SEMIDISTRIM LATTICES

Never in the history of mathematics has a mathematical theory been the object of such vociferous vituperation as lattice theory.

- Gian-Carlo Rota

Colin Defont Nathan Willians

BIRS DAC 5 NON 2021

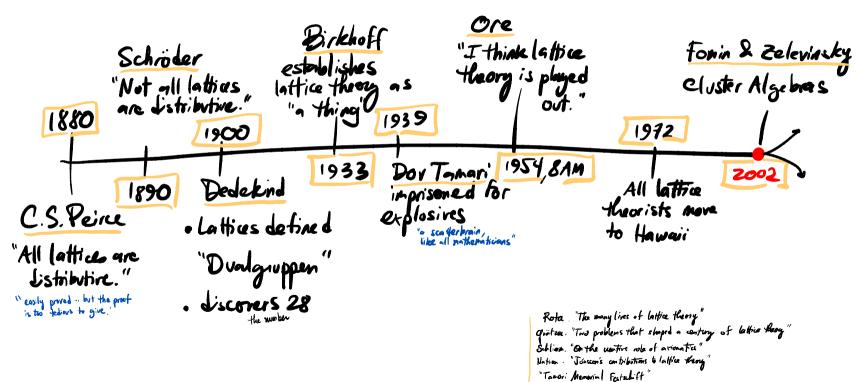
$$a \le b$$
 iff $a \lor b = b$

WHERE ATTICES?

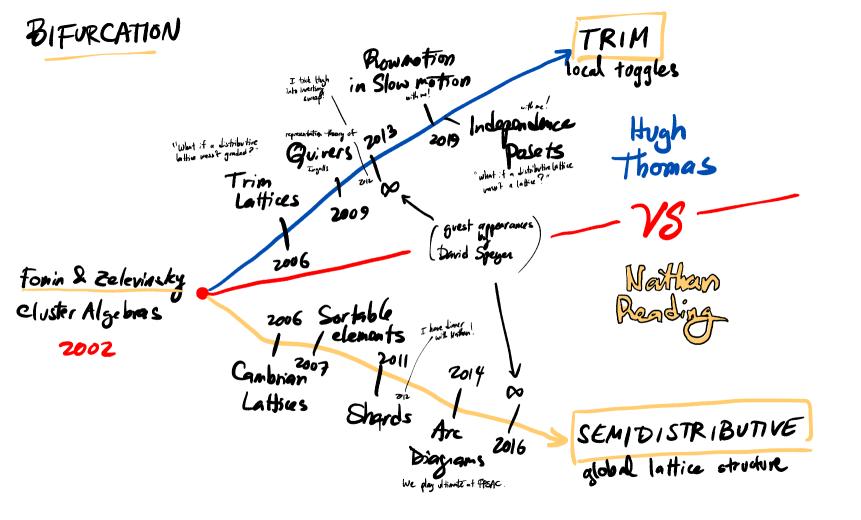
submodules/subgroups
closed subspaces of topological quies
torsion classes · hyperplace arrangena to/unstroids · cluster algebras

- ٠
- •
- .

