « is the root in A
that corresponds to the simple reflection s € S. w(v) = a = wt, = sw (because wt,w = (w(v)) =
wt,(v) = w(—v) = —w(v) and s(a) = —a, therefore wt,w=! = s), which contradicts the inequality
Is(sw) < lg(wty), thus w(v) € RT.

Now we will show that lg(wt,) < ls(w) == w(v) € R™. To this end we observe that if
ls(wty) < lg(w) then lg((wty)ty) > ls(wt,) which implies (by the previous part of this proof)
wty(v) € RY, which in turn implies that w(—v) € B~ = —w(v) € R~ = w(v) € R~. Now if
w(v) € R~ = lg(wty) > lg(w) then lg(wt,) < ls(w) = w(v) € RT which is a contradiction
(since we have just proved lg(wt,) < lg(w) = w(v) € R™) therefore w(v) € R~ = Ig(wt,) <

ls(w). This completes the proof. O
Lemma 9.1.4. Let (W, S) be a Weyl system, for w € W, lg(w) = |Ry|.

Proof. We will use induction to prove this. If [g(w) = 1 for some w € W then |R,| = lg(w), as
shown in[Lemma 9.1.1} Let us assume that if [g(w) = k for some w € W then lg(w) = |Ry|. Now let
w € W such that [g(w) = k+ 1, then there exists some s, € S (v is the corresponding positive root

such that s,(v) = —v) such that [g(ws,) = k. By our induction hypothesis |Rys,| = ls(ws,) = k.

By [Theorem 9.1.3|since |Rys,| < |Ry| therefore v € R,,. But since ws,(v) = w(—v) = —w(v) € RT,
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therefore v € Rys,. However, for all the other roots u € R™, u # v, u € Ry <= u € Rys,, this is

because s, permutes the set R \ {v} (by [Lemma 9.1.1)), therefore

s (RT\{v}) = R"\ {v}

= ws, (RT\ {v}) =w (RT\ {v})

which implies

R Nwsy(RT\ {v}) = R~ Nnw(R"\ {v})

but since ws,(v) € R therefore R~ Nws, (R \ {v}) = R~ Nws,(R"), thus
R™Nwsy,(RT) = R~ Nw(R™\ {v})
Now v € Ry, therefore R~ Nw(R™ \ {v}) = {R™ Nw(R")}\ {—v}, as a result we have

R™Nwsy,(RT) = [R™ Nw(RM)]\ {—v}

= [R™ Nws,(RN]U{—v} =R Nw(R")

Observe that |[R~Nw(RY)| = |[RTNw 1 (R7)| = |Ry| and |R™ Nws,(RT)| = |[RTN(ws,) " H(R7)| =

| Ruys, |, thus we have

|R™ Nwsy(RT)[+ [{—v} = [R" Nnw(R")

— k+1=|R" Nw(R")| =Ryl O

Lemma 9.1.5. Ifw € W, where (W, S) is a Weyl system. Let s1 - - - i be a reduced S-decomposition

of w, and the reflection s; corresponds to the root v;. Then

RYNw(R™) = {v1,s1(v2),..., 51 sp—2(vk—1), 51 sp—1(vk)}
Proof. First we will show that

RTNw(R™) C {v1,s1(va), ..., 51 sp—2(Up—1), 51 sp—1(v)}
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veE R " Nw(R) < ve R and w (v) € R™. Since w™! = s --- 51 therefore sy ---s1(v) €

R~. Since v € R" therefore there exists a minimum number j < k such that s;---s1(v) € R~

and s;_1---51(v),sj_2 - 51(v),...,s251(v),s1(v) € RT. Thus sj_1---s1(v) = v; (since s;(V) =
—U <= U = v; by |Lemma 9.1.1), as a result s;---sj_1(sj—1---s1(v)) = s1---sj_1(v;) which is
also the same as v, thus v € {v1, s1(v2),..., 81 Sg—2(Vk—_1), 51 Sp—1(vk)}.

Note that the set R* Nw(R~) = R,-1 and by [Lemma 9.1.4| we have Ig(w™!) = |R,-1|. Also

since Ig(w™!) = lg(w) thus |R,-1| = ls(w). Now, clearly the set
v1,51(v2), ..., 81 - Sp—2(Vg—1), 51 -~ Sk—1(vk)}
has exactly lg(w) distinct elements, therefore
|Ry—1| = Hv1,s1(v2), - 81 sk—a(vk—1), 81~ sp—1(vi) }|
as a result (in view of the inclusion proved earlier)
RTNw(R™) = {v1,s1(v2), ..., 51 sp—2(Vp—1), 51 sp—1(v)}
O

Definition 9.1.6 (Inversion sets and inversion sequences). Let (W, S) be a Coxeter system, and

let w € W (whose reduced S-decomposition w = s1 - - - s), then the inversion set of w is the set
inv(w) := RT Nw(R™) = {v1,s1(va),...,81  sk—2(Vk_1),51 - Sk_1(vk)}
where v; is the root corresponding to the simple reflection s;. The sequence
inv(sy---sk) = (vi,s1(v2),..., 81 Sp—1(vk))

is called an inversion sequence of s1 - - - sy, for the element w. This inversion sequence (for a particular
choice of a reduced S-decomposition) specifies a total order on the set inv(w) called the induced

order.
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For a chosen reduced S-decomposition w = sj - - - s9 define 8 = vy, f; = 1+ - $;—1(v;), where i =
2,...,k. Clearly B,...,0r € R" and B; # f3;, if i # j, the induced ordering (<) on the set
inv(w) = {B1,..., Bk}, is given by f; < ; <= i < j. Note that this ordering depends on the

choice of the reduced S-decomposition of w.

Corollary 9.1.7. Let w € W where W is a Weyl group, and let w = s1---s; be a reduced S-

decomposition. If the root v; corresponds to the reflection s; then

851...5]._1(Uj) =81 8j-15j85j—1"""S1

Proof. We know that s, (s;)(s1°-8j-1(vj)) = —s1--sj-1(vj) by [Lemma 9.1.1} therefore it

suffices to show that s;---s;_15j5j—1---s1(s1---sj-1(vj)) = —s1- - 5j-1(vj).

100 8j-1858j-1 - s1(s1 - 85, (v5)) = s1- -+ s5-185(v5)
=51 sj-1(—vj)

= =81+ 85-1(vj) O

Lemma 9.1.8 (Matsumoto’s (left) strong Exchange condition). Let (W, S) be a Cozeter system and
let T be the closure of S under conjugation. If lg(tw) < lg(w) for somet € T and let w = sy --- sg

be an S-decomposition (not necessarily reduced), then there exists an index j such that

~

tw:sl...sj...sk

where s1---8;---5 s the S-decomposition of w with the jt™ entry deleted. Furthermore if the

decomposition s - - - S, is reduced then j is unique.

Proof. Here, we will prove this for a Weyl group but it is true in general for finite Coxeter groups.
In fact any group generated by the a set of involutions is a Coxeter if and only if it satisfies the
exchange condition. Let (W, .S) be a Weyl system and let w € W whose S-decomposition is s - - - Sg.

We will first show that the set inv(w) = {f1,..., B} is the same as the set
exch(w) := {y € R"|tys1--- 8 -+ s = w, for some 1 <i <k}
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where t, € T is the reflection corresponding to the root v € R*. Let 3; € inv(w), ; =

s1---sj—1(vj), where v; is the root corresponding to the reflection s;. Then

~

Sﬁjsl Sjsk = 881---81'71(1)]')81 Sjsk
:Sl".ijlsjsjfl“.8181‘..5]'"‘81{:

=81 S =W

Furthermore since |lg(w)| = |inv(w)| (in a similar way as in[Lemma 9.1.4)) the set inv(w) = exch(w).

To prove the statement of this lemma all we need to show is that for any ¢, € T if [g(t,w) < ls(w)
then v € inv(w). To this end we observe that if Ig(tyw) < lg(w) which implies lg(w_ltf/l) =
ls(w™'t,) < lg(w™!) and that in turn implies w='(y) € R~. Thus vy € RT Nw(R~) = v €
inv(w).

