
19Geocarto International, Vol. 16, No. 1, March 2001
Published by Geocarto International Centre, G.P.O. Box 4122, Hong Kong.

Introduction

There has been great interest in the extraction of land use/
land cover and biophysical information from satellite
remotely sensed data using digital image processing
techniques since the late 1960s (Estes and Jensen, 1998;
Lulla and Dessinov, 2000). Significant strides have been
made in the digital extraction of biophysical information
(especially temperature, biomass, leaf-area-index, net primary
productivity, terrain elevation) from digital remote sensing
data (Jensen, 1996; 2000). However, less improvement has
been seen in the extraction of Anderson Level II, III, and IV
land use and land cover information, which often requires
the digital processing of relatively high spatial resolution
data.

One of the major reasons for this lag in capability is that
most digital image processing classification algorithms are
based on traditional statistical methods that assume normally
distributed data, and no collinearity among variables
(Johnston, 1980). High spatial resolution remote sensor data
are often composed of many heterogeneous patches of terrain

and complex nonlinear patterns. The normality and linearity
assumptions of the statistical methods may be violated. In
addition, most statistical digital image processing systems
only utilize the spectral information presented in the remote
sensing imagery on a pixel by pixel basis. They do not
incorporate contextual information very well. Thus, the land
use/land cover classification results obtained using traditional
statistical image processing techniques are often crude when
compared with those produced by a well-trained image
interpreter (Philipson, 1997).

Human image interpreters do not interpret an image as if
it were composed of individual pixels. They employ the
totality of information associated with an unknown object or
area, including its tone, color, size, shape, shadow, texture,
pattern, height, site, and contextual situation and association
(Estes et al., 1983; Jensen, 2000). For these reasons, most
statistically-based digital image analysis is restricted to
extracting relatively simplistic Level I and some Level II
land cover information. In fact, the scientific community has
become rather accustomed to accepting approximately 70-
80 percent absolute accuracy as about the maximum
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obtainable from satellite digital multispectral data using digital image
processing techniques (Jensen, 1996).

The extraction of Level II, III, and IV land use and land cover
information have been almost exclusively obtained from the visual
interpretation of high spatial resolution, relatively large scale (≥
1:40,000) black and white (panchromatic), color, and/or color-infrared
aerial photography. It requires great skill to visually interpret aerial
photography correctly. It is a relatively slow and laborious process that
is fraught with error because:
• The data were acquired using a central perspective camera system

that introduces several types of error that are difficult to remove,
including: scale changes throughout the image due to relief
displacement, vignetting (light fall-off) away from the principal
point of the photograph, and at times, tonal changes due to
photographic processing and emulsion differences;

• an interpreter brings to the interpretation task all his or her knowledge
(correct and incorrect), biases, anxieties, fatigue; and

• the polygons identified on the aerial photography must usually be
laboriously transferred to a planimetric basemap and then digitized to
place them in a geographic information system (GIS).

These characteristics have caused the public at large to dismiss the
interpretation of traditional aerial photography as being too complex,
i.e., a science or art best left to experts (Philipson, 1997; Jensen and
Cowen, 1999). Only specialized companies and certain federal and
state agencies with trained image analyst routinely extract accurate
land use/land cover information from such data (Baker, 2000). For
example, Figure 1 depicts the land use/land cover polygons for a
portion of the Jacksonville Beach, FL 7.5-minute quadrangle extracted
from digitized National Aerial Photography Program (NAPP)
photography by personnel at the Geonex Corporation using visual
image interpretation techniques and manual digitization. It takes
approximately 11.5 person days for a specialized company like Geonex

to extract land use/land cover information for
each 7.5-minute quadrangle.