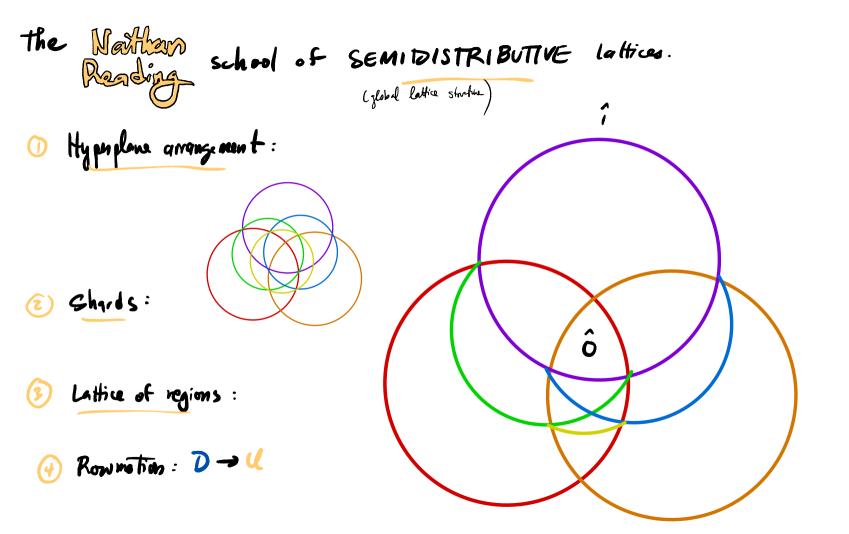
AHISTORY OF LATTICES

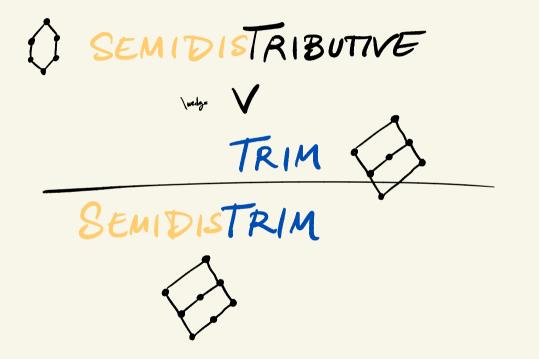


Freese, Jeziek, Unition. "Free Labbias" Bilowi. "Lattice Theory - its birth and life "



The Hugh Thomas school of TRIM lattices (local toggles) () Quiver : •---+• Indecomposable 2 notres 3 Lattice of toxim classes: Rownstin :





LATTICE VAPIETIES (ignore cardinality considerations)

DEF: Mod : a set of lattice ______ the set of lattice V
equations & ______ a lattice voriety.
Ex: Mod
$$\{x = y\} = \frac{2}{2} \cdot \frac{2}{5}$$

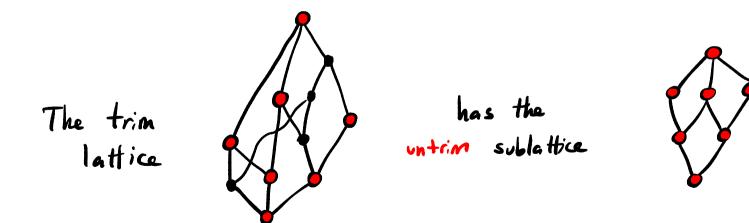
Mod $\{x(y+z)=xy+xz\} = \frac{2}{5}$ Distributive $\frac{2}{5}$
Lat's order lattice vorieties by indusion!

THE LATTICE OF LATTICE VARIETIES Eall lattices 5 . SEMIDISTRIM := join of TRIM & LATTICE SS SEMIDISTRIBUTIVE E SEMIDISTRIBUTIVEZ LATTICES S MODULAR S TRIM & LATTICES $\mathcal{V}(L_{r})$ $\mathcal{V}(L_{rs})$ variety generated by S DISTRIBUTIVE ? 2 LATTICES Nation "Jonsson's contributions to lattice theory" ર્રન્દ્ર

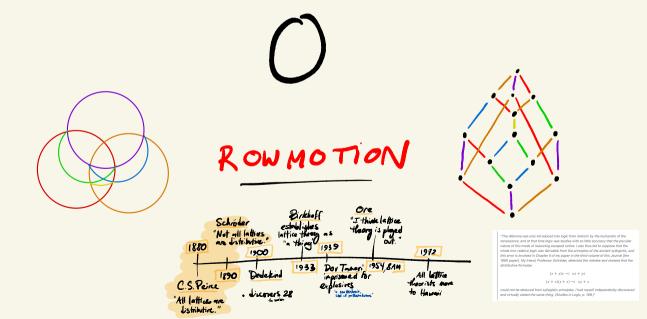
PROBLEM: The set of trim lattices is not a lattice variety (

THM (Birkhoff): Lattie varieties are the subsets of lattices closed under:

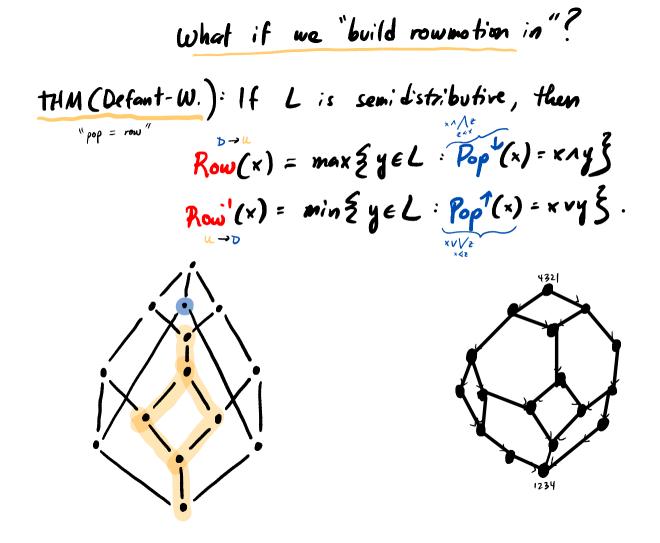
- homomorphic images
 sublattices
- · direct products



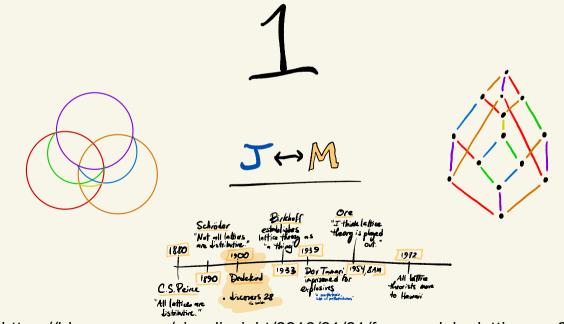
SEMIDISTRIBUTIVE V TRIM



https://hsm.stackexchange.com/questions/13018/in-what-sense-was-it-thought-at-one-point-that-every-lattice-was-distributive