For the uniqueness part we observe that if w = s1---s; is a reduced S-decomposition with
ls(w) = k and if tw = sy---8;---5j---8, = S1---8;---5j--- 5 then that implies s;11---s5; =

Sj+-+8j_1 == Siy1---Sj—1 = 8;---8j. Therefore w = s1---5;---5;---5; is another reduced

S-decomposition of w, which contradicts the assumption that lg(w) = k. ]
We have a similar ‘right’ version of this lemma as follows.

Lemma 9.1.9 (Matsumoto’s (right) strong Exchange condition). Let (W, S) be a Cozeter system
and let T be the closure of S under conjugation. If lg(wt) < lg(w) for some t € T and let

w = 81 Sk be an S-decomposition (not necessarily reduced), then there exists an index j such that

'UJt:SlS]Sk

where s1---5;---5 is the S-decomposition of w with the Gt entry deleted. Furthermore if the

decomposition s - - - S, 1s reduced then j is unique.

Proof. 1f ls(wt) < Is(w) then lg(tw™!) < Is(w™1), therefore by [Lemma 9.1.8| there exists an index
i such that tw™! = s;---§;--- sy, which in turn implies that wt = s;---5;---s;. The uniqueness

part can be proved in a similar way as in O
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9.2 Root Order

Definition 9.2.1. For a Coxeter system (W, .5), the longest element wy € W is defined by any one

of these equivalent definitions.
1. ls(wp) > lg(w) for all w € W i.e. wy has maximal length.
2. lg(wow) = lg(wo) — lg(w), for all w € W
3. lg(wos) < ls(wp), for all s € §
Proposition 9.2.2. The three definitions of the longest element—1], [ and[3, are equivalent.

Proof. 1t is easy to see that [2 = |1} (since lg(wow) = lg(wo) — ls(w) = Is(wow) + lg(w) =
ls(wy) = lg(w) < lg(wo)) and :> (since wos € W for all s € S therefore by ls(wps) <
ls(wo)). To see that [3| = [2] it suffices to show that w~! is S-final in wy, i.e. wy = ww™!, with
w € W and lg(wp) = Lg(W)+1ls(w™1), because if wy = ww ™! then lg(wow) = lg(vw  w) = lg(w) =
Is(wg) — ls(w™1) = lg(wp) — ls(w). We will use induction on the length Ig(w) of w € W (the same
w as in[3). If lg(w) = 1 then let w = 3 € S. By the hypothesis of the proof Is(wos) < ls(wo),

therefore using a similar argument as in we can show that
vz € {vy € R+|31---§i---sk57 = wy for some 1 < i < k}

where 7 is the root corresponding to the reflection s., vz is the root corresponding to the reflection
5and s1 - - - 53, is any reduced S-decomposition of wg. Thus wy = u3~! and Ig(wo) = lg(u)+1s(371).
Now for the induction step we will show that wy = ww~'. There exists v € W and s € S such that
w™l = v s and lg(w™t) = lg(v™!) + Is(s). Since Ig(v™!) < Ig(w) by induction hypothesis there

exists ¥ € W such that wg = vv~!. By our assumption lg(wos) < ls(wp), therefore by [Lemma 9.1.9

wos = v ts = Vv~ (because v s is reduced )

1 1

= WSS =Wy =0V S=0VW

where v’ represents v with a letter omitted in its decomposition. O
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The longest element is an involution—Ig(w3) = lg(wg) — ls(wp) = 0, and is unique—if w is of
the same length as wg then lg(wow) = lg(wg) —lg(w) = 0, which implies that w and wq are inverse
of each other, and by the involution property we just showed wg = w. It is also easy to see that
the ‘left’ versions of these statements are also true—Iig(wwp) = lg(wo) — lg(w) for all w € W, and
ls(swo) < lg(wp), for all s € S.

So, in summary, there is a longest element in W, (denoted by wy) i.e. for every w € W, w <g wy
(<g being the right weak order)— a similar argument as in the proof of the last proposition could
be used to show that for any w € W, wg can be written as wy = w~'w such that lg(wg) = ls(w ™)+
ls(w) for some w € W, consequently it follows that wy = ww such that lg(wp) = lg(w) + lg(w) for
some w € W. Similarly for every w € W, wg >g w where >g is the left weak order i.e. there exists
w’ € W such that wy = w'w and lg(wo) = lg(w’) + ls(w).

As we have already seen for a given element w € W a particular choice of a reduced S-
decomposition of w induces a total order on the set inv(w)—if w = s;---s; is a reduced S-

decomposition of w then the induced order on the set inv(w) is given by

s1 < s1(vg) < -+ < 81827+ 8i—1(V;).
It is easy to notice that the weak right order <g implies the inclusion order on the set inv(w).
Theorem 9.2.3. w <gw' < inv(w) C inv(w’)

Proof. If w <g w’ then there exists a reduced S-decomposition of w’, say w’ = s1 --- s such that

w = 81---8; where i < k. It follows that
inv(w) = {Ul, 81(02), ey ST si_l(vi)} g inv(w/) = {81, 81(1)2), N sk_l(vk)}. O

Since for every w € W, w <g wy, therefore inv(w) C inv(wy), thus R™ C inv(wy), on the other
hand, all inversion sets are subsets of Rt, we have RT™ = inv(wg). Therefore defining an order
on the set inv(wg) defines an order on all the roots in R, and we already have an order defined
on the inversion sets—the induced order. Now we will define an order on the positive roots and

correspondingly define an order on the set of all reflections.
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Definition 9.2.4 (Root order). The total order induced (on the set of positive roots) by an
inversion sequence (of a particular reduced S-decomposition) for the longest element, is called
the root order. If s1--- sy is a particular reduced S-decomposition of wy then we will denote the

associated root order by inversion sequence inv(sy - - - si)

Since inv(wg) = RT, therefore root order is a total order on all the positive roots R™ how-
ever since the longest element has multiple non-commutation equivalent reduced S-decompositions,
therefore there are multiple root orders. An interesting question to ask here would be—is any arbi-
trary ordering of RT, a root order? The answer in general is - no. The next theorem characterizes

roots orders.

Theorem 9.2.5 ((Papi, 1994)). An order (<’) on the set R is a root order if and only if for every

v1,v2 € RY if avy + bvg € RY, (where a and b are positive real numbers) then either
vy <" avy + bug <" vy

or

ve <" avy 4+ bug <’ vy

In (Dyer} 1993)) M. Dyer defined a reflection order as follows.

Definition 9.2.6. An order <* on the set of reflections T is called a reflection order if for any
two reflections t; and t9 in T" the positive 100ts Vi, , Vs totyy - - - » Vtotitas Ut, are of the form avy, + buy,

(where a, b are positive real numbers), and either
tp <* titoty <F -0 <Ftotyte <* to

or

to <* tot1to <o t1tot <* t

where vy, is the root corresponding to the reflection t;.
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For any given total order (<) on the set R™ we can determine a total order (<’) on the set of

reflections 7" in the following way
v < V2 = Iy < Lo,

where v; and v are positive roots and t,, and t,, are the corresponding reflections. It has been
shown in (Dyer} [1993) that any total order (<’) on T is a reflection order if and only if the
corresponding order (<) of R' is a root order. Now finally we make the definition that we have

been building up to!

Definition 9.2.7 (Coxeter order). Let ¢ denote a reduced S-word for a Coxeter element in W
then the total order given by inv(wg(c)) on the positive roots (and correspondingly on the set of

reflections) is the Cozeter order and is denoted by <.

If ¢; and cy are two reduced S-decomposition of a Coxeter element ¢ then ¢; = co. However,
the Coxeter order <, is different from the Coxeter order <.,. This gives us a preorder on the set

of reflections.

Definition 9.2.8 (Coxeter preorder). Let ¢ be a Coxeter element, and let Redg(c) be the set of
reduced S-decompositions of ¢, then we define a Cozeter preorder on the set of reflection (denoted

by <.) as t; <.ty if t; <.ty for some reduced S-decomposition ¢ € Redg(c).

Observe that we can have t; <.ty and to <. t; hold together if for a reduced S-decomposition
c; of ¢ we have t; <, t2 and for another reduced S-decomposition ca of ¢ we have t; <., t2. In the

corresponding proset ¢; will be considered equivalent to ts.
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CHAPTER 10
TWO-PART FACTORIZATIONS UNDER FACTORIZATION MUTATION

AND QUIVERS UNDER MUTATION.

