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CORES
AND
THE COROOT LATTICE



CORES

An a-rim hook of X is a connected boundary strip of a boxes.

az$

» For a fixed a € N, we can try to remove all a-rim hooks.
» Order doesn’'t matter!?!

» Partitions with no a-rim hooks are called a-cores.



ABACI

The a-abacus records the boundary of A on a runners. 4= S
Removing an a-rim hook pushes an e up a runner.

|

.. a-cores are those shapes that are “flush” on the a-abacus.



GENERATING 2-CORES

Label points (/,j) in N x N by content (i — j) mod 2.

0 elo[1]0[1]0]-

1[0[1/0[1(0]1 . .
o/1/0[1[0[1]0 % / .
1[0[1]0/1]0]1 @_,@__,ED_,)‘EED_),.
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P> sp adds or removes all boxes with content 0

» s; adds or removes all boxes with content 1.



(GENERATING 3-CORES

2
“Same thing"” for a = 3: label by content mod 3: @5’7
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T
> sp adds/dels 0 boxes o

> 51 adds/dels 1 boxes j
» s, conjugates (?17) @



GENERATING 3-CORES

“Same thing"” for a = 3: label by content mod 3:

0/1/2|0]1)2
2/0/1/2]0|1
1/2/0(1/2]0
0/1/2/0]1)2
2/0/1/2]0|1
1/2]0/1/2]0

> sp adds/dels 0 boxes
> 51 adds/dels 1 boxes
» s, conjugates (?17)




(GENERATING a-CORES

Same thing for higher a:
P label by content mod a

» s; adds/removes all boxes
with content i
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(GENERATING a-CORES

Same thing for higher a:

> label by content mod a

» s; adds/removes all boxes
with content i

0j1/2|0]1)2
2/0/1/2]0|1
1/2/0(1/2]0
0/1/2)0]1)2
2/0/1/2]0|1
1/2]0[1/2]0




LATTICE POINTS

a-cores are really integer points in R? with zero sum (Q,):
» “balance” the abacus and % N

» record the heights of the runners. /”/‘?/ 6:

On R?:
» s; swaps the i and (i + 1)st coordinates

> sp swaps the first and last coordinates (and adds e; — e,).



GENERALIZING

This set Q, is a (co)root lattice of type A...so

> Q.+ coroot lattice Q"
> S, — Weyl group W
> S, > affine Weyl group W = W x Q" = W x (W/W).

Exercise: find comblnatorlal models for the action of classical W
on Q". (Hint: embed W into &, and Q" into Q,).



NICE CASE: TYPE A
> a-cores model W = &, acting on Q, = {g€Z?:%;q =0}




NICE CASE: TYPE G»
> 3-cores also model W = 52 acting on @~ = Q3.
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NICE CASE: TYPE C
» Self-conjugate 2a-cores model W =G, acting on Q” = Z°.




1. (Co)root lattices Q" generalize a-cores.



2

MACDONALD’S IDENTITIES
AND
THE SIZE STATISTIC
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MACDONALD’S AFFINE DENOMINATOR FORMULA

THEOREM (I. G. MACDONALD 1971, KAC AND MOODY)

H (1_e a mult(a Z( 1)£(w)e w(p)— P

aeaJr WEW

> generalizes Weyl's denominator formula for simple Lie algebras

> explicit: imaginary roots indexed by Z with multiplicity n



FAMOUS SPECIALIZATIONS

Specializations of

H (1— e ®)me = Z (_1)E(W)evv(p)—p

acdt wew

for various root systems give many famous partition identities:

» Euler's pentagonal number theorem
(@)oc = S (1) D72

> (9)3, = X20(—1) (2 + 1)q/(i+1)/2

P Jacobi’s triple product identity

» Dyson's identity for Ramanjuan’s 7-function

T(n) =5 (afb)(afc)(afd)(afe)(bicz)!(::id)(bfe)(cfd)(cfe)(dfe)

» (q)4m9 for any simple Lie algebra g
(adjoint or short adjoint)

» ...many more



DysoN’s “MISSED OPPORTUNITIES”

Pursing these identities further by my pedestrian methods,
I found that there exists a formula of the same degree of
elegance as [Dyson’s formula for Ramanujan’s T function]
for the dth power 1) whenever d belong to the following
sequence of integers:

d = 3,8,10, 14,15, 21,24, 26,28, 35,36, . ..