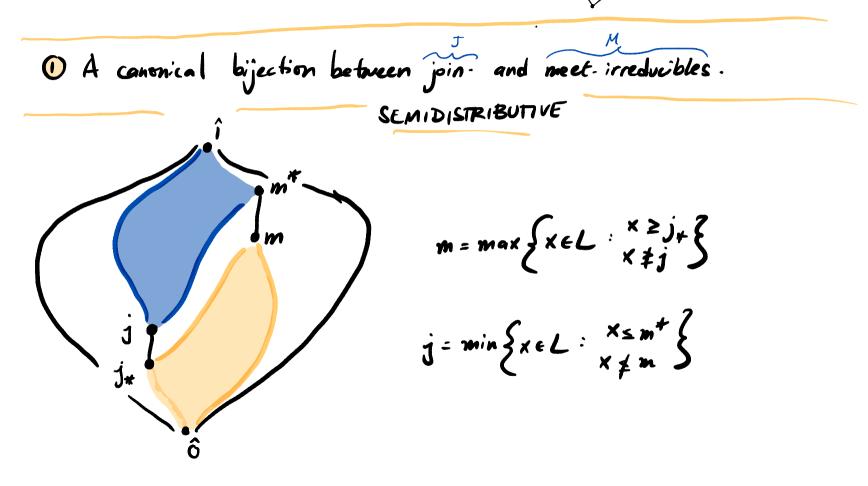


SEMIDISTRIBUTIVE V TRIM

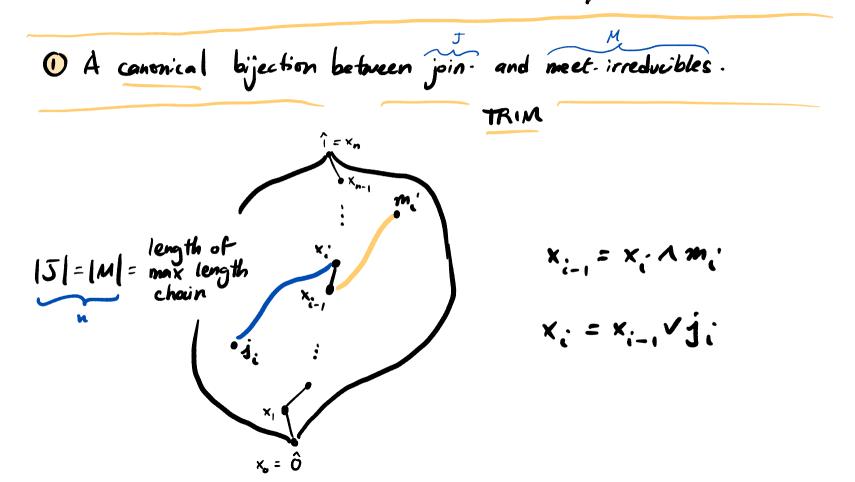


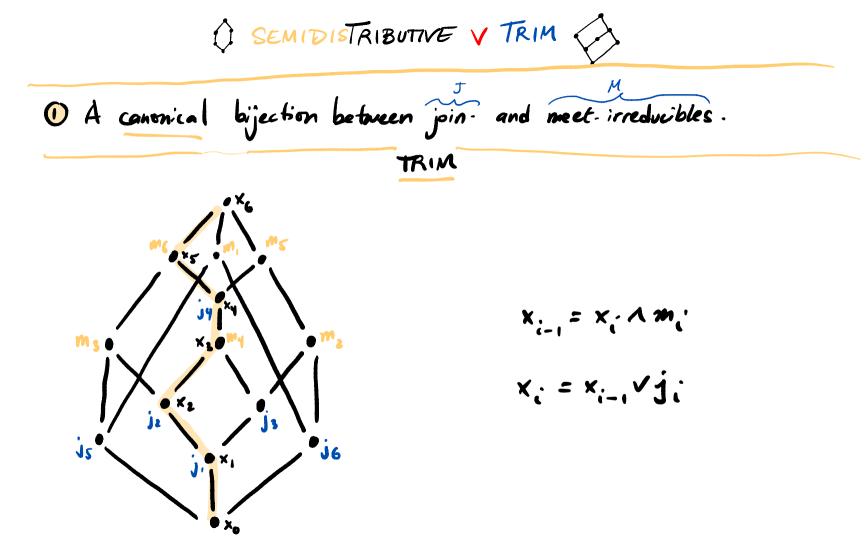
https://blogs.ams.org/visualinsight/2016/01/01/free-modular-lattice-on-3-generators/

