STRANGE EXPECTATIONS

Nathan Williams (UTD)

Joint with Marko Thiel (Marshall Wace LLP) and

Eric Stucky (UMN)

UCLA Combinatorics Seminar

December 3, 2020

Blue Checkmark: Φ root system positive roots 2 = 2 ci qi n y=1 + 2 ci h = Z (:+; h= 1+ Z c; rank Weyl group Coxeter number dual Coxeter number g ratio of length of a long to short root $\tilde{\alpha}$ highest root Q root lattice $\widetilde{\Phi} \widetilde{W}$ half-sum of the positive roots affine root system affine Weyl group Φ* dual root system

dual Coxeter number of dual root system

g`

1

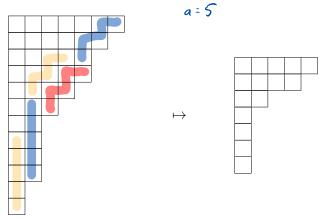
CORES

____ AND

THE COROOT LATTICE

CORES

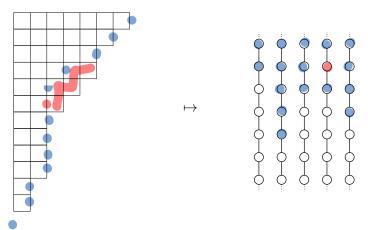
An *a-rim hook* of λ is a connected boundary strip of *a* boxes.



- ▶ For a fixed $a \in \mathbb{N}$, we can try to remove all a-rim hooks.
- Order doesn't matter!?!
- Partitions with no a-rim hooks are called a-cores.

ABACI

The *a-abacus* records the boundary of λ on a runners. a = 5 Removing an a-rim hook pushes an \bullet up a runner.



∴ a-cores are those shapes that are "flush" on the a-abacus.

Generating 2-cores

Label points (i,j) in $\mathbb{N} \times \mathbb{N}$ by content $(i-j) \mod 2$.

0	1	0	1	0	1	0					
1	0	1	0	1	0	1					
0	1	0	1	0	1	0		90	$\overline{}$	5,	ر ا
1	0	1	0	1	0	1	$ $ \emptyset	-	101 -	一> 伴!	→ P → ···
0	1	0	1	0	1	0					
1	0	1	0	1	0	1					
0	1	0	1	0	1	0					

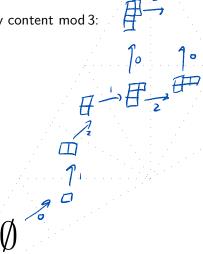
- \triangleright s_0 adds or removes all boxes with content 0
- \triangleright s_1 adds or removes all boxes with content 1.

Generating 3-cores

"Same thing" for a = 3: label by content mod 3:

0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0
0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0

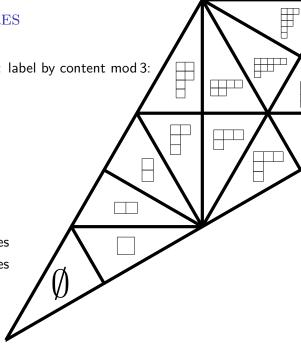
- ► s₀ adds/dels 0 boxes
- $ightharpoonup s_1$ adds/dels 1 boxes
- ▶ s₂ conjugates (?!?)



"Same thing" for a = 3: label by content mod 3:

0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0
0	1	2	0	1	2
2	0		2	0	1
1	2	0	1	2	0

- $ightharpoonup s_0$ adds/dels 0 boxes
- \triangleright s_1 adds/dels 1 boxes
- \triangleright s_2 conjugates (?!?)