If the numbers had appeared in the context of a problem
in physics, | would certainly have recognized them as the
dimensions of the finite-dimenstional simple Lie algebras.
Except for 26. Why 26 is there I still do not know.

— F. Dyson “Missed Opportunities”



DYSON’Ss “MISSED OPPORTUNITIES”

This was another missed opportunity, but not a tragic one,

since MacDonald cleaned up the whole subject very happily

without any help from me. The only thing he did not clean

up is the case d = 26, which remains a tantalizing mystery.
— F. Dyson “Missed Opportunities”

Q)

This is disputed.

Help keep Twitter a place for reliable info.
Find out more before sharing.
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DysoN’s “MISSED OPPORTUNITIES”

A more careful study of Macdonald’s article reveals that
the identity for the 26th power of n(x) is not really such

a mystery. It is related to the exceptional group F, of
dimension 52, where the space of dual roots F, and the
space of roots F4 are not the same. .. A similar situation
prevails in the case of the algebra G, of dimension 14. ..
The identities for n*°(x) and n’(x) are considerably more
complicated.

— M. Monastyrskii “Appendix to F. J. Dyson’s paper ‘Missed
Opportunities”’



SPECIALIZATIONS FOR SIMPLY-LACED TYPE

THEOREM (MACDONALD) In simply-laced type,

H c(x’) = (H 1_1Xh:> Z X<gqu,q>, where
' =t 9€Q ¥ WH(+)

h is the Coxeter nhumber, ¢ .

c(x) is the characteristic polynomial of a Coxeter element.

(91,..,«7

[

@;JL%,M‘I" ’ c[x):ll'./"—

-¥

P37
l—~< {T/l’x Z ‘
(s |

1€



NON-SIMPLY-LACED TYPE

(8.16) Theorem. Let R be a reduced irreducible finite root system such
that |l =1 for all ae R. Then

Z Xb"“h/1+p||2=’7(Xh)l_Xl/24ﬁc(Xn)

AeL(R) n=1

[
=n(X" [ n(w; X)

i=1
where c(X) is the characteristic polynomial and w,, ..., », the eigenvalues

of a Coxeter element of W(R).

When R contains roots of different lengths, the formula correspond-
ing to (8.16) is more complicated, and we shall not reproduce it here.



NON-SIMPLY-LACED TYPE

THEOREM (MACDONALD)

j : h o
X<§quyq> — H {(1 7)(")"5(1 7X’i)”1 < H (1 7x"w"“("))> ( H (1 7Xriwm(:y))>:|’ Where
i=1 acds acd,
qeQ

ns/ng count the number of short/long roots,

w is a primitive hth root of unity,

r is the ratio of the length of a long to short root,
&, /d, are the sets of short/long roots,

ht(«) is the height of the root «.



For several reasons, Marko and | missed the correct definition for
the statistic size in the non-simply-laced types.



1. (Co)root lattices Q™ generalize a-cores.
2. The quadratic form

size(q) = <gq - P q>

generalizes the statistic “number of boxes” on cores.
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SIMULTANEOUS CORES
AND

THE SOMMERS REGION



THEOREM (ANDERSON 2002)

For a, b coprime, there are ﬁ("tb) partitions that are

simultaneously a-cores and b-cores.

40 [ 35 - 30 - 25 20 - 15 - 10

32 | 27 22

17 © 12

24 | 19

16

e|® g




SOMMERS REGIONS

By division, write b = tpa + rp, with 0 < r < a. The condition for
g=1(g1,...,9a) € Q, to also be a b-core is

Qi — Qi+r, > —tp and qj — Gira—r, < tp + 1.