A set partition of the set {1,...,n} into blocks is called noncrossing if the convex hulls of its blocks
don’t overlap each other when placed on a circle in a cyclic order as vertices of a regular n-gon. In
other words a partition is called noncrossing if forevery 0 <u<v<w <z <nifu~wandv~x
then u ~ v ~ w ~ x, where a ~ b indicates that a and b are in the same block of the partition, and
u,v,w,x are in {1,...,n}.

Noncrossing partitions are also defined for finite Coxeter systems (Brady and Watt, [2002; Bessis,
2003)). For any Coxeter element ¢ in a Coxeter group W an element w € W is a c—noncrossing
partition if w <p ¢, where T is the set of reflections in W. We will denote the set of c—noncrossing

partition by NC(W, ¢).
Theorem 10.0.1. The set NC(W, ¢) is a lattice under the absolute order.

This theorem has been independently and differently proven in (Bessis, [2003; |[Brady and Watt),

2008; Ingalls and Thomas, [2009; Reading, 2011]). The c¢—noncrossing lattice is denoted by
NCL(W, ¢) == [e, c| aps(w)
where e (the identity element) and c are the lattice’s minimal and maximal, respectively.

Theorem 10.0.2 ((Reading} 2008))). Let (W, .S) be a Cozxeter system and let ¢ be a Coxeter element
in W. Let W,y denote the parabolic subgroup generated by S\{s} and let c(sy be the Cozeter element
for Wiy obtained by deleting s from the defining word for c then [e,ciq)] in Wy is isomorphic to

le,csy] in W. In particular every element below ¢y in W is in Wi and vice versa.

Lemma 10.0.3. Let s1 be S-initial in a Cozxeter element ¢ and let ¢ = syrg---7r, be a T-

factorization of ¢ then the reflections ra,. .. o are in Wig,y.
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Proof. If s is S-initial in ¢ then there exists a reduced S-factorization of ¢, say, ¢ = si1s89--- Sy,

such that s;’s are all simple reflections. This implies that the element ro---7, is actually the

parabolic Coxeter element ¢,y = 52 - -+ 55, By [Theorem 10.0.2| therefore the interval [e, ¢(s;)] Abs(w)

is an exact copy of the interval [e, c(s,y]abs(w,, ,)- Since the reflections 7o, ..., 7, are all T'—initial

(S1>)
in ro-- -7y, therefore appear in the lattice [e, c(,y]abs(w), and consequently must appear in the
lattice |e, c<51>]Abs(W(S1>). Now since every element in the lattice [e, c<81>]AbS(W(Sl)) are in W,y thus

T2, ..., rp are in W y. O
We can prove a similar result for a simple reflection that is S-final in c.

Lemma 10.0.4. Let s, be S-final in a Coxeter element ¢ and let ¢ = r1---Tp_15, be a T-

factorization of c then the reflections r1,...,rn—1 are in W y.

Lemma 10.0.5 ((Speyer, 2007)). Let wg be the longest element in W then wo(c) is initial in c*°,

where ¢ denotes an S-word for a Coxeter element c.

It must be noted here that wy(c) may not be a prefix in the word ¢, for example for the

Coxeter element ¢ = s15253, Wo(s15253) is the following underlined subword in (s3s253)>

Lemma 10.0.6. Let c denote a reduced S-word for a Cozxeter element c, then c is a prefix in wp(c).

Proof. Any element in W is S-initial in the element wq, in particular any Coxeter element is .S-
initial in wg. Also the word c is lexicographically minimal in the word c*. Since the word wy(c) is
defined to be the lexicographically first subword of the word ¢ that is a reduced S-expression for

wp, therefore c is a prefix in wy(c). O

Lemma 10.0.7. Let ssg---s, be a reduced S-word for a Cozxeter element c, then wy(sy - - -S,S) i

. . _ —1 . . .

commutation equivalent to Swo(sse - --s,)sVo . However, if s is the last letter in an S-word, say
. . . —1 _

S1 - -Sp—1S for ¢, then wo(ssy - -+ Sp—1) is commutation equivalent to swo(sy - - Sp—15)sWo . Here sw

(or ws) denotes the word obtained by removing an initial (or the final) letter s from a word w.
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Proof. By |Lemma 10.0.6} let wo(ssz---s,) = ssy---sy. Using [Lemma 10.0.5| we can say that the

word wo(ssz - - - Sp) = SSg - - - s is initial in the word (ssg - - - s,,)*°, therefore the word sy - - - sy is initial
in (sy---s,5)%, thus by |Lemma 9.0.2} so - - - s is initial in wo(sg - - - sps). However lg(sg---sy)+1 =
ls(wo(s2 - - sps)), therefore wo(sy - - -s,8) = s2 - - - sys; for some s; € S. Here the ‘=’ (instead of ‘=)

is due to the fact that sg---sy is initial in wy(sz - - - s,5) and not necessarily a prefix.

So--*SNS; = SS9 SN
_ 1 -1
:}si_sN...SQ SS9 - SN
_ 1 —1.—1
==>S; =Sy "":Sy S S852:°-SN

= S; = walswo

Consequently, wo(ss - - - $,5) = Swo(ssa - - - 5,)s%0 .

On the other hand if s;---s,_1s is a reduced S-word for ¢, (here s is the final letter of the
word), then there exists a Coxeter element ¢’ = scs~! whose S-factorization is ssy - --s,_1, with s
as its first letter. Therefore wo(sy---S,_15) = swo(ss1---Sp_1)sV0 <= swq(s; - --sn_ls)s""o_1 =

. . . 71 . . . . .
wo(ss1 - sp—1). This will make sense if s%o is final in wq(sy - - - S,—15) which is shown in the next

lemma. O

Lemma 10.0.8. For a Cozeter element ¢ € W, let siso---s, be a reduced S-factorization for c,

-1 -1 —1
W, \\ W, . .
then the word s;° s,° ---s,° s final in the word wo(sisz---sy).

Proof. By any sisy - - - S, is a prefix of the word wg(sisy---s,). By the first part of
if we remove the letters sq,ss,...,s,, sequentially, from the beginning of the word
s1S9--+S, and then add them to the end of the word then we get back sise---s, and therefore
obtain

-1
— — W, W,
Sy 52S1W(S1S2 -+ Sp)S; 0 Sy° - --sp’ = wp(Si1S2- - - Sp)
This proves the desired result. O

Lemma 10.0.9 ((Reading and Speyer} 2011))). Let ¢ be a Coxeter element in a Coxeter group W
and let ¢ be a reduced S-word for c. Let s be initial in c then for any two reflections r1 and rq in

TN Wy, 11 <cr2 <= 11 <scs T2, where T is the set of reflections.

86



Definition 10.0.10 (Cambrian rotation). Let ¢ be a Coxeter element in a Coxeter system (W, S).
For any s € S such that s is S-initial in ¢ we define a left Cambrian rotation to be the conjugation
of ¢ by s to obtain a new Coxeter element s~'cs. Similarly for any s € S such that s is S-final in
¢ we define the right Cambrian rotation to be the conjugation of ¢ by s to obtain a new Coxeter

element scs 1.