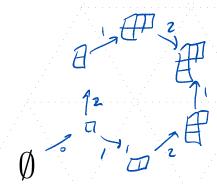


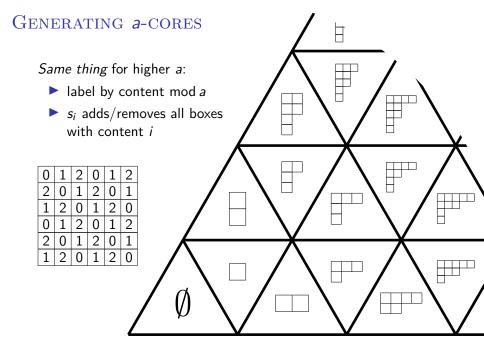
GENERATING a-CORES

Same thing for higher a:

- ▶ label by content mod a
- ► *s_i* adds/removes all boxes with content *i*

0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0
0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0

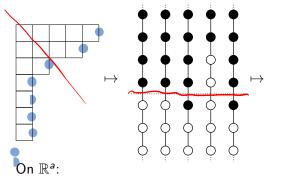


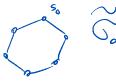


LATTICE POINTS

a-cores are really integer points in \mathbb{R}^a with zero sum (\mathcal{Q}_a) :

- "balance" the abacus and
- record the heights of the runners.





- $ightharpoonup s_i$ swaps the i and (i+1)st coordinates
- $ightharpoonup s_0$ swaps the first and last coordinates (and adds $e_1 e_a$).

GENERALIZING

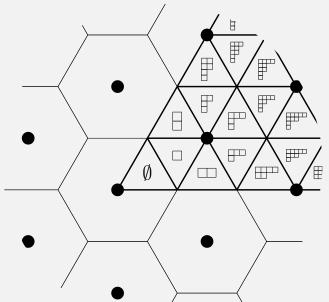
This set Q_a is a (co)root lattice of type A... so

- $ightharpoonup \mathcal{Q}_a \mapsto \mathsf{coroot} \ \mathsf{lattice} \ \mathcal{Q}^{\check{}}$
- $ightharpoonup \mathfrak{S}_a \mapsto \mathsf{Weyl} \; \mathsf{group} \; W$
- $lackbox{}\widetilde{\mathfrak{S}}_{\mathsf{a}}\mapsto \mathsf{affine}\;\mathsf{Weyl}\;\mathsf{group}\;\widetilde{W}=W\ltimes\mathcal{Q}^{\mathsf{v}}=W\ltimes(\widetilde{W}/W).$

Exercise: find combinatorial models for the action of classical \widetilde{W} on \mathcal{Q}^* . (Hint: embed \widetilde{W} into $\widetilde{\mathfrak{S}}_a$ and \mathcal{Q}^* into \mathcal{Q}_a).

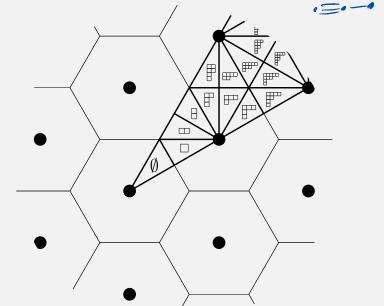
NICE CASE: TYPE A

▶ a-cores model $\widetilde{W} = \widetilde{\mathfrak{S}}_a$ acting on $\mathcal{Q}_a = \{q \in \mathbb{Z}^a : \sum_i q_i = 0\}.$



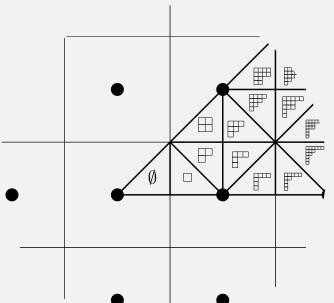
NICE CASE: TYPE G_2

▶ 3-cores also model $\widetilde{W} = \widetilde{G}_2$ acting on $\mathcal{Q}^* = \mathcal{Q}_3$.



NICE CASE: TYPE C

▶ Self-conjugate 2*a*-cores model $\widetilde{W} = \widetilde{C}_a$ acting on $\mathcal{Q}^{\mathsf{v}} = \mathbb{Z}^a$.



1. (Co)root lattices Q generalize *a*-cores.