The launch of Space Imaging’s IKONOS
satellite in 1999 with its 1 x l m panchromatic
band and four 4 x 4 m multispectral bands initiated
a new era of Earth observation (Li, 1998;
Dehqanzada and Florini, 2000). Other commercial
data providers intend to provide high spatial
resolution data in the near future such as
EarthWatch Quickbird (l x l m pan; 4 x 4 m
multispectral), and OrbImage Orb View-3 (1 x 1
m pan; 4 x 4 m multispectral). Such imagery will
be a significant boon to obtaining accurate Level
II, III, and IV land cover/land use information, if
there are appropriate image analysis techniques
available (Jensen and Cowen, 1999).

Analysis of High Spatial Resolution
Imagery

High spatial resolution (≤ 4 X 4 m) black and
white, color and color-infrared digital imagery for
all practical purposes looks like aerial photography
when viewed on a CRT screen. This provides an
opportunity to extract Level II, III and IV land
use/cover information by “on-screen” (also
referred to as “heads-up”) visual human
interpretation and subsequent digitization of the
polygons of interest. The problem is that photo-
interpretation has almost become a lost art, not
having been taught systematically in colleges and
universities for the past 20 years (Estes and Jensen,
1998). Remote sensing digital image processing
courses simply do not cover the same manual,
visual photo interpretation skills once so
commonly taught in introductory airphoto
interpretation or photogrammetry courses.

Unfortunately, there will likely be a significant
increase in “on-screen” photo interpretation of the
high resolution digital remote sensor data
performed by novices who do not have a clue as to
what they are doing. Baker (2000) points out that
the availability of the new very high resolution
imagery may in fact be a double-edged sword. If
we have the appropriate tools, excellent
information may be extracted from the imagery.
If we don’t have the right tools, serious image
interpretation errors will result. Image
interpretation errors will make their way into the
public forum where it is possible that the public at
large will then lose faith in the accuracy of
information derived from remote sensor data
(Baker, 2000).

In order for the high spatial resolution digital
imagery to be fully utilized for the extraction of
Level II, III, and IV land use/cover information
we need user-friendly digital image interpretation

Figure 1 Digitized National Aerial Photography Program (NAPP) image (1 x 1 m) of
Jacksonville Beach, FL with vectors derived from “on-screen” visual image
interpretation.
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systems that assist image analysts as they literally photo-
interpret the high spatial resolution imagery on the CRT
screen. The improved image interpretation system should
supply image and collateral information that the analyst uses
to make the most accurate interpretation possible. It is also
important that the digital image processing system generate
polygonal boundaries for geographically extensive objects-
of-interest, either automatically or semi-automatically, so
that the time and labor involved in digitization can be greatly
reduced. In addition, the system should automatically place
the interpreted results in a planimetric map projection so that
the information is available for modeling purposes (Jensen
and Cowen, 1999). This paper summarizes the status of the
development of an artificial neural network based image
interpretation system for land use/land cover classification
using high spatial resolution remote sensor data that
accomplishes many of these goals.

Design of an Artificial Neural Network Image
Interpretation System

The image interpretation system must be able to extract
accurate land use/land cover information from both rural
and urban/suburban landscapes to be effective. The following
sections describe some of the important considerations.

Urban/Suburban Considerations
Urban environments are composed of diverse natural

(e.g., vegetation, soil, rock, water) and man-made materials
(e.g., plastic, asphalt, concrete, metal) that man arranges in a
variety of ways including asphalt rooftop shingles, asphalt
pavement, concrete sidewalks and roads, grass lawns and
golf course fairways. It is possible to have a computer
program analyze an image and identify the homogeneous
landscape ‘patches’ of biophysical material in a high spatial
resolution image based on spectral information. The output
from such a computer analysis is general a map depicting the
relatively homogeneous patches of vegetation, asphalt,
concrete, water, metal, etc. that represent biophysical
information and not land use/cover information.