Lemma 10.0.11. Let ¢ be a Coxeter element and let s1 - - -s,, be a reduced S-word for ¢ and let the

word sy ---s; be a prefiz of the word wo(sy ---sy). Then the first letter in the word
§j...§lwo(sl...sn)sl ...S

is S-initial in the Cozxeter element s]l e sflcsl -85, Similarly, if sj---sn is a suffix of the word

wo(s1---sp) then the last letter in the word

wo wo — -
Sj .--SNWO(Sl...Sn)SN-..S]

_ ~1
is S-final in the Coxeter element s3° - siPe(sye) to (3%) )

Proof. For any word w let rev(w) denote the reverse of the word w. Since s;---s, is a pre-

fix of the word wp(sy---s,) by [Lemma 10.0.6| therefore if j < n then it follows directly. To

see that it is in general true for any j, recall that the word wy(s;---s,) is initial in the word

(s1--+sp) by |[Lemma 10.0.5l For the second part of the lemma, we observe that by [Lemma 10.0.5
_1 1 1 —1 oo -1 -1 -1
wWo <rev (s\lNo eagp0 >> is initial in (rev (s\{vo coasp0 )) . Since s\{vo s\go .--sp? s final in the

-1 -1
Wo

W, . .
word wq(sis2 - - -s,) we can conclude that wg | rev | s;° ---sp = rev (wp(sy -+ -sp)). This gives

us the desired result. O

Lemma 10.0.12. Fizx a reduced S-word ¢ = sy ---s, for a Coxeter element ¢ in W. Given any
reflection t, there exists a word w which is a prefix of the word wy(sy - --s,) and a reduced S-word
c’ for the Coxeter element w™'cw such that t* is a simple reflection and is the minimal element in
the order <o and if t <.t <cta then t{’ <o t§ and if t; <ct <ct2 then ty <o t}.

Similarly there exists a word w which is a suffix of the word wo(s1---sy,) and a reduced S-word
¢ for the Coxzeter element wew ™' such that t¥ is a simple reflection and is the mazimal in the order

<e and if t] <cto <ct then t¥ <: t¥ and if t; <ct <cto then t§ <qt¥.
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Proof. Let wo(sy---sp) =s1---sy. Then there exists w = s; -+ -s,,—1 a prefix of wo(s; - --s,) such

that ¢t = s¥. This existence is guaranteed by the fact that the set RT and the set inv(wg(c)) are the

same. Using [Lemma 10.0.7] and [Lemma 10.0.11| there exists a reduced S-word ¢’ for the Coxeter

—1 —1
-1 w, wy . . . ’
element w™ " cw such that s, ---sys;° ---s. 0 ; is commutation equivalent to wp(c’).

Now, if t <c t; <c tpothent = s1---Sm--+51, t1 = S1-**Sm** Smta-" Sm---S1 and ty =
81 Sm- " Smta " Smab " Smta " Sm - S1, for some a,b such that N > m+b > m+a >m
and S1 ¢Sy Smta - Smap 1S a prefix of the word wg(sy - - - $p,). Therefore conjugating ¢,¢; and
to by w gives t* = 5t = S Smta - Sm and 1Y = Sy Smaa Smab - Smta - Sm, Which
clearly respects the order t¥ <o ¢}’ <o t¥.

Now, for the case t1 <.t < to, it suffices to show that for any reduced S-word ¢ for a Coxeter
element and for a word g - - - uy commutation equivalent to w(¢é), uy is the maximal reflection in
the order <u, and for all the other reflections if v; <z v; then v;"* <z v}” where & is a reduced

S-word for the Coxeter element ul_léul. This follows from the following observations. u; is S-initial

-1
in ¢ by [Lemma 10.0.11{thus using [Lemma 10.0.7|we obtain wq (') = ug - - - uNuTO and we also have

Ul <gujuguy <o SgUUL  r UN_TUNUN—1 ** - U2UT.

—1
w,
Up < - <y U2 UN—TUNU Y UNUN—1 - U2

—1
Wo _ !
where ug - - - un_1uNu;° UNUN—1 - U2 = U1 and ¢ = ug - - - uU.

The other part can be similarly proved. O

Definition 10.0.13. Let ¢ be a Coxeter element in a Coxeter system (W,S), and |S| = n. Any
reduced T-decomposition: ¢ = ry---7, will be called a two-part factorization if there exists an
index ¢ such that, r1 <. --- <. 1; and r;31 <, -+ <. r, where <. is Coxeter order. We may use a
divider ‘|’ to indicate the index of partition—ry - - - 7;|741 - - - 7. We will call the word ry - - - 7; the

left part and the word r;41 - - - r, the right part of the two-part factorization.

We will denote the set of all two-part factorizations of ¢ by Facty(c).
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Definition 10.0.14. Let ¢ be a Coxeter element, and let F, = ry---7i|ri41 - -7, be a two-part
factorization of c. A factorization mutation on F, at 1, (1 < k < i) denoted by ul**(F,) is the

action py_1py—o - pgr1pk(Fe), where [ is the index (i + 1 <1 < n) such that r; <. rr <. 741.

Essentially, we choose a reflection say 75 from the left part of the two-part factorization and
through a series of Hurwitz move we ‘push’ it to a new position on the right part of the two-part
factorization such that the resulting decomposition is still a two-part factorization.

Since any Coxeter elements can be written as a product of all the simple reflections, each
appearing exactly once, therefore we can start by writing a reduced S-word for a Coxeter element
and add a divider ‘|” at the end of it and perform factorization mutations on it to obtain all possible
two-part factorizations. By all the reduced T-decompositions for a Coxeter element
can be obtained by Hurwitz moves, therefore all two-part factorizations, being a subset of all the
reduced T-decompositions, can also be obtained by Hurwitz moves.

It is not obvious that the resulting factorization of ¢ is also a two-part factorization. The next

lemma will address this concern.

Lemma 10.0.15. For a Cozeter element c in a Coxeter group W let F, denote a two part factoriza-

tion of c then ,u%wt(FC) € Facty(c), where k is an index on the left part of the two-part factorization
F,..
Proof. Let Fy =1ry---rp---1i|rig1---7;-- 1 be a two-part factorization such that r;;q <c --- <c

Tj <cTp <c - Zcri. Let

[ Tk oo ThpTk L TR .
Fo=mriorpoarty ot rdy TR 1 T

We will show that F! is a two-part factorization of ¢, i.e. ,ufgaCt(FC) is a two-part factorization.

Let wo(c) = s1--- sy then all the reflections in the group W may be arranged as follows in the
order <.

81 <¢ 518281 Sc - S S182 SN - 8287

and they may be alternatively arranged as follows in the order <g, s,

—1
w
59 <51cs; 525352 Ssics; vt Ssies; S253°°SNS] SN - S382.

S1
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-1
This follows from the result wg(5ics;) = S1wo(c)s;® (Lemma 10.0.7). So, if we have a two-part

factorization, say £ ---€g|r17re - - T4 that respects the order <., then performing a left Cambrian
rotation would give us a new two-part factorization involving modified reflections (¢ gets modified

to t°1), that respects the order <, ,, and the new two-part factorization would either be

S S S S
LR S PR

or

S1 S1,.81,.51 s1
e Lyt g ST

In summary, a Cambrian rotation, either doesn’t affect the position of the ‘| or just pushes it to
the right by a position. Consequently, while undoing this Cambrian rotation, either the ‘|’ stays
put or moves left by a position, depending on whether it has moved earlier or not.

With this in mind now we observe that since Rt = inv(wg(c)) therefore there exists a simple
reflection s,,, such that wy = rips;---8§n - Sy, 1.6. 81 S - sfl =7, Set w = 81+ Sm_1

then 7, = ws,w~!. Conjugating ¢ by w™! = s,,,_1---s1 (which is equivalent to m — 1 Cambrian

. . _ . -1
rotations) we obtain a new Coxeter element w~!cw (call it ¢/) and wo(c') = sy - SN -+ 5

(by repeated application of [Lemma 10.0.7 and [Lemma 10.0.11)). These m — 1 Cambrian rotations

give us a new two-part factorization involving modified reflections (¢ gets modified to tw_l) that
respects the order <. (up to commutation of commuting letters) in which s,, is the minimal element.
We now choose the subword 7y, - - - 757541 - - - r; from Fi. (the subword in F. that gets affected due
to the factorization mutation at 7;) and observe it as we conjugate each of the reflections in it
by w~! and thus obtain the following two-part factorization that respects the order <. (up to

commutation of commuting letters)
Smr}:_;ll 7-;” riujrl Loop® | (101)

This follows from our earlier discussion about how reflections move around the ‘|” due to Cam-

brian rotations and the fact that s,, is the minimal element in <.. We also notice here that since

. e ey . . -1 -1 -1 -1
Sm 1s S-initial in ¢ therefore by |[Lemma 10.0.3| the reflections Thils--->Ti o Tikq . ,Tj  are