More generally, write b = tph + rp with 0 < r < h.

DEFINITION
For a root system ® and b coprime to h, the Sommers region is

Sb:{XGV: <<X,Oé>2—tbforae¢rb7 }

x,a) <tp+1forae dp

So coroot points in S are “simultaneous cores” in other types.
Enumeration?



THE FUNDAMENTAL ALCOVE A

Write & for the highest root of ®. We can express @ = >.7_; ¢j;

s <

DEFINITION .
The fundamental alcove has vertices 0, %, ‘e ,“C’—n.

THEOREM .
For b coprime to h, there is an element wy, € W such that

wp(Sp) = bAo. In particular, |Q" N Sp| = |Q N bAo|.



COUNTING LATTICE POINTS IN bAy

Write ¢ = lem(cy, ..., ¢p) with & = Y i1, oy
THEOREM (R. SUTER 1998)

For b coprime to c,

|97 N bAy| = (b+ e).
IWIH

PROOF.
The generating function

o1
[I1—< =2 INNbAlx®

i=0 beN

counts coweights inside of bAg. Expand case-by-case and (by

coprimality) divide by the index of connection f = |A/Q].

O



COUNTING LATTICE POINTS IN bAy

THEOREM (R. SUTER 1998)
For b coprime to c,

Q" N bAy| = (b+ei).
| | ,W|H

THEOREM (M. HAIMAN 1994)
For b coprime to c,

QvﬂbAo— (b+e,.
| | ,W‘H



EHRHART 1

Generalizing Pick’s theorem for lattice points in lattice polygons...

THEOREM (E. EHRHART 1962) Fix
> A lattice L ~ R"

» a convex polytope P
with rP having vertices in L (r € N).

Then the lattice point enumerator enumerator
PL(b) = |bP N L]

is a quasipolynomial of degree n in b with period dividing r.



THEOREM (M. HAIMAN 1994)

For b coprime to c,

(B)

q+ lﬂ - |
‘ 10" N bAg| = Hb+e,
T lo ’W‘ ( at Q
0 Uk
PROOF. “tb
(A) By Ehrhart theory, Q N pAp is a quasipolynomial of period fa,

since aAp has integral vertices in the coweight lattice so that
faAp is integral in the lattice Q.
By Dirichlet’s theorem on primes in arithmetic progressions,

there are infinitely many primes p in any residue class
bmod fa.

The lattice points Q N pAg are in bijection with W-orbits on
Q/pQ. By the lemma that is not Burnside's, this can be

computed as 7 Yyew [Fix(w|g/p0)l-



PROOF.

(D) The matrix for the reflection representation V of w in the
root basis has integral coefficients and for p a sufficiently
large prime has the same rank as over R and so
‘FlX(W)‘ — pdimFiX(W‘\/).

(E) By Shephard-Todd,

1 imFix(w
wew weW
1 n
= w1+

[WI;



1. (Co)root lattices Q" generalize a-cores.
2. The quadratic form

size(q) = <gq -0, q>

generalizes the statistic “number of boxes" on cores.
3. Lattice points @° N S, generalize simultaneous cores.
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ARMSTRONG’S CONJECTURE
AND
OUR GENERALIZATION



Around 2011, D. Armstrong conjectured the following theorem.

THEOREM (P. JOHNSON 2015)  For ged(a, b) =1,

_(a-1)(b-1)(a+b+1) _

E ize(A E ize(N)).
)\Ecore(a,b)(SIze( )) 24 )\Gc)\orei\(f,b)(sme( ))

P. Johnson gave a beautiful proof of this conjecture using a
generalization of Ehrhart theory (the “Paul-ynomial” method).



EHRHART II

THEOREM Fix
> A lattice L ~ R"

» a convex polytope P
with r'P having vertices in L, and

» a polynomial h: R" — R of degree d.