Conversely, when a human being interprets a high
resolution aerial image on a CRT screen, he or she is usually
capable of automatically identifying some of the fundamental
“primitive” land uses attributes such as sidewalks, roads,
buildings, parking lots, water bodies, etc. The analyst then
commonly draws a polygon around what they believe to be
an unknown object-of-interest that contains many of these
primitives (e.g., a shopping center, single-family tract of
residential housing, apartment complex, open pit mine, mall,
a fabrication industry). Unfortunately, the analyst is often
unable to identify exactly what type of land use or land cover
is found within the polygon. To do this, the analyst must
often use not only spectral information, but also contextual
information associated with nearby objects of interest and
other elements of image interpretation previously discussed.

This is precisely where the artificial neural network (ANN)
image interpretation system described in this paper becomes

useful. The system allows the analyst to identify in common
terms the “primitive” land use attributes found within the
polygon he or she has drawn on the screen. The ANN then
analyzes the input attributes with the expert knowledge
stored in the ANN library of attributes, and suggests to the
analyst the most logical label for the polygon. The polygon
is then updated and the neural network evaluates the next
polygon-of-interest. Eventually, the entire urban study area
is mapped with all information stored in a vector-based GIS
database for future spatial modeling purposes.

Rural Considerations
Rural land use/land cover consists of water, agriculture,

forest, wetland, rangeland, grassland, desert, etc. Except for
highly engineered agricultural areas, these rural landscapes
are usually composed of many relatively homogeneous
patches with curvilinear boundaries (i.e., humans tend to
rectilinearize the landscape to make it mechanically efficient).
Unlike the urban environment, it would be an unwise waste
of time and talent for an image analyst to draw a polygon
around each patch of homogeneous wetland, forest, or water.
Rather, for rural areas it is logical to allow the computer to
locate the homogeneous patches using an image classification
and/or segmentation routine, generate the edges of the patch
using an edge-detection algorithm, and covert the edge to a
clean bounding polygon that can be stored in a GIS.

It is possible to train a neural network system on the
spectral and textural information associated with various
rural land cover types, such as forested wetland, non-forest
wetland, water, etc. so that it a) identifies homogenous
polygons, and b) assigns each polygon to a unique land
cover class.

Final Design
A neural network image interpretation system was

designed that addressed many of these urban and rural
considerations. It consists of the following integrated modules
(Figure 2)
1) an Image Classification Module that is used to process

high spatial resolution imagery based on spectral,
contextual, and/or textural information using a back-
propagation neural network algorithm;

2) a Rural Image Segmentation Module that removes the
noise found in the classified regions and groups them
into homogeneous image segments to extract and label
smooth bounding polygons automatically for
geographically extensive rural areas; and

3) an Urban/Suburban Image Digitization and Interpretation
Module that allows analysts to draw bounding polygons
around objects-of-interest in the extremely complex
urban/suburban environment, identify “primitive” land
use attributes within the objects-of-interest, and use a
neural network to assist in the identification of the most
logical land use or land cover type.

A GIS is used to integrate these modules so that land use/
land cover information from both rural and urban/suburban
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areas can be merged into a single spatial database. The GIS
can also be used to smooth and edit polygon boundaries, if
desired.

Methodology

Neural networks simulate the thinking process of human
beings whose brain uses interconnected elements called
“neurons” to process incoming information (Jensen et al.,
1999). A neural network reaches a solution not by using a
step-by-step algorithm or a complex logical program, but in
a non-algorithmic, unstructured fashion based on the
adjustment of the weights connecting the neurons in the
network (Rao and Rao, 1993). Neural networks have been

used to classify various types of remote sensor data and have
in certain instances produced superior results when compared
to that of traditional statistical methods (Benediktsson et al.,
1990; Foody et al., 1995; Atkinson and Tatnall, 1997). This
success can be attributed to two of the important advantages
of neural networks: 1) freedom from normal distribution
requirements, and 2) the ability to adaptively simulate
complex and non-linear patterns given proper topological
structures (Atkinson and Tatnall, 1997; Jensen et al., 1999).
Therefore, a neural network was selected to implement the
Image Classification Module, because high spatial resolution
digital imagery consists of non-normally distributed data
and nonlinear biophysical and land use/land cover
characteristics.