. . . . . . -1 -1 -1 -1
in Wi,,). At this point we perform a factorization mutation on spyry -~ 7 iy -7y |
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Sm, which results in the following two-part factorization that still respects the order <. (upto

commutation)
(wsm) 1 (wsm) ™! (wsm)™! (wsm) 1
Tegr ~ 7T i1 T Sm.- (10.2)
—1 -1 -1 —1
Here the reflections r,(;flm) ,...,rgwsm) ,r,fﬁm) o ,r(.wsm) are in W<Sm> For any root v €

R<+Sm>, sm(v) = v + kvs,,, where vy, is the root corresponding to the reflection s,, and k is some

non-negative number. Therefore,

(’LUSm)71 w71
Te11 <sn’sm Thtl

(wsm)_1 w1
i §§mc’sm

(wsm) ™t wl
T Ssinc/sm Titl

(wsm) ™t w—1!
T Sspucsm Tj -

: (wsm) ™1 (wsm)™t | (wsm) ™! (wsm)™1 1 w™l w?! w !
Using the fact that r; | N s Tig1 SRR Tt Ti sTig1, 70 ,T; are

in Wi, along with |[Lemma 10.0.9| we get

nstead of performing the factorization mutation on [Equation (10.1)|if we performed another Cambrian
rotation by conjugating ¢’ by s,,, then we would have obtained the factorization

(wsm)71 (wsm)71 (wsm)71 (wsm)71
Tk‘-‘rl ceery T-i+1 r] ml.

which respects the order <g s, (up to commutation of commuting letters) where s, would have
been the maximal simple reflection and using [Lemma 10.0.4] we could say that the reflections

(wsm)71 T(wsm)71 T(wsm)f1 T(wsm)71

Tk—i—l sty s D41 3 T4 are 1 W<

Sm,)'
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(wsm)71 w1
Tha1 <¢ Tht1

(wsm)71 w1
; Sc/ r;

(UJSm)il wo
it1 e Tit1

—1 _
r§wsm) Sc/ ry

Now we will undo the effect of the left Cambrian rotations that we performed earlier, so as to

revert back to our original order, i.e. <.. This can be done by conjugating each of the reflections

in the two-part factorization [Equation (10.2)| by w. The effect of this ‘undoing’ is quite simple on

Sm, Viz. sp = 1} but to see how it affects the other reflections we need to understand that if we

conjugated each of the reflections in [Equation (10.1)[ by w then we would end up with

1'LU 'UJ_l'LU ’LU_I'LU w‘lw

w W
SmTh+1 "' T5 Irif Ty

which is exactly what we started with, but since the reflections in [Equation (10.2) have ‘moved’

earlier in the order <. than in [Equation (10.1)|therefore conjugating them by w would either give

us the two-part factorization

Tk Tk |,.Tk Tk .
rl"'rk—lrk_i'_l”'ri TZ+1T] rkr]_,’_l...rl

or the same factorization with the |’ shifted to the right. In either case we obtain a two-part
factorization.

This entire episode of multiple conjugations didn’t actually change the Coxeter element c.
However, it gave rise to a new factorization for ¢ and the ‘|” accordingly shifted to adjust for this

change. This can be verified from the following steps
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TkTk+1 " TiTig1 """ Ty

=(ww™ ) rg(ww ) rg e (wo ™) - (ww e (ww e (ww ™) - (we e (we ™)

1 1 1

=w [(8mw T 1wsm ) (W W) - (W) (smw T rjwsy ) (w T w)] spw T

=w [(w™rpw) (Wt rpw) - (w ) (w ) - (wrw) | w !
—=w |:Sm7f~;:_;11 e ,1471:1)717,,1'15):11 e r‘;gUil] w*l

1 -1 -1 -1
map [ gl e

:(U)Smwil)rk_t'_l (wsmwfl) . (wsmwfl)rj (wsmwfl)(wsmwfl)

Definition 10.0.16. Given a two-part factorization of a Coxeter element ¢
Fe=ty--Ai|rig1 -1,

we define an associated quiver Qp, with n vertices labelled ¢1,--- ,€;, 71, -+, and arrows

from ¢ to ¢, if £, <. ¥, and £, f, don’t commute,

from 7 to ry if 74 <. 1p and 7y, r, don’t commute
) )

from ry to £y if rq <. £y and ry, £y don’t commute, and

from ¢, to ry if £, <. 1y and 1y, £, don’t commute.
The ‘¢’ in F, or Qf, may be dropped when the coxeter element c is clearly understood.

Theorem 10.0.17. Let (W, S) be a Coxeter system of simply-laced type. Let ¢ be a Coxeter element

in W and let F, be a two-part factorization of c, then

quiv

pe o (QF) = Qutuct(r)-

where Q. is the quiver associated to the two-part factorization F,. and Quiact(Fc) is the quiver

associated to the two-part factorization uf*(F,).
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Proof. Tt is easy to check for a Coxeter group of type As, see To see that this holds
in general for Coxeter groups of simply-laced type, we consider the following facts from
Recall that a simply-laced Coxeter group is a Coxeter group whose Coxeter-Dynkin diagram cor-

responds to a simply-laced Dynkin diagrams i.e. Dynkin diagram of type Ay, Dn, Fg, F7, Es. In

[Lemma 8.2.10] and [Lemma 8.2.11] we have shown that for any quiver, mutation equivalent to an

orientation of a simply-laced Dynkin diagram all its edges have an assigned weight of 1 and all its
3-cycles are cyclic. Also, since quiver mutation at a node only affects the edges incident to the node
and the edges opposite to the node, whenever the node is a part of a 3-cycle; therefore it suffices
to show that for every subword w, in a two-part factorization of a Coxeter element ¢, containing

the reflection t4, the quiver 4" (Q,,) is the same as the quiver Qfact (1, )» Where the subword we

we)?
consists of just the two reflections t; and t; such that in the associated quiver the nodes t; and t;
share an edge; or consists of just the three reflections t,,, t, and t; such that in the associated quiver

the nodes t, t,, and t, form a cyclic 3-cycle. In [Section 10.2| we have given a case by case proof by

considering all such possible subwords arising in two-part factorizations of Coxeter elements. [

10.1 Properties of Factorization Mutation

This section lists a few of the properties of factorization mutation that we will be using in the next

section for our case by case proof.
Lemma 10.1.1. For a factorization mutation of the form

tktl}—>tfk‘fk
quiv

M

we have t, <, tf’“ <. 1.

Proof. Using the same technique as in [Lemma 10.0.15| we perform left Cambrian rotations until

t is modified to a simple reflection that is also the minimal element in the new Coxeter order
(call it sx). Now it is easy to see that in this new order the modified tf’“ appears earlier than the
modified ¢; but appears later than si, therefore if we undo the Cambrian rotations we must have

ty <ctF <.t O
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Figure 10.1. A correspondence between factorization mutation and quiver mutation for S;.
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Lemma 10.1.2. For a factorization mutation of the form

ot tl—>’t;ktk
quiv

k

we have tfk <.t <. tg.

Proof. Using the same technique as in [Lemma 10.0.15| perform Cambrian rotations until ¢ is

modified to a simple reflection that is also the minimal element (call it si) in the new Coxeter
order. Now it is easy to see that in this new order s, appears earlier than the modified ¢; and
consequently the modified tf’“ appears earlier than ¢; and later than s, therefore if we undo the
Cambrian rotations and tfk happens to end up on the right of | then we must have tf’“ <.t <. tg.
However if tf’“ ends up on the left of | then we must have ¢; <. t; <. t}f’“, which gives us the next

lemma. ]
Lemma 10.1.3. For a factorization mutation of the form

[ t T t ‘ g
k

we have 1] <.t <. tfk.
Lemma 10.1.4. For a factorization mutation of the form

tktl|—>tfk‘tk7
quiv

k

if t doesn’t commute with t; then t; doesn’t commute with tf’“.

Proof. 1t suffices to show that (tktf’“)?’ =e.

(tktf’“):)’ = (t;t)? which is equal to identity since t; doesn’t commute with ¢;. O

Lemma 10.1.5. If ty doesn’t commute with t,, and ti doesn’t commute with t, then t, doesn’t

commute with t'% and t,, doesn’t commute with tt¢.