Then the weighted lattice point enumerator enumerator

Pr(b)= > h(x)

gebPNL

is a quasipolynomial of degree n+ d in b with period dividing r.



Z1

THEOREM (EKHAD, ZEILBERGER, JOHNSON)
For gcd(a, b) = 1, the sixth moment of size on core(a, b) is

TTgaEsSo77600 2b(b—1)(a—1)(a+b+1)(a+b)(307561a° b*+12302447 b5 +184536620 5% +123024425 b7
+307561a% b8 —205630628 b3 — 822522447 b* —1439414220 b® — 1439414225 b0 —82252242% b7 —205630623 b8
1537206125 b2 +21488244a" b3 +4207648820 b* 537206102 b2 +42976488a% b0 +2148824423 b7 +5372061a2 b8
— 6453309628 b— 2581358447 b2 — 6070405420 b3 —91764618a° b* —917646184% b5 —607040542° b0 — 2581358422 b7
—6453396ab8 4298512025 +11940480a7 b+3974314220 b2 17743774627 b3 +96285048a" b+ + 7743774623 b°
+3974314222b%+11940480ab" 4298512068 — 1110427220 b—333128164° b2 —55521360a% b3 — 5552136043 b*
—33312816a2 b° —11104272ab%+298512020 4895536027 b-+23840061a% b2 -+ 3275452243 b3 +23840061a2 b*
+8955360ab° +298512060 —09109476a% b— 1821895223 b2 — 1821895242 b3 —9109476ab* +2985120a% +597024023 b
489553602 b2 +-5970240ab3 +2085120b% + 866484022 b-+8664840ab> — 6268752022 — 626875202b— 62687520b2

+626875200).



ARMSTRONGER

THEOREM (E. STUCKY, M. THIEL, W.)

For X,, an irreducible rank n Cartan type with root system &,
and b coprime to h
“n(b—1)(h+b+1)

. rg
E SN h
)\Ecore(Xn,b)(SIze(A)) h 24 » where

h is the Coxeter number of X,
g~ is the dual Coxeter number for ®~,
r is the ratio of the length of a long to short root.

The factor % is 1 in simply-laced type: g~ = h and r = 1.



SPECIAL CASES

S, acores, n=a—1, h=g =a, r=1.

n(b—1)(h+b+1) _ (a=1) (L-a) (a +bri

24
2

For a even, Ca/zi self-conjugate a-cores, n = a/2, h = a,
g =a—-1r=2.

rgvn(b—l)(h—kb—l—l): M %(Ldl7(a+é+/)

h 24 3\ Ly




PROOF STRATEGY

1. Work with coweights A” rather than coroots Q™:
quadratic forms invariant under W C O(V)
all A"/ Q -orbits are free since b coprime to h
divide at the end by f = |A\”/Q|

2. Reduce problem from Sy to bAy: o
multiplication by a particular element of W
translate size statistic (“remove” dependence on b!)

3. Conclude quasipolynomiality by Ehrhart theory II.

4. Find zeros!
use Ehrhart reciprocity: “small” dilations
of the fundamental alcove contain no interior lattice points.



1. (Co)root lattices Q" generalize a-cores.
2. The quadratic form

size(q) = <gq -0, q>

generalizes the statistic “number of boxes” on cores.
3. Lattice points @° N S, generalize simultaneous cores.
4,

: rg"n(b—1)(h+b+1)
E A)) =—"
)\Ecore(Xn,b)(Slze( ) h 24

generalizes Armstrong's conjecture for expected size.



ONE MORE THING: “STRANGE”

. rg”n(b—1)(h+b+1)
E = —
Aecore(Xn,b)(SIze(A)) h 24

With translations Sp, <+ bAp, the value of size at 0 is given by

1, . o rg" nth+1)
TR\ T T g

equivalent to the strange formula of Freudenthal and de Vries.



THANK YOU!



FUTURE WORK

> finite type.
> twisted affine type.
> ..