SEMIDISTRIBUTIVE V TRIM

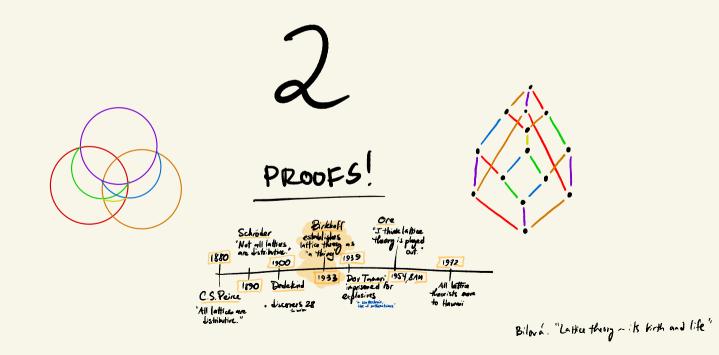


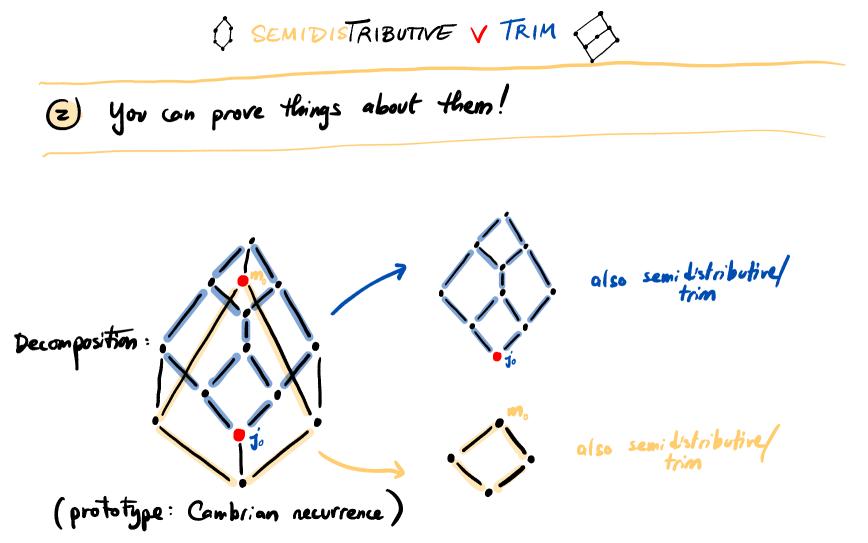
SEMIDISTRIBUTIVE V TRIM

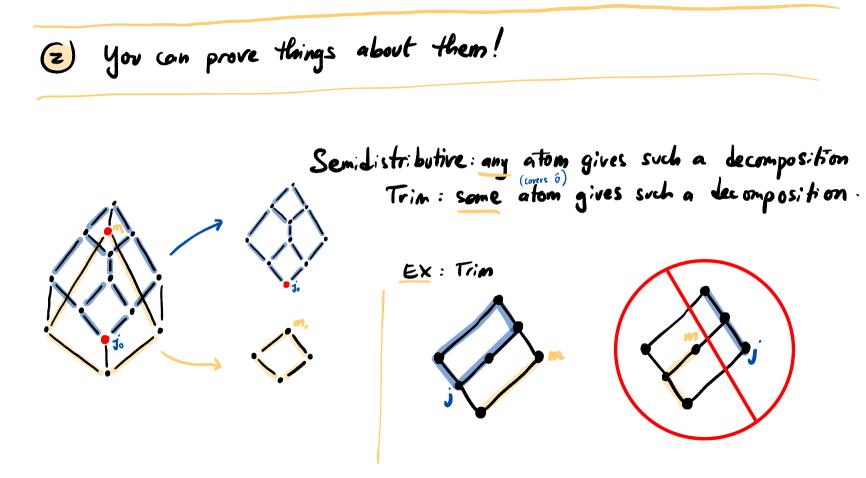




SEMIDISTRIBUTIVE V TRIM







You can prove things about them!

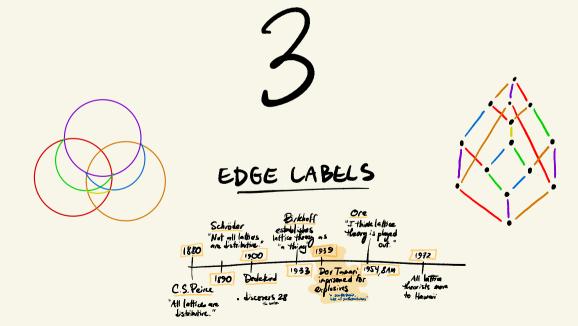
$$\begin{array}{c} \textbf{DEF}: \text{ An element } \textbf{j}_{0} \in L \text{ is } \underline{join-prime} \text{ if} \\ \textbf{There exists } \textbf{m}_{0} \in L \text{ such that} \\ L = [\hat{o}, \textbf{m}_{0}] \sqcup [\underline{j}_{0}, \hat{n}]. \end{array}$$