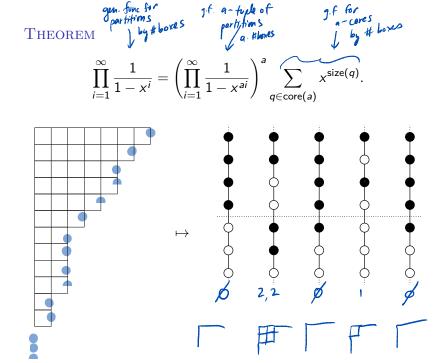
ก

4

Macdonald's identities

AND

THE SIZE STATISTIC



Macdonald's affine denominator formula

THEOREM (I. G. MACDONALD 1971, KAC AND MOODY)

$$\prod_{\alpha \in \widetilde{\Phi}^+} (1 - \mathrm{e}^{-\alpha})^{\mathit{mult}(\alpha)} = \sum_{w \in \widetilde{W}} (-1)^{\ell(w)} \mathrm{e}^{w(\rho) - \rho}.$$

- generalizes Weyl's denominator formula for simple Lie algebras
- ightharpoonup explicit: imaginary roots indexed by $\mathbb Z$ with multiplicity n

FAMOUS SPECIALIZATIONS

Specializations of

$$\prod_{\alpha \in \widetilde{\Phi}^+} (1 - e^{-\alpha})^{m_{\alpha}} = \sum_{w \in \widetilde{W}} (-1)^{\ell(w)} e^{w(\rho) - \rho}$$

for various root systems give many famous partition identities:

- Euler's pentagonal number theorem $(q)_{\infty} = \sum_{i=-\infty}^{\infty} (-1)^{i} q^{i(3i-1)/2}$
- $(q)_{\infty}^3 = \sum_{i=0}^{\infty} (-1)^i (2i+1) q^{i(i+1)/2}$
- Jacobi's triple product identity
- Dyson's identity for Ramanjuan's τ -function $\tau(n) = \sum \frac{(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)}{1!2!3!4!}$
- $(q)_{\infty}^{\dim \mathfrak{g}}$ for any simple Lie algebra \mathfrak{g} (adjoint or *short adjoint*)
- ▶ ...many more

Dyson's "Missed Opportunities"

Pursing these identities further by my pedestrian methods, I found that there exists a formula of the same degree of elegance as [Dyson's formula for Ramanujan's τ function] for the dth power η whenever d belong to the following sequence of integers:

$$d = 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, \dots$$

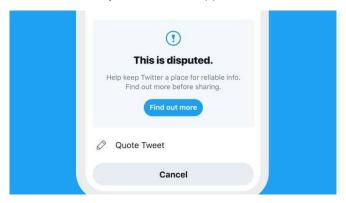
If the numbers had appeared in the context of a problem in physics, I would certainly have recognized them as the dimensions of the finite-dimensional simple Lie algebras. Except for 26. Why 26 is there I still do not know.

— F. Dyson "Missed Opportunities"

Dyson's "Missed Opportunities"

This was another missed opportunity, but not a tragic one, since MacDonald cleaned up the whole subject very happily without any help from me. The only thing he did not clean up is the case d = 26, which remains a tantalizing mystery.

— F. Dyson "Missed Opportunities"



Dyson's "Missed Opportunities"

A more careful study of Macdonald's article reveals that the identity for the 26th power of $\eta(x)$ is not really such a mystery. It is related to the exceptional group F_4 of dimension 52, where the space of dual roots F_4^* and the space of roots F_4 are not the same. . . A similar situation prevails in the case of the algebra G_2 of dimension 14. . . The identities for $\eta^{26}(x)$ and $\eta^{7}(x)$ are considerably more complicated.

— M. Monastyrskii "Appendix to F. J. Dyson's paper 'Missed Opportunities"

SPECIALIZATIONS FOR SIMPLY-LACED TYPE

THEOREM (MACDONALD) In simply-laced type,

$$\prod_{i=1}^{\infty} c(x^i) = \left(\prod_{i=1}^{\infty} \frac{1}{1 - x^{hi}}\right)^n \sum_{q \in Q} x^{\left\langle \frac{h}{2}q - \rho, q \right\rangle}, \text{ where}$$
Coxeter number

h is the Coxeter number,

c(x) is the characteristic polynomial of a Coxeter element.