Figure 2 The Neural Network Image Interpretation System for extracting land use/land cover information from remote
sensing data.
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To implement the Urban/suburban Digitization and
Interpretation Module, one might consider using an expert
system instead of a neural network. Neural networks are
believed to be superior in simulating the interpretation process
of an image analyst for a number of reasons. First, the
knowledge in an expert system that must be extracted from
knowledgeable experts of a domain area may be subjective
and incomplete. This is because the experts may have a
biased or even incorrect understanding of reality, and/or
they may not be aware of underlying rules they have used or
have difficulty articulating these rules (Neural Ware, 1996).
Conversely, knowledge in a neural network is acquired
through learning by empirical (real-world) examples.
Although experts are essential in selecting and preparing
example data, generally their personal biases are excluded
from the knowledge acquisition process.

Second, knowledge in an expert system is represented by
logical rules made up of binary predicates. Numerical
attributes such as the number of driveways and the size of a
building have to be converted to binary true/false statements
that may cause a large amount of information to be lost in the
simplification process. On the other hand, a neural network
can embrace data in nominal, ordinal, interval and/or ratio
scales in its knowledge base (Roll et al., 1996).

Third, most rule-based expert systems fail to generalize a
predictable inference if an appropriate match with the perfect
rules that must be articulated by experts cannot be obtained.
Conversely, the knowledge in a neural network derived from
real-world examples inevitably contains some noise no matter
how careful these examples are selected. Therefore, neural
networks are good at generalizing both discrete and
continuous data and have a capability to interpolate or adapt
to the patterns never seen in the training process. Thus,
neural networks are tolerate of noise and missing data and
always attempt to find the best fit for input patterns (Russell
and Norvig, 1995; Kasabov, 1996). Finally, neural networks
continuously adjust the weights as more training data are
provided in a changing environment. Thus, they learn.

The Neural Network Classification Module
The process of classifying both urban and rural land use/

cover information using high resolution imagery may be
initiated by first passing the data through the Neural Network
Image Classification Module to generate relatively
homogeneous regions of interest. This module uses a back-
propagation neural network (Heermann and Khazenie, 1992;
Civco, 1993; Benediktsson and Sveinsson, 1997) with two
additional options (Figure 2):

1) It allows the classification to be performed not only on a
single pixel, but also on a neighborhood of spectral
information through the use of an n x n moving window.
The employment of a moving window enables the neural
network classifier to remove some noise by intentionally
utilizing the spectral information of the surrounding
pixels.

2) Image texture (variance) and other ancillary data (e.g.,

digital elevation information) can be incorporated into
the classification module as additional features along
with the original spectral bands of remote sensor data.

Figure 3 depicts the topological structure of the back-
propagation neural network used in the Neural Network
Image Classification Module in which neurons are arranged
into three layers, (i.e., input layer, hidden layer and output
layer). The neurons in the input layer represent the spectral
and/or textural information of the n x n pixels within the
moving window. The use of hidden neurons in the hidden
layer enables the simulation of nonlinear patterns found in
the high-resolution imagery. Every neuron in the output
layer represents one class of land use/land cover. The Image
Classification Module process includes two phases: training
and testing (classification).

Training
In the training phase, the analyst selects specific x, y

locations in the input image with known attributes (e.g.,
forested wetland, water, upland pine) as training sites. The
per pixel spectral information and contextual surrounding
information for each of these training sites is then collected
and passed to the input layer of the neural network. At the
same time, the true target (class) value is sent to neurons of
the output layer by assigning the neuron representing this
class a membership value of 1, while all the other neurons
are assigned a value of 0. Neural network training based on
the examples obtained from an image acquired at a specific

Figure 3 The topological structure of the back-propagation neural
network used in the study.
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time and location may only be of value to the imagery in the immediate
geographic area and perhaps for only a given season.