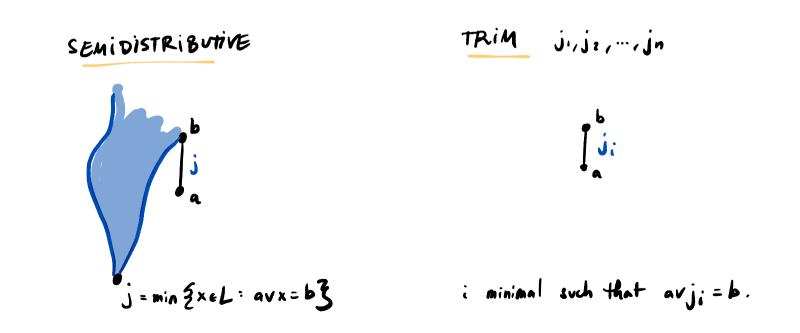
2 you can prove things about them ! DEF (therichera, Hyndown): Lis interval Lismantlable if 14:1 or $L = [\hat{o}, n_{o}] \sqcup [j_{o}, \hat{i}]$ with both [ô, m.]& [jo, î] interment dismonthable. about colors? But

2 you can prove things about them ! But what about colors ? A uniquely paired lattice Lis DEF (Defant-W): compatibly Ismantlable if $|\mathcal{U}| = [\hat{o}, n_0] \cup [j_0, \hat{i}]$ with $[\hat{o}, m_o]$ compatibly dismonthable and if $j \leq m_o$, then j pairs with $m_o \land \kappa(j)$ in $[\hat{o}, m_o]$ 8. $[j_0, \hat{1}]$ compatibly dismonthable and if $m \ge j_0$, then m pairs with $j_0 \vee k(m)$ in $[j_0, \hat{1}]$

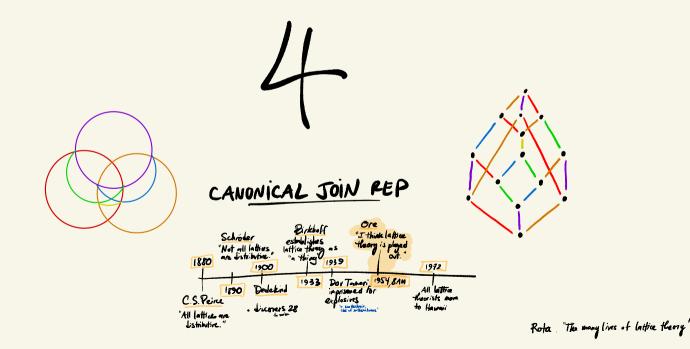
PROP (Defant-W.) Senidistributive & trim lattices are compatibly lismantlable.

SEMIDISTRIBUTIVE V TRIM



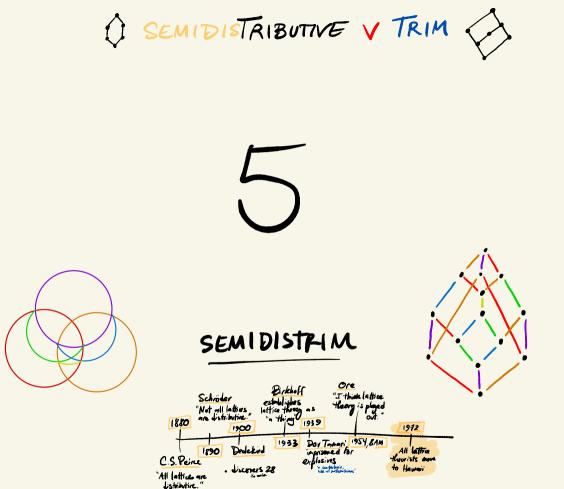


SEMIDISTRIBUTIVE V TRIM



(Canonical join representations (directed) DEF: Let L be uniquely paired. Its Galois graph GL has vertices J and edges $j \rightarrow j'$ iff $j \not\equiv \kappa(j')$ and $j \neq j'$. $L = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

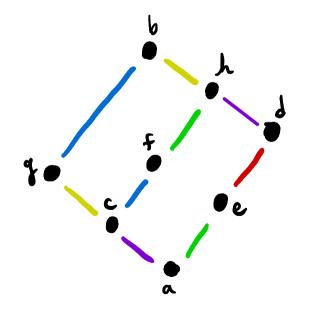
Write Ind(GL) for the set of independent sets in GL. THM: If L is semidistributive or trim, x → D(x) & x → U(x) are bijections from L to Ind(GL).