Ga, h=a, n=a-1,
$$c(x) = \frac{1-x^{\alpha}}{1-x}$$

$$\frac{\sqrt{2}}{1-x} = \frac{\sqrt{2}}{1-x} = \frac{\sqrt{2}}{1-x}$$

$$\frac{\sqrt{2}}{1-x} = \sqrt{2}$$

$$\frac{\sqrt{2}}{1-x} = \sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt{$$

NON-SIMPLY-LACED TYPE

(8.16) **Theorem.** Let R be a reduced irreducible finite root system such that $\|\alpha\| = 1$ for all $\alpha \in \mathbb{R}$. Then

$$\sum_{\lambda \in L(R)} X^{h^{-1} \|h\lambda + \rho\|^2} = \eta (X^h)^l \cdot X^{l/24} \prod_{n=1}^{\infty} c(X^n)$$
$$= \eta (X^h)^l \prod_{i=1}^{l} \eta (\omega_i X)$$

where c(X) is the characteristic polynomial and $\omega_1, ..., \omega_l$ the eigenvalues of a Coxeter element of W(R).

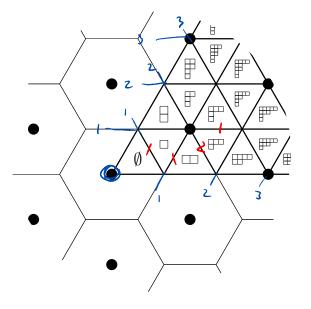
When R contains roots of different lengths, the formula corresponding to (8.16) is more complicated, and we shall not reproduce it here.

Non-simply-laced type

THEOREM (MACDONALD)

$$\sum_{\boldsymbol{q}\in\mathcal{Q}} \boldsymbol{x}^{\left\langle \frac{h}{2}\boldsymbol{q}-\boldsymbol{\rho},\boldsymbol{q}\right\rangle} = \prod_{i=1}^{\infty} \left[(1-\boldsymbol{x}^i)^{n_s} (1-\boldsymbol{x}^i)^{n_\ell} \left(\prod_{\alpha\in\Phi_s} (1-\boldsymbol{x}^i\omega^{\operatorname{ht}(\alpha)})\right) \left(\prod_{\alpha\in\Phi_\ell} (1-\boldsymbol{x}^i\omega^{\operatorname{ht}(\alpha)})\right) \right], \ \ \textit{where}$$

 n_s/n_ℓ count the number of short/long roots, ω is a primitive hth root of unity, r is the ratio of the length of a long to short root, Φ_s/Φ_ℓ are the sets of short/long roots, $ht(\alpha)$ is the height of the root α .



For several reasons, Marko and I missed the correct definition for the statistic size in the non-simply-laced types.

1. (Co)root lattices
$$Q$$
 generalize a-cores.

2. The quadratic form

$$\mathsf{size}(q) = \left\langle rac{h}{2} q -
ho\check{}, q
ight
angle$$

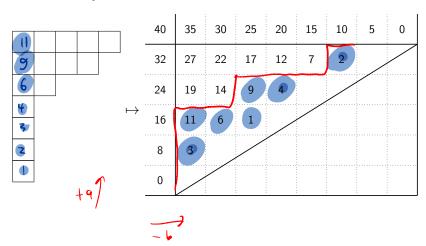
generalizes the statistic "number of boxes" on cores.

SIMULTANEOUS CORES AND

THE SOMMERS REGION

THEOREM (ANDERSON 2002)

For a, b coprime, there are $\frac{1}{a+b}\binom{a+b}{b}$ partitions that are simultaneously a-cores and b-cores.