Learning is accomplished by adjusting the weights using back-
propagation algorithm. For each training example, the output of the
network is compared with the true target (class) value. The difference
between the target and output value is regarded as an error and is
passed back to previous layers in the network to update the connection
weights. The magnitude of the adjustment is proportional to the absolute
value of the error. After many iterations, the root mean square (RMS)
error diminishes to a small value less than a predefined tolerance and
further iterations will not improve the performance of the network
(Jensen et al., 1999). At this time, the system achieves convergence and
the training process is completed. The rules inherent in the examples
are stored in the weights of the network for use in the testing
(classification) phase.

Testing (Classification)
During the test or classification stage, the spectral and/or textural

characteristics of every pixel in the scene irrespective of whether they
are urban or rural are passed to input neurons of the neural network.
The network evaluates each pixel using the weights stored in the
network to produce a predicted value for every neuron of the output
layers. The value obtained for every output neuron is a number between
0 and 1 that gives the fuzzy membership grade of the pixel belonging to
the class represented by that neuron. The value of every output neuron
for all the pixels in the study area comprises the fuzzy classification
map of each class. Defuzzification of these maps using a local maximum
function leads to a hard classification map where each pixel is assigned
to a unique class that has the highest fuzzy membership grade (Jensen,
1996).

Rural Image Segmentation Module
After each pixel in the scene is classified into a unique class in the

Neural Network Image Classification Module, the resultant map is
usually still very noisy even though a 3 x 3 moving window was
applied. It is then necessary to group the classified pixels in the scene
into relatively homogeneous segments. This has been frequently dealt
with using a local majority filter. Unfortunately, the size of neighborhood
for the filter has to be very large for the noise to be sufficiently
removed. A large size neighborhood may alter the boundaries between
classes and creating zigzag bounding polygons. In this study, an
alternative approach was proposed that preserved the detail of the
boundary while noise in the scene was effectively removed.

Each class output from the Image Classification Module was first
disassembled into individual layers. Pixels that belonged to a class kept
their original code, while pixels of all others classes were recorded as 0.
The two types of noise exhibited in each class are shown in Figures 4a
and 5a. “Exterior noise” consists of small groups of pixels that exist
outside the major regions of a class. “Interior noise” consists of small
groups of pixels unclassified within major regions of a class.

Each separate layer is processed using two passes of a RegionGroup
operation. After the first pass, all the regions that have an area less than
a user-specific threshold (e.g., 10,000 pixels) are selected, which includes
both “interior noise” and “exterior noise” regions. The selected regions
are recoded to 0, which is the code for the background. As a result, the
“exterior noise” region for the class is removed, but the “interior noise”
regions are untouched because they were assigned a value of 0 before

Figure 4 Rural image segmentation for the water class.

to indicate other class types (Figure 4b and 5b).
The second pass of the RegionGroup operation
identifies the remaining “interior noise” regions
that are less than the predefined threshold in area
and have a value of 0. By recoding the selected
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land cover, although in an urban environment it is still quite
heterogeneous.

Finally, the individually processed layers of the thematic classes
are recombined into a single layer. The cleaned layer is then vectorized
using an edge-generation program. The boundaries for the rural area
can be smoothed or edited if desired, while the outlines for the urban
area can be deleted if necessary. For example, the water and wetland
classes in final polygon format are draped over the color infrared
image in Figures 6ab to demonstrate the quality of the segmentation
processing. A portion of the neural network classification and image
segmentation derived map is compared with the original “on-screen”
digitization derived map in Figure 6cd. Notice that human interpreters
are usually reluctant to get into the complex details associated with
the curved boundary of the wetland class as they perform “on-
screen” digitization, whereas the neural network program can easily
identify the intricate nature of the wetland.

Different thresholds can be employed for different land use/land
cover types. Unlike the case of the same-size threshold segmentation,
a pixel may be assigned to more than one class before the combination
of the layers. In order to solve this problem, the system can specify
different priorities for each layer. When different layers of segmented
classes arc combined, the value of the highest priority class may be
assigned as the final class of the pixel.