Proof. Tt suffices to show that (¢,(t))3 = e,

(tn(t5))* = tn (65 tn (815t (£15)
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= tn (tmtietm )t (Emtitm ) tn (Emtetm) = tatmtr (Emtn ) tmte (Emtn ) tmtitm
= tntmti (Emtm ) tntetn Emtm ) titm = tatm (EF ) tntitm

= tntmtnti(bntn)titm = tatmtn (titi)tm

= tn(tmtn)tm = (tntn) (Emtm) = €.

In a similar way it can also be shown that t,,(t*)3 = e. O

Lemma 10.1.6. Ift,, doesn’t commute with ti, ti doesn’t commute with t,, and t, doesn’t commute

with t,, then ttk commutes with t, and tf{“ commutes with t,,.

Proof. Since t,, doesn’t commute with ¢; and t; doesn’t commute with ¢,, and t¢,, doesn’t commute
with t,, therefore [t,, titmti] = e, which implies t,tlk = ttkt,.

Thus ! commutes with ¢,. Similarly it can also be shown that % commutes with ¢,,. O

Lemma 10.1.7. Ift,, doesn’t commute with ti, ti doesn’t commute with t, and t, commutes with

tm then tlk commutes with tt.
Proof.

thetle — tpt (tutr ) tmts
= tktntmtk:
- tktmtntk

= gl O
10.2 Case by Case Proof of the Correspondence between Factorization Muta-
tion and Quiver Mutation

In all the following cases we perform a factorization mutation at k on a subword w, of a two-part
factorization of a Coxeter element ¢, and a quiver mutation on the quiver Q,, (associated to the

subword w,) at k.
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10.2.1 Subword w,. consisting of two reflections: ¢, and t; such that the corre-

sponding nodes in Q,, are adjacent

Let w. be any subword of a two-part factorization of a Coxeter element ¢ consisting of two reflections
t and ¢; and let the corresponding nodes in the associated quiver Q,,, be adjacent i.e. the reflections
t; and t; must not commute. Also, let ¢, be on the left part of the two-part factorization, so

that we can perform a factorization mutation at k. We will show that for all such subword w,,

Mzuiv ( ch) = Q'u’fcaCt (we)"

Case I: Both t; and t¢; are are on the left part of the two-part factorization and t; <.,

tktl‘m
Miactt Mzuivl
tg

et ‘tk"w'}’

Where the nodes t; and tf’“ are adjacent by [Lemma 10.1.4)and ¢; <. tfk by [Lemma 10.1.1

Case II: Both t; and t; on the left part of the two-part factorization and t; <. tg

"tl"'tk"""'m
uzactl uzuivl
tl‘tkm

Nothing changes, so adjacency and order gets carried over!

Case III: t; on the left part and ¢; on the right part of the two-part factorization and #; <. tx

tk‘tl"v\”
luzactt uﬁuivl
g
""'tl tkm
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Where the nodes t; and tf’“ are adjacent by [lemma 10.1.4{ and tf’“ <¢ tx by [Lemma 10.1.2

Alternatively, we might also have the following case, where t; <, tf’“ by [Lemma 10.1.3

et “‘tl"‘m
“?CEL uzuivl

Case IV: t; on the left part and ¢; on the right part of the two-part factorization and t; <. t;

tk‘tlm
Miactl Mzuivl
""'tk"‘tl"'m

Nothing changes, so adjacency and order are carried forward!

10.2.2 Subword w, consisting of three reflections: t;,¢,, and ¢, such that the
corresponding nodes in 9,, form a tree with the node ¢, adjacent to the

other two nodes.

Let w, be any subword of a two-part factorization of a Coxeter element ¢ consisting of three

reflections t,,,t, and ¢; and let the corresponding nodes in the associated quiver Q,,. be arranged

Consequently, the reflection ¢, must not commute with the reflections ¢,, and t,,, and the reflection

as

or

t,, must commute with the reflection t,. Without loss of any generality we may assume that

tm <¢tn. In we have marked the cases that conform to these criteria with a v* beside

them. We will now show that for all such subwords w, listed in [Table 10.1 ,u%mv(ch) = Quiact(wc),
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Table 10.1. Counting all possible subwords (consisting of just 3 reflections) of two-part
factorizations of a Coxeter element such that in the associated quiver the corresponding
three nodes form a tree, with two fixed leaves.

Both t,, and t,, on the left

tm <cte <. tn tmtktnl @@@ v
th <etm Sctn | ooty tmertyee]e
by <etn <etp | oo otmeetp ety | - @@@
Both t,, and t,, on the right

by <etp <ctp |t | bt tn- v
te Zetm <ctu | -ootpoeo| ot oty
tm <ctn <. tr tk|tmtn
t,, on the right and ¢,, on the left

tor Setn Seotn | <ootptnee |t
tr <ctm <. tn tktn|tm v
tin <etn Soti | ootne byt @@@ v
t,, on the left and ¢, on the right

b <cte <ctn | <+ tme-ti-r|tn
b <ctm <ctn | oo tp -ty | -ty @@@ v
tm <ctn <. tr tmtk|tn @@@ v

i.e. the quiver associated to the subword uff“ (we) is a cyclic 3-cycle that is obtained by mutating

Qu. at k.
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Case I: M%Ct on the subword ---#,,---tg---t,---|--- replacest, by tf{v where t,, <. ti <. t,. Thus
there are three possible orderings, viz. t, <. tx <.t t,, <.t <.t and tik <. t,, <. .

If t, <ctp <ctl then we have

--tm---tk---tn---‘--~m

uzact Mzuivl
..tm...t;k...’...tk...m ‘

Here the node t! is adjacent to the nodes t,, and ¢} by [Lemma 10.1.5[ and [Lemma 10.1.4,

Since [Lemma 10.1.1| prevents the order t!* <. t, thus this is the only possible outcome in

this case.

Case IL: pf*t on -ty - ‘ ooty ety -+ replaces t,, by tlk. where t,, <.ty <. t,. Thus there
are three possible orderings, viz. tp <. t, <. tffl, tr <c tfj; <. t, and tﬁg <ctp <. tn. If

tr <c tﬁg <. t, then we have

--tk---(---tm---tn---m

fact ui
ILLkaC IJ/Z Vl

Here the node t! is adjacent to the nodes t, and t; by [Lemma 10.1.5] and lemma 10.1.4.

However for the ordering t;, <. t, <. tfq’; we have

101



ot tmtnm
u(]zuivl

-
e

and for the ordering t% <.ty <.t, we have

ot tmtnm
Mzuivl

e

However, it can be shown that the only possible ordering in this case is t <. tft <.

t,. In a similar way as in the proof of [Lemma 10.0.15| starting with the factorization

st ‘ <oty -ty -+ we perform right Cambrian rotations until ¢, is modified to s,—
the maximal simple reflection in the new order <. (meanwhile ¢ gets modified to ¢’). Let
and t,,, denote the modified t;, and t,, respectively. At this point  is still on the left and ,, is

still on the right part of ‘|’ of the modified two-part factorization of ¢/, this is because both t,,
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and t;, appeared earlier in the order <. than t,, therefore by [Lemma 10.0.12|¢,, <c tr <c¢' Sn.

Now, by [Lemma 10.0.4} #;, and %,, belong to the parabolic subgroup W, and we can drop
the last letter (i.e. s,) from the factorization R P ‘ tm -8, = ¢ and thus obtain a

factorization of the parabolic Coxeter element c’<sn>, which is of the form ---#g - |- L, - - -

Again, we replicate |Lemma 10.0.15|7 and perform left Cambrian rotations, (c’<8n> gets modi-

fied to ¢

<Sn>) until #,, is modified to s,,—the minimal simple reflection in the order Sd{/

n)
Meanwhile 7}, gets modified to t;. In the modified factorization - - -, - - - ‘sm cee= c’<'$n> the
subgroup generated by the reflections t, and s,, is isomorphic to &3. Since s, Sc/( > t, but

t is to the left of s, in the factorization - - - - - - ’sm e = c’<’s ) therefore we must have

Sm SC’(’S > i SC'('S ) sf{;. Thus undoing all the Cambrian rotations we have t; <. t%’fb <c tn.