SOMMERS REGIONS

By division, write $b = t_b a + r_b$ with 0 < r < a. The condition for $q = (q_1, \ldots, q_a) \in \mathcal{Q}_a$ to also be a *b*-core is

$$q_i - q_{i+r_b} \ge -t_b$$
 and $q_i - q_{i+a-r_b} \le t_b + 1$.

More generally, write $b = t_b h + r_b$ with 0 < r < h.

DEFINITION

For a root system Φ and b coprime to h, the *Sommers region* is

$$\mathcal{S}_b = \left\{ x \in V : \begin{array}{l} \langle x, \alpha \rangle \geq -t_b \text{ for } \alpha \in \Phi_{r_b}, \\ \langle x, \alpha \rangle \leq t_b + 1 \text{ for } \alpha \in \Phi_{h-r_b} \end{array} \right\}.$$

So coroot points in \mathcal{S}_b are "simultaneous cores" in other types. Enumeration?

The fundamental alcove A_0

Write $\widetilde{\alpha}$ for the *highest root* of Φ . We can express $\widetilde{\alpha} = \sum_{i=1}^{n} c_i \alpha_i$.

DEFINITION

The fundamental alcove has vertices $0, \frac{\omega_1}{c_1}, \cdots, \frac{\omega_n}{c_n}$.

THEOREM

For b coprime to h, there is an element $w_b \in W$ such that $w_b(S_b) = bA_0$. In particular, $|Q \cap S_b| = |Q \cap bA_0|$.

COUNTING LATTICE POINTS IN bA₀

Write $c = \text{lcm}(c_1, \ldots, c_n)$ with $\widetilde{\alpha} = \sum_{i=1}^n c_i \alpha_i$.

THEOREM (R. SUTER 1998)

For b coprime to c,

$$|\mathcal{Q} \cap bA_0| = \frac{1}{|W|} \prod_{i=1}^n (b+e_i).$$

PROOF.

The generating function

$$\prod_{i=0}^{n} \frac{1}{1-x^{c_i}} = \sum_{b \in \mathbb{N}} |\Lambda \cap bA_0| x^b$$

counts coweights inside of bA_0 . Expand case-by-case and (by coprimality) divide by the index of connection $f = |\Lambda/Q|$.

Counting lattice points in bA_0

THEOREM (R. SUTER 1998)

For b coprime to c,

$$|\mathcal{Q} \cap bA_0| = \frac{1}{|W|} \prod_{i=1}^n (b+e_i).$$

THEOREM (M. HAIMAN 1994)

For b coprime to c,

$$|\mathcal{Q} \cap bA_0| = \frac{1}{|W|} \prod_{i=1}^n (b+e_i).$$

EHRHART I

Generalizing Pick's theorem for lattice points in lattice polygons...

THEOREM (E. EHRHART 1962) Fix

- ightharpoonup A lattice $L \simeq \mathbb{R}^n$
- ▶ a convex polytope \mathcal{P} with $r\mathcal{P}$ having vertices in L ($r \in \mathbb{N}$).

Then the lattice point enumerator enumerator

$$\mathcal{P}^L(b) = |b\mathcal{P} \cap L|$$

is a quasipolynomial of degree n in b with period dividing r.

THEOREM (M. HAIMAN 1994)

For b coprime to c,
$$\begin{bmatrix}
a + b - 1 \\
b
\end{bmatrix}
\qquad |Q^{*} \cap bA_{0}| = \frac{1}{|W|} \prod_{i=1}^{n} (b + e_{i}).$$
PROOF.

- (A) By Ehrhart theory, $Q \cap pA_0$ is a quasipolynomial of period fa, since aA_0 has integral vertices in the coweight lattice so that faA_0 is integral in the lattice Q.
- (B) By Dirichlet's theorem on primes in arithmetic progressions, there are infinitely many primes p in any residue class b mod fa.
- (C) The lattice points $Q \cap pA_0$ are in bijection with W-orbits on Q/pQ. By the lemma that is not Burnside's, this can be computed as $\frac{1}{|W|} \sum_{w \in W} |\operatorname{Fix}(w|_{\mathcal{Q}/p\mathcal{Q}})|$.