Urban/Suburban Image Digitization and Interpretation Module
For the urban/suburban area, it is possible to utilize the existing

polygon generated from the image classification-segmentation
procedure described above. However, most of time, it is advisable to
use the Urban/Suburban Image Digitization and Interpretation Module
to capture the land use information in the complex urban/suburban
environment. This module utilizes Arc View (the interface is shown
in Figure 7) and three specialized components: a) criteria definition,
b) attribute information collection, and c) neural network-assisted
image interpretation.

Criteria Definition
The first decision is to determine what primitive attributes will be

used to classify an object-of-interest in the urban environment. These
attributes are usually not spectral in nature, but rather contextual and
spatial in nature, including the number of sidewalks, size of parking
lots, and/or the number of stories in a building. These attributes are
used by the back-propagation neural network as training criteria
(Figure 8). The neural network has a three-layer topological structure
similar to the one utilized in the image classification module. However,
the number of neurons of the input layers is determined by the
number of primitive attributes used rather than by the number of
image bands. The number of neurons in the output layer is still
specified by the number of land use classes. A graphical-user-interface
was designed to facilitate the specification of these attributes. A file
that accommodates the description of the attributes is created and
contains the name, data type, storage length, brief description and
data range of each attribute. The attributes can be nominal or numerical
(Figure 9).

Attribute Information Collection
As discussed earlier, the boundary of an unknown object-of-

interest can be generated using the Neural Network Image

Figure 5 Rural image segmentation for the upland forest class.

regions with the code representing the class, the
“interior noise” regions are aggregated with the
major regions of the class and are removed from the
class layer (Figure 4c and 5c). These two operations
result in relatively homogeneous segments of rural
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Classification Module. However, with high spatial
resolution imagery it is more likely that the object-
of-interest in the urban area will be identified
using the “on-screen” digitization method. For
example, Figure 7 depicts a polygon drawn around
an object-of-interest based on “on-screen”
digitization. In this case, it is clear to most experts
that this is a multiple-family residential housing
complex. However, this may not be clear to a
novice image interpreter. The Urban/Suburban
Image Digitization and Interpretation Module can
be used to collect information about various
attributes within the polygon-of-interest. The
graphical-user-interface shown in Figure 9 helps
the analyst obtain the attribute information about
the feature under investigation. The user first
checks the attribute presented and then assigns
the value for the attribute through a slide-bar if
the attribute is a quantitative variable, or a scroll-
list if it has qualitative characteristic. Unchecked
values are treated as missing data. If the
information collected is for training purposes, the
true target class is required. Otherwise, it is
optional for the user to assign his or her best
guess about the possible class of the feature. Once
the attribute information of the object-of-interest
is collected, it is saved as a record in the feature
attribute file of the polygon and passed to the
neural network interpretation component for
subsequent training or testing (classification).

Neural Network-Assisted Image Interpretation
The Urban/Suburban Image Digitization and

Interpretation Module makes use of quantitative
attribute information directly. Qualitative attribute
information are automatically converted to
numerical values. Similar to the image
classification module described, this module also
consists of training and testing (classification)
stages. In the training stage, the neural network
learns the rules (weights) of image interpretation
from all the input training examples. Training
examples obtained from images acquired at
different times and even different locations can
be used to extract the image interpretation rules
for urban/suburban areas. This makes it possible
for the knowledge base extracted for one project
to be extended across both space and time and
used in other projects.

Once the training process is complete and all
the “rules” are saved as the weights of the neural
network, these rules can be applied to classify
unknown objects-of-interest. After the attribute
information of the unknown object are retrieved
and passed to the neural network, it outputs the
calculated class membership grade of the object
by recalling the “rules” stored in the weights of

Figure 6 Results of the Neural Network Image Interpretation System compared with
those of traditional “on-screen” digitization.

Figure 7 The graphical-user-interface of the Urban/suburban Image Digitization and
Interpretation Module.

