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Problem Definition: Motivated by the prevalence of paid priority programs in practice, we study a
service provider operating a system in which customers have random waiting costs and choose between
two queues: regular (no cost) or priority (for a fee). We also consider a mechanism by which the provider
redistributes a portion of priority revenue to compensate regular-queue customers for their longer waits.
Methodology/Results: To determine the waiting-cost-dependent equilibrium priority purchasing strategies,
we establish structural results at a sample-path level and prove that they generalize. In models both with
and without compensation, the equilibrium exhibits a cost-dependent, increasing-threshold structure. We
also prove that compensation entails fewer priority purchases because compensating regular-queue customers
makes priority less attractive. We then analyze system-wide performance. Despite the fewer priority purchases,
for a fixed (low) priority fee, compensation can actually reduce equilibrium aggregate waiting cost by filtering
low-waiting-cost customers out of the priority queue; however, this finding does not hold when comparing at
the optimal fees. We then test our models in the laboratory. Key behavioral regularities are that low-cost
subjects are over-represented (under-represented) in the priority (regular) queue compared to equilibrium, and
subjects with low and high waiting costs tend to overbuy priority at high fees. Managerial Implications:

Our theoretical and behavioral results guide service providers in managing priority service systems. First, we
find that compensation does not provide short-term performance benefits. Second, our experiments reveal that
sub-optimal customer decisions partially prevent efficient reordering of customers by waiting cost, leading to
higher aggregate waiting cost than the equilibrium predicts, but still lower than under first-come, first-serve
service. Finally, because customers tolerate higher fees than they should, a revenue-maximizing provider can
set a higher priority fee and extract more revenue than it could if customers acted rationally.
Key words : priority queues, behavioral operations, strategic queueing, behavioral queueing

1. Introduction
In November 2021, Killington Ski Resorts in Vermont introduced Fast Tracks, a priority program
allowing time-sensitive skiers to buy access to an “express” line for the chair lift to the top of the
slopes (Killington 2021). The resort even advertises the option to purchase the access “on-mountain,”
e.g., after heading to the slopes only to see a long queue. Similarly, in late 2021, Walt Disney World
in Florida and Disneyland in California rolled out a new paid priority program (Maehrer 2021, Lynch
2021). If a guest observes many people in line for a ride—or a high number for the posted waiting
time—she can use the Disney mobile app to purchase Lightning Lane access. Guests can purchase a
day pass called Genie+ to access the Lightning Lanes at multiple lower-tier attractions, but some of
the most popular rides of all, such as Star Wars: Rise of the Resistance at Disneyland Park, are not
included in the Genie+ pass. Instead, they are designated as Individual Lightning Lane, meaning
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payment is required each time a guest wishes to access the priority queue.1 Universal Orlando Resort
offers a similar experience called Universal Express at its Islands of Adventure and Universal Studios
Florida theme parks, where guests can pay to use a “separate line with a shorter wait time;” like Fast
Tracks and Lightning Lane, this access can be purchased “in-park” (Universal Orlando Resort 2023).

Paid priority queues have come under fire for promoting “money-talks culture” (Baggini 2017) and
“segmenting society” (Baraniuk 2019). Indeed, with Individual Lightning Lane purchases costing up to
$20 each,2 a family of four may find itself paying $80 for priority access to a single ride, on top of the
more than $100 (on some dates more than $150) per person for one-day access to the park.3 Given
the soaring costs of all aspects of a Disney vacation, from lodging to food to admission (Dumas and
Rumpf 2022), some see the priority program as exacerbating an already serious affordability problem
for those outside the upper classes who wish to visit. Following the program’s announcement, angry
customers decried it as blatant corporate greed (Maehrer 2021).4 Matters were arguably even worse
for POWDR, the parent of Killington Ski Resorts, after it announced Fast Tracks. As Allon (2021)
points out when discussing Fast Tracks, allowing the wealthy to pay for a priority queue for a natural
resource like a ski slope (or a public service like border control processing—see Le Seur 2012) is a
particularly questionable practice. Sure enough, before the program even began operation, POWDR
faced such intense resistance (see, e.g., Waite 2021) that its leaders were forced to issue a community
letter to “clarify” the plans and attempt to convince customers that their experience would not be
spoiled by longer waits if they did not purchase priority (Martin and Sibley 2021); it even offered
customers refunds if desired.

These and related examples—e.g., the paid priority line for elevators to the SkyDeck viewing area
at Willis Tower (formerly Sears Tower) in Chicago (SkyDeck 2023), as well as similar programs at 30
Rockefeller Plaza in New York City (Rockefeller Center 2023) and the CN Tower in Toronto (CN
Tower 2023)—illustrate the growing prevalence of paid priority programs in service systems, as well
as the substantial controversy they can generate. For service providers, on one hand, a paid priority
queue enables a self-directed reorganization of customers such that those with higher waiting cost
are served earlier, decreasing the aggregate waiting cost. On the other hand, a priority system elicits
negative reactions related to fairness, income inequality, and the “right” to a position in the queue.