Case III: ,u%wt on:--tg---ty- |-ty replaces t, by tf{@, where t;, <. t;, <¢tn. Thus there are

three possible orderings, viz. tj, <.ty <¢ tlF, tp <.tk <.t and ik <.t} < t;,. For the

ordering t; <. tf{“ <. t;, we have

--tk---tn---’--~tm--~m

fact i
p“kac Mzulvl

tf{“‘tktmw ‘

where the node t!* is adjacent to the nodes t and t,, due to[Lemma 10.1.4/and [Lemma 10.1.5)|

respectively.

For the ordering t; <. t,, < tf{ﬁ we have
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gty tmm
uﬁuivl

e

and for the ordering tf{c <¢ tr <¢ ty, we have

gty tmm
uﬁuivl

e

t;k I ‘

But the case tf{@ <¢ tr <¢ t, can be invalidated on the grounds that tf{@ <.t by
In fact we can show that the only case that will occur is t <. i <. t,, using a similar
technique as used in Starting with the factorization ---tg---t,--- ‘ oty We
perform right Cambrian rotations until ¢,, is modified to s,—the minimal simple reflection
in the new order <. (this is accomplished by first performing right Cambrian rotations until
t, becomes the maximal simple reflection and then we perform one more right Cambrian

rotation). Meanwhile ¢, and t,, got modified to f; and %,, respectively. Thus we have the
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factorization - --#y - ’sn -+ -ty -+ for the modified Coxeter element c’, where s, <¢ t <¢

tm. This is exactly the case we dealt with in m so we must have £ <u si’f <o tm.

Therefore undoing the Cambrian rotations we must have ¢ <. tf{@ <ctm.

Case IV: uff“ on -ty -tp---|---ty - replaces t,, by tﬁg, where t,, <. t, < tr. Thus there

are three possible orderings, viz. tik <. t, <. tp, t, <.tk <.t and t,, <.t <. tlk. For the

ordering tf,’; <c tn <. tr we have

R O OO

fact uiv
pge . L

The node t* is adjacent to t; and ¢, due to|[Lemma 10.1.4] and [Lemma 10.1.5| respectively.

oty ot

For the ordering ¢, <. tx <. tﬁﬁ we have

..tn...tk...‘...tm...m

fact uiv
I Nz l/

The case t, <. tfq’; <. ti is not possible since if tf,’; <. tg, then by [Lemma 10.1.2, we must

have tf{; <¢ tm, but t,, <. t, which implies tfj; <¢ ty, a contradiction!

Case V: M%‘Ct on ---tp---tym---|---ty--- replaces t,, by tf,’;, where t;, <.t <¢t,. Thus there are
three possible orderings, viz. tfjﬁ <ctp <¢tn, tr <c t%’fb <. t, and tp <. t, <. tfﬁl. For the

ordering t'% <. t) <.t, we have
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cetp ety tnm
Mzuivl

AN

Here the node t!* is adjacent to the nodes t; and ¢, due to[Lemma 10.1.4 and [Lemma 10.1.5|

respectively. But this is not possible since t; <. t% by [Lemma 10.1.1l Now for the ordering

tr <. tlk <.t, we have

~-tk-~-tm--~’~--tn~--m

,U'i;aCt uzuivl

The ordering t <. t, <. tf is not possible because by [Lemma 10.1.1| ¢!t <. t,, and t,,, <. t,,

therefore we must always have tf <. t,.

Case VI: uff“ on -ty ---tg---|---t,--- replaces t, by tf{ﬂ, where t,,, <. t, <. tr. Thus there are
three possible orderings, viz. tff <ctm <¢tp, tm < tﬁf <.t and t,, <.t <, tf{“. For the

ordering t'* <. t,, <. t; we have
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tmtk’tnww»

fact i
:U']:C IJgulvl/

Here, the node t!* is adjacent to the nodes ¢ and t,, due to|[Lemma 10.1.4|and [Lemma 10.1.5|

respectively.

For the case t,, <. tf{“ <. t;, we have

TR T tnm
quivl

AN

Using a similar technique as used in we can show that this case will never occur.
Starting with the factorization -« -t,, -« tg - - ‘ -« +ty--- we perform left Cambrian rotations
until ¢,, is modified to s,,—the minimal simple reflection in the new order <.. Let ¢, and

t), denote the modified ¢, and t; respectively. Since both t, and t; appeared later than

t, in the order <. therefore by |[Lemma 10.0.12] we will have a factorization of the form

St ‘ ---t, = c’. Now, with the help of [Lemma 10.0.3| we can drop the letter s,, from

the factorization s, - - -t - - - ‘ .- -1, and thus obtain a the factorization ---¢j---|---t,--- of

Sm

the parabolic Coxeter element c’< ) with £, SCQ > tr. Now we again perform left Cambrian
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rotations until #,, is modified to the minimal simple reflection, call it s,, in the new order
SC/</ - Meanwhile ¢, gets modified to t;, thus giving us the factorization - - -t - - - ‘sn cee =
c’<’5m>, Notice that 5, and s,, generates a subgroup isomorphic to &3. Now because s, SC'{S .
tr but ity appears to the left of s, in the factorization cotp e ‘sn = Gy therefore

Sn SC/{SM tr Sc?lsm> £, consequently ¢y, <. tik.

And finally for the case t,, <.t <. tl*, we have

tmtk’tnww»

fact i
”kac uzulv l/

Now, let us consider the case where w, is any subword of a two-part factorization of a Coxeter

element ¢ consisting of three reflections t,,,t, and t; such that the corresponding nodes in the

associated quiver Q,,, are arranged as

It is required to show that for all such subwords w,., the quiver Quiact(,wc) is not a cycle. The

orientations of the edges of Quiact (we) AT already taken care of by the first part of the proof where

we dealt with subwords consisting of just two reflections. So, now we illustrate the remaining 6

cases from [Table 10.11

Case I: wc:~-tk-~tm-~tn-~"~ and tg <. tm <ctp

tktmtn(m
qucactl quivt
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Here the nodes t% and t!* are non-adjacent by [Lemma 10.1.7

Case II: wc:---tm‘--tn‘--tkw-‘--' and t,, <. t, <.t

"tm"'tn"'tk"""'m
uiac';l H]zuivt

Case III: wc:---tk'--‘---tm---tn--- and tg <. tm <ctn

tk(tmtnm
Nia“l uzuiv\j
’tktmtnm

Case IV: wc:---tk---‘---tm---tn--- and t, <c tn <e ti

"tk"""'tm"'tn"'m
/'Li;adl/ “Zuivt

Here the nodes t' and t' are non-adjacent by [Lemma 10.1.7]

Case V: wc:---tk---tn---‘--~tm--- and tn, <t <cin

"tk"'tn"""'tm"'m
uzactl #Zuivt

Here the nodes t% and t!* are non-adjacent by [Lemma 10.1.7]
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Case VI: wC:---tm---tk--"'--tn'-- and &, <;tr <:tn

tmtk’tnm
uiactl uﬁui\'l
tm(tktnm

10.2.3 Subword w,. consisting of three reflections: t,,t,, and ¢, such that the

corresponding nodes in Q,, form a cyclic 3-cycle.

Let w, be any subword of a two-part factorization of a Coxeter element ¢ consisting of three
reflections ¢,,,t, and t; and let the corresponding nodes in the associated quiver Q,, be arranged

as
or
Therefore, the reflection ¢, must not commute with the reflections t,, and ¢, and the reflections
t,, and t, must not commute with each other. Without loss of any generality we may assume that
tm <c tp. In we have marked the cases that conform to these criteria with a v beside

them.

Now we shall show that in those 3 cases we identified, ,u(,j,uw(ch) = Quiact(we).

Case I: For we = -t |ty tn--+ and t,, <. tx <c tn, tm is replaced by tl in ,uia"t(wc).
Therefore we consider the three possible orderings, viz. tf,’; <ctp <ctp, tr < tfjg <. t, and

tr <etn <ctik. If the <.t <.t, then we have
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Table 10.2. Counting all possible subwords (consisting of just 3 reflections) of two-part
factorizations of a Coxeter element such that the associated quiver forms a cyclic 3-cycle.