Proof.

- (D) The matrix for the reflection representation V of w in the root basis has integral coefficients and for p a sufficiently large prime has the same rank as over \mathbb{R} and so $|\operatorname{Fix}(w)| = p^{\dim\operatorname{Fix}(w|v)}$.
- (E) By Shephard-Todd,

$$\frac{1}{|W|} \sum_{w \in W} |\operatorname{Fix}(w|_{Q/pQ})| = \frac{1}{|W|} \sum_{w \in W} p^{\operatorname{dimFix}(w|_V)}$$
$$= \frac{1}{|W|} \prod_{i=1}^{n} (p + e_i).$$

- 1. (Co)root lattices Q^* generalize a-cores.
- 2. The quadratic form

$$\mathsf{size}(q) = \left\langle rac{h}{2}q -
ho$$
, $q \right
angle$

generalizes the statistic "number of boxes" on cores.

3. Lattice points $Q^{\mathbf{Y}} \cap \mathcal{S}_b$ generalize simultaneous cores.

4

Armstrong's Conjecture

AND

OUR GENERALIZATION

4

Around 2011, D. Armstrong conjectured the following theorem.

THEOREM (P. JOHNSON 2015) For gcd(a, b) = 1,

$$\underset{\lambda \in \mathsf{core}(a,b)}{\mathbb{E}}(\mathsf{size}(\lambda)) = \frac{(a-1)(b-1)(a+b+1)}{24} = \underset{\lambda \in \mathsf{core}(a,b)}{\mathbb{E}}(\mathsf{size}(\lambda)).$$

P. Johnson gave a beautiful proof of this conjecture using a generalization of Ehrhart theory (the "Paul-ynomial" method).

EHRHART II

THEOREM Fix

- ightharpoonup A lattice $L \simeq \mathbb{R}^n$
- ▶ a convex polytope P with rP having vertices in L, and
- ightharpoonup a polynomial $h: \mathbb{R}^n \to \mathbb{R}$ of degree d.

Then the weighted lattice point enumerator enumerator

$$\mathcal{P}_h^L(b) = \sum_{q \in b\mathcal{P} \cap L} h(x)$$

is a quasipolynomial of degree n+d in b with period dividing r.

THEOREM (EKHAD, ZEILBERGER, JOHNSON)

For gcd(a, b) = 1, the sixth moment of size on core(a, b) is

```
\frac{1}{418457977600}ab(b-1)(a-1)(a+b+1)(a+b)(307561a^{8}b^{4}+1230244a^{7}b^{5}+1845366a^{6}b^{6}+1230244a^{5}b^{7}+14454a^{6}b^{6}+1244a^{6}b^{7}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}b^{6}+1446a^{6}
    +307561a^4b^8-2056306a^8b^3-8225224a^7b^4-14394142a^6b^5-14394142a^5b^6-8225224a^4b^7-2056306a^3b^8
+5372061a^8b^2+21488244a^7b^3+42976488a^6b^4+53720610a^5b^5+42976488a^4b^6+21488244a^3b^7+5372061a^2b^8
-6453396a^{8}b - 25813584a^{7}b^{2} - 60704054a^{6}b^{3} - 91764618a^{5}b^{4} - 91764618a^{4}b^{5} - 60704054a^{3}b^{6} - 25813584a^{2}b^{7}
         -6453396ab^{8} + 2985120a^{8} + 11940480a^{7}b + 39743142a^{6}b^{2} + 77437746a^{5}b^{3} + 96285048a^{4}b^{4} + 77437746a^{3}b^{5}
    +39743142a^{2}b^{6}+11940480ab^{7}+2985120b^{8}-11104272a^{6}b-33312816a^{5}b^{2}-55521360a^{4}b^{3}-55521360a^{3}b^{4}
        -33312816a^2b^5 - 11104272ab^6 + 2985120a^6 + 8955360a^5b + 23840061a^4b^2 + 32754522a^3b^3 + 23840061a^2b^4
+8955360ab^{5} + 2985120b^{6} - 9109476a^{4}b - 18218952a^{3}b^{2} - 18218952a^{2}b^{3} - 9109476ab^{4} + 2985120a^{4} + 5970240a^{3}b
  +8955360a^{2}b^{2}+5970240ab^{3}+2985120b^{4}+8664840a^{2}b+8664840ab^{2}-62687520a^{2}-62687520ab-62687520b^{2}
                                                                                                                                                                                                                                                                                            +626875200).
```