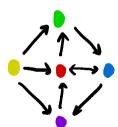


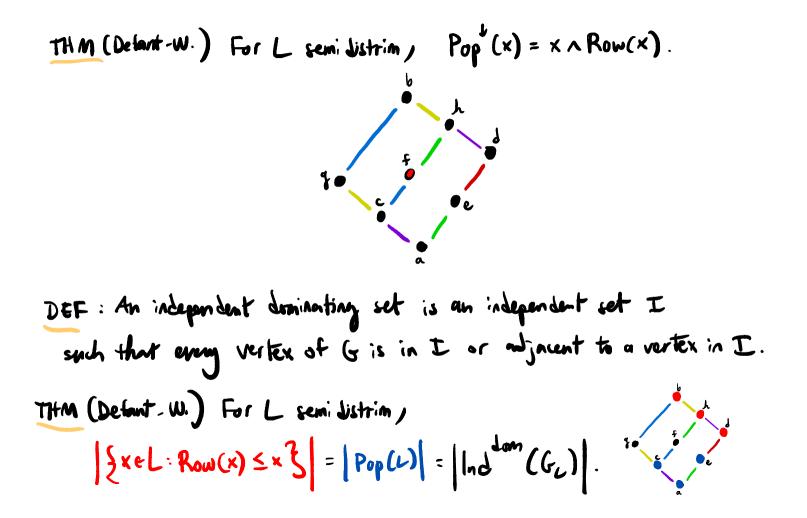
THM (Defant-W.) Products and intervals of semi-distrim lattices are semidistrim. (but not sublattices)

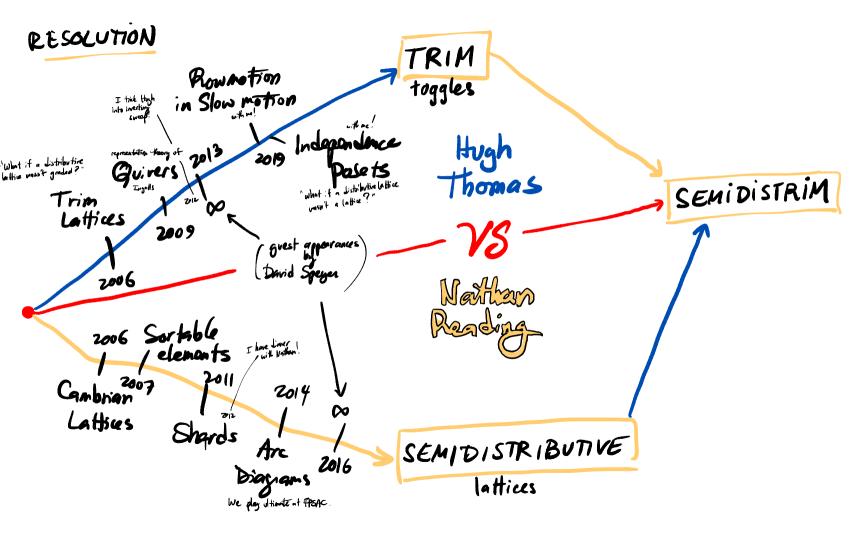
THM (Defant-W.) For L semi-distrim,
$$D: L \rightarrow lnd(G_L)$$
 are bijections.
 $V: L \rightarrow lnd(G_L)$

So we can befine Row(x)=y for D(x)=U(y).

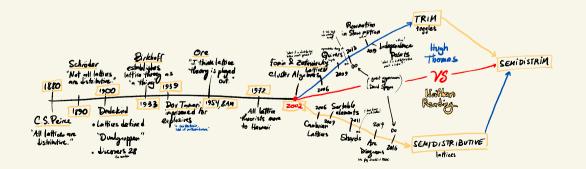








THANK YOU!



. interesting families?