Neural Network Derived Water Class Neural Network Derived Wetland Class

a. b.

c. d.

On-screen Digitization Method
Neural Network

Classification-Segmentation Method
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miniute quadrangle was approximately 56.5 percent of the
original 11.5 days.

Summary

A Neural Network Image Interpretation System for the
extraction of urban and rural land use/land cover information
from high spatial resolution digital imagery was designed
and implemented. The system consists of modules that a)
classify high spatial resolution imagery into different land
use/land cover types, b) segment the rural land cover
information into relatively homogeneous polygons in a
standard GIS format, and c) digitize and interpret urban/
suburban land use polygons based on their feature attribute
information.

The Image Classification and Rural Image Segmentation
Modules have value because they generate a relatively
accurate classification of extensive rural land cover such as
wetland, water, and upland forest in a digital polygon format.
This removes an expensive step in the current process
whereby the geographically extensive rural land cover are
often laboriously visual photo-interpreted and then manually
digitized into the GIS database. This methodology can be
also extended to classify relatively coarse spatial and spectral
resolution remote sensor data, such as Landsat Thematic
Mapper image. The image Segmentation Module can also be
applied to the post-classification processing of the results
obtained from other digital image classification approaches,
so that noise can be effectively removed while the boundaries
between classes remain smooth.

The Urban/Suburban Image Digitization and Interpretation
Module demonstrates great potentials for interpreting urban
land use. It requires more training examples to be fully
operational. Examination of the initial results in the study
suggests that the urban image interpretation prototype may

Figure 8 The graphical-user-interface for the criteria definition
component.

neurons in the network. After confirmation, the class
information is passed to the polygon attribute table to update
the record for the object. Beginning image analysts also have
the option to compare the labeling provided by the neural
network to the their best guess. This helps them to gradually
develop improved image interpretation skills.

The Urban/Suburban Image Digitization and Interpretation
Module is still under development. Not all the urban land
use classes have been sufficiently included and/or trained-
on using the system. In order for the module to be operational,
additional classes of training examples such as those for
industrial land use categories are needed. We are in the
process of continuing the development of the training database
so that the system will contain sufficient “rules” for the
neural network to classify the urban land use consistently.

Table 1 estimates the cost of performing image
interpretation using traditional versus a neural network image
interpretation system per 7.5-minute quadrangle (Patterson
et al., 1998). The potential time saving benefit per 7.5-

Figure 9 The graphical-user-interface for the attribute information
collection component.

Approximate Person-Effort to Extract Information per
7.5-minute Quadrangle Using Traditional
Photointerpretation Techniques

Combined on-screen digitization of Land Use/Land Cover
Total1

Approximate Person-Effort to Extract Information per
7.5-minute Quadrangle Using Digitally Assisted Image
Analysis Techniques

Rural Land Cover (using Neural Network assisted classification
and segmentation)
Urban Land Cover (using both traditional visual image
interpretation and neuralnetwork assisted methods of image
classification and segmentation)
Total1

Potential Time Saving Benefit per 7.5- minute Quadrangle

Table 1 Potential Cost-Benefit of Implementing A Contextual Neural-
Network Method of Extracting Rural and Urban Information
for a Single 7.5-minute Quadrangle

Days

11.5
11.5

1

4

5

6.5/11.5=56.5%
l These calculations do not include Arc-Info validation time.
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also be of values for training novice image interpreters.
Unfortunately, a neural network based image processing

system is a black box making it impossible to explain how a
particular answer has been reached by the network. There
exists an inherent inability to represent knowledge acquired
by the network in an explicit form with simple “if-then”
rules. The rules of image classification and interpretation
learned by the neural network are buried in the weights of the
hidden neurons of the hidden layers. A possible solution is to
combine neural networks with fuzzy logic so that the
knowledge residing in the hidden neurons of the network can
be extracted in the form of fuzzy “if-then” rules (Qiu, 1999).
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