Armstronger

THEOREM (E. STUCKY, M. THIEL, W.)

For X_n an irreducible rank n Cartan type with root system Φ , and b coprime to h

$$\underset{\lambda \in \operatorname{core}(X_n,b)}{\mathbb{E}}(\operatorname{size}(\lambda)) = \frac{\operatorname{rg}^*}{h} \frac{n(b-1)(h+b+1)}{24}, \text{ where }$$

h is the Coxeter number of X, g is the dual Coxeter number for Φ , r is the ratio of the length of a long to short root.

The factor $\frac{rg}{h}$ is 1 in simply-laced type: g' = h and r = 1.

Special cases

$$\mathfrak{S}_{a}$$
: a-cores, $n = a - 1$, $h = g^{*} = a$, $r = 1$.

 $n(b-1)(h+b+1) = \frac{(a-1)(b-1)(a+b+1)}{24}$

For a even,
$$C_{a/2}$$
: self-conjugate a-cores, $n = a/2$, $h = a$, $g^* = a - 1$, $r = 2$.

$$\frac{rg^*}{h} \frac{n(b-1)(h+b+1)}{24} = \frac{2(a-1)}{4} \frac{1}{24} \frac{(b-1)(a+b+1)}{24}$$

Proof Strategy

- 1. Work with coweights Λ^* rather than coroots \mathcal{Q}^* : quadratic forms invariant under $W \subset O(V)$ all Λ^*/\mathcal{Q}^* -orbits are free since b coprime to h divide at the end by $f = |\Lambda^*/\mathcal{Q}^*|$
- 2. Reduce problem from \mathcal{S}_b to bA_0 :
 multiplication by a particular element of \widetilde{W} translate size statistic ("remove" dependence on b!)
- 3. Conclude quasipolynomiality by Ehrhart theory II.
- 4. Find zeros!

use Ehrhart reciprocity: "small" dilations of the fundamental alcove contain no interior lattice points.

- 1. (Co)root lattices Q^* generalize a-cores.
- 2. The quadratic form

$$\mathsf{size}(q) = \left\langle rac{h}{2}q -
ho \check{}, q
ight
angle$$

generalizes the statistic "number of boxes" on cores.

- 3. Lattice points $Q^* \cap S_b$ generalize simultaneous cores.
- 4.

$$\mathbb{E}_{\lambda \in \mathsf{core}(X_n, b)}(\mathsf{size}(\lambda)) = \frac{rg^{\checkmark}}{h} \frac{n(b-1)(h+b+1)}{24}$$

generalizes Armstrong's conjecture for expected size.

ONE MORE THING: "STRANGE"

$$\mathop{\mathbb{E}}_{\lambda \in \mathsf{core}(X_n, b)}(\mathsf{size}(\lambda)) = \frac{rg^{\checkmark}}{h} \frac{n(b-1)(h+b+1)}{24}$$

With translations $\mathcal{S}_b \leftrightarrow b A_0$, the value of size at 0 is given by

$$-\frac{1}{2h}\langle \rho \check{}, \rho \check{}\rangle = -\frac{rg \check{}}{h} \cdot \frac{n(h+1)}{24},$$

equivalent to the *strange formula* of Freudenthal and de Vries.

THANK YOU!

FUTURE WORK

- ▶ finite type.
- twisted affine type.
- **.**...