Both t,, and t,, on the left

(1)
tn <ctrh <ctn | - tme- -t tp--|
te <ctm <c¢tn | -ttty | - @
—
tmn <etn <cti | - bty tp---| - @
W —

Both ¢, and t,, on the right

(1)
tn <otk <c¢tn | -t |-t tn-- v
F—m
tm <ctn <cti | ot |- tm-tn-- @
—m

t;, on the right and ¢, on the left

tm Sc 75k Sc tn

~
st
3
5
’s
5

te <ctm <ctm | -+ th-tpee| -ty

5
@’@

tn <ctn <ctp | - tpeetipee|-tm---

S
@.@

t;, on the left and t,, on the right

(tx)
@?@
e <ctm <ctn | -t tm-| - tn v
tm <ctn <cti | bt | - tn &
D D

111



tk‘tmtnw ‘

fact quiv

oy My, l
)t;’;tktnm

The adjacency between the nodes t, and tf: can be explained by [Lemma 10.1.4{and the non-

adjacency between the nodes t,, and ¢!t can be explained by [Lemma 10.1.6] If t; <.t <.t,

then we have

tk‘tmtnm ‘

fact quiv

M M

t%’tktnm

and finally for ¢ <. t, <. tlk we have

tk‘tmtnw ‘

uiact Mzuiv
t%‘tktnm
Case II: For w, = tmtk’tn and t,, <. t, <c tg, t, is replaced by tf{f in ,ufj‘“(wc).

Therefore we consider the three possible orderings, viz. t,, <. t; <. tf{“, tm <e tff <.t and
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the <oty <etg Ity <o tp <. tlF then we have

tmtk’tnw ‘
k

fact quiv

K I

tmt;’c’tkm

where the adjacency between the nodes t; and t!* is due to [Lemma 10.1.4{ and the non-

adjacency between the nodes t,, and tf{ﬂ is due to [Lemma 10.1.6] If ¢,, <. tf{“ <, t; then we

have

fact quiv

M I

tmtk’tnw ‘
k

..tm...)...t;k...tk...m

and finally for the case tﬁf <¢ tm <¢ ti, we have

tmtk‘tnw ‘
k

fact quiv
k

10 7

..tm...’...t;k...tk...m

Case III: For w, = - -tp -ty - ’ coty e and g <c ty <c tn, ty is replaced by tf{“ in ,ufj‘“(wc).

So we have three possible orderings, viz. t, <. tm, <¢ ik, tp <cth <.t and tiF <. tp <. tm.

If t, <t <e tf{ﬂ then we have
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fact uiv
pge Mz

t;:f‘tktm,ws,

Similar to the last two cases, the node t;, is adjacent to the node t!* by [Lemma 10.1.4|and the
node t,, is not adjacent to the node ' by [Lemma 10.1.6 Now, for the case t; <.t <.t

we have,

"tk"'tn"""'tm""\m '

"tk"'tn"""'tm"'w ‘

fact quiv

Hi Hy, l
t%‘tktmm

and finally we have the following for the case tf{f <ctr <ctm

quiv

In

T A N o N ‘
k

e
t%’tktmm

But this is not possible due to [lemma 10.1.1

It is worth mentioning here that quivers associated to two-part factorizations of a Coxeter element

of simply laced type never contain any acyclic 3-cycles. This is because quivers associated to
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the initial two-part factorization (involving the defining simple reflections of the Coxeter element
only on the left part of the two-part factorization) of a Coxeter element of simply-laced type

don’t accommodate any cycles, and by we know that any quiver associated to a

two-part factorization obtained from the initial two-part factorization by factorization mutation

doesn’t contain any acyclic 3-cycles. Therefore in our proof for [Section 10.2] we need not consider

sub-quivers which are associated to acyclic 3-cycles.
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CHAPTER 11

RECOVERING BAROT-GRANT-MARSH PRESENTATION

In (Barot and Marsh, |2015), Barot and Marsh have constructed groups from diagrams associated
to a seed in a cluster algebra of finite type, that are preserved under seed mutation. In (Grant and

Marsh| 2017)), Grant and Marsh generalized it for braid groups.

Theorem 11.0.1 ((Grant and Marsh| [2017))). Let Q be a quiver, mutation equivalent to an orien-
tation of a simply-laced Dynkin diagram (also known as Dynkin quiver) with vertices vy, vy, ..., Up.

Let B(Q) denote the group generated by the generators si, 82, , 8, and the following 3 relations
1. s;8j = s;s; if v; and vj are non-adjacent in Q.
2. s;s;8; = 8;8;8; if v; and v; are adjacent in Q.

3. 8i18iy " 8i,,8i " Si, o = SiySiy " Si, Si18iy " Si,,_, for every chordless cycle vi; — vi, —

s = Vi, > Vi, — Uiy mn Q

then B(Q) is isomorphic to the Artin group of the same type as the underlying simply-laced Dynkin

diagram, whose orientation is mutation-equivalent to Q.

In other words let Q be an orientation of a simply-laced Dynkin diagram. Let Q' be a quiver
obtained by performing a finite number of quiver mutations on Q then B(Q) = B(Q'), and are of
the same simply-laced type as Q.

In[Theorem 5.1.2| we have shown that each reduced T-decomposition of a Coxeter element ¢ of a
simply-laced type Coxeter group W encode a presentation of the Artin group B(W) corresponding
to the Coxeter group W. And since the set of reduced T-decompositions of the Coxeter element c is
transitive under the action of Hurwitz moves , therefore reduced T-decompositions
obtained from these Hurwitz moves also encode presentations of the same Artin braid group.

In we introduced a special class of factorizations of the Coxeter elements called the

two-part factorizations (definition 10.0.13)) and a special sequence of successive Hurwitz moves called

factorization mutations (definition 10.0.14)). Using a simple rule|Definition 10.0.16{to associate these
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two-part factorizations with quivers we have shown that factorization mutations on a two-part
factorization are exactly the quiver mutations on the associated quiver.

Now, since two-part factorizations of a Coxeter element form a subset of the reduced T-
decompositions of the Coxeter element and factorization mutations are just a sequence of successive

Hurwitz moves, furthermore since we can rewrite the relation

Si18ia " " SimSin " Sim_o = SisSiz " 80y, Si1 Sig " Sip g

in [T’heorem 11.0.1f as

—1 —1
[3i1 7 8ip " Sig18im Sy, " Siy

therefore the relations in our presentation (Theorem 5.1.2)) are exactly the relations in the Grant-

Marsh’s presentation, thus it follows:

Theorem 11.0.2. Let s1--- s, be a reduced S-decomposition of a Cozeter element c. Let Facty(c)
denote the set of all two-part factorizations of ¢ and Q denote the quiver associated to the two-part
factorization sy - - - sy |-, then the Artin group presentations arising from the reduced T -decompositions

in Facty(c) using|Theorem 5.1.2 are precisely the presentations arising from the quivers in the mu-

tation class of Q using|Theorem 11.0.1).

Therefore our presentation recovers Grant and Marsh’s presentation as a special case. Starting
with a reduced T-decomposition of a Coxeter element ¢ using Hurwitz moves we can produce all
possible reduced T-decompositions of ¢. However, only a few of these reduced T-decompositions

will qualify as two-part factorizations. It is only at these points that our presentations coincides

with Grant and Marsh’s presentations. demonstrates an example.
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(12)(23)(12) = (23)(12)(23)
~(23)(34)(23) = (34)(23)(34)
02,269 {3601 = (01930
(12)(34) = (34)(12)
Our Grant-Marsh
presentation presentation
[Definition 10.0.16]
(12)(23)(34)" < > (12)—(23)==—(34)
Factorization mutation Quiver mutation
[Definition 10.0.16] (23)
(12)29)[(23) < >
(12)e——(29)
Our Grant-Marsh
presentation presentation
(12)(23)(12) = (23)(12)(23)
(23)(24)(23) = (24)(23)(24)
. 12)(24)(12) = (24)(12)(24)
(12,28, 29 15,63} 50)(29) = (3)(24)(33)(12)
(23)(24)(12)(24) = (24)(12)(24)(23)
(24)(23)(12)(23) = (23)(12)(23)(24)

Figure 11.1. Our presentation vs Grant-Marsh’s presentation.
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