1 https://disneyland.disney.go.com/genie/lightning-lane/ (accessed 06/13/2023)
2 ibid
3 https://disneyland.disney.go.com/admission/tickets/dates/ (accessed 06/13/2023)
4 Example comments on Disney’s blog post (Maehrer 2021) announcing the program: “Not a fan for this at Disney
World where FastPass+ was FREE before and no silly money-grab upcharge for some premium attractions!” (User
Ken); “[the new program] just let’s [sic] us see that more and more they are aimed at the money and the data and not
looking out for the experience of the regular class kids. . . you mean to tell me that only the richer class can have. . . a
magical day with their kids. . . ?” (User Olga)
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To avoid the aforementioned backlash, service providers may wish to implement a different type of
priority system that is less likely to upset customers. In a related setting that involves waiting times
but does not study priority mechanisms or directly address queueing phenomena, Cohen et al. (2022)
has established a significant benefit to service providers from proactively compensating customers
who experience long waits. They conducted randomized field experiments with a ride-hailing platform
in which some customers who experienced an excessive wait for their driver or an excessive travel
time were compensated with a voucher for future service. Customers who received vouchers were
found to spend significantly more money with the platform, with the average additional spending
exceeding the value of the voucher. Such findings demonstrate that it can be in a service provider’s
interest to compensate inconvenienced customers.

Effectively managing a priority service system like those operated by Disney, POWDR, and other
service providers demands a clear understanding of customer decisions in such a system and their
system-wide operational implications (for, e.g., revenue and aggregate waiting cost). In the present
work, we achieve this understanding through complementary theoretical and behavioral analyses.
Moreover, in light of the successful implementation of customer compensation for long waits described
above, we also examine the operational impact of compensation in priority service systems.

For a unified treatment, we present a stylized theoretical model of a service system with a setup
that can be faithfully replicated in the laboratory. We consider two variations: the base model and
the compensation model. The base model is a standard priority system: customers with heterogeneous
waiting costs sequentially decide whether to pay a flat fee to the service provider to obtain priority, or
to join the regular queue for free. The compensation model operates similarly with one key difference:
rather than the priority proceeds going to the service provider, instead a fraction is divided among
the customers in the regular queue. Hence, the regular-queue customers are compensated for being
overtaken by the priority-queue customers via a portion of the latter’s payments.

We model disutility from waiting as a linear function of waiting time, with cost coefficients
independent and identically distributed (IID) for each customer. A customer knows only her own
waiting cost when making her priority purchase decision. In our sequential setup, the random waiting
costs significantly complicate the equilibrium analysis for both the base and compensation models. To
determine the equilibrium strategy for a focal customer requires computing the strategies for every
combination of waiting-cost realizations for the customers after her, finding the waiting time for the
focal customer for both queue choices in each such combination, and finally taking expectation.

To overcome the combinatorial challenge described above, we analyze individual sample paths. In
the base model, we show that for a given waiting cost and any threshold strategies for the customers
after a focal customer, the customer optimally also uses a threshold strategy. The sample-path
approach allows us to simplify an extremely difficult problem—that of computing the equilibrium for
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arbitrary waiting-cost distributions, in which each customer must account for a potentially huge cross
product of the other customers’ optimal strategies—into a still challenging but tractable one with
unknown but fixed threshold strategies for the other customers.

We apply our sample-path results to prove that all customers use cost-dependent threshold strategies
in equilibrium, i.e., they purchase priority if the priority queue is below a threshold that depends
on their waiting cost. With a shorter priority queue, a customer will overtake more customers by
purchasing priority. But for a long priority queue, there are few regular-queue customers to overtake,
and above a waiting-cost-dependent threshold, the time savings is not worth the priority fee. Even for
the same waiting cost, the thresholds differ within the sequence. Later customers will overtake more
regular-queue customers for a given priority queue length, and a similar sample-path argument shows
that their thresholds are higher: the second customer will have a higher threshold than the first, etc.

For the compensation model, the dynamics are even more complex because both compensation
and waiting time depend on others’ decisions. Still, we prove that the equilibrium with compensation
also has a cost-dependent, increasing-threshold structure. Importantly, priority is less valuable with
compensation because a customer can expect a payment if she chooses the regular queue. Accordingly,
we prove that the equilibrium thresholds in the compensation model are lower than those in the base
model; this implies that in equilibrium, fewer customers purchase priority in the compensation model.

We next define and study three system-wide performance measures: aggregate waiting cost, customer
surplus, and provider revenue. We characterize the system performance in the base and compensation
models and for various priority fees and supports of the waiting-cost distribution. First, unsurprisingly,
customer surplus is higher with compensation than in the base model. Additionally, with a high
enough compensation fraction, customer surplus exceeds that under first-come, first-serve (FCFS)
service. Second, for low priority fees, the compensation model—despite entailing fewer priority
purchases—achieves lower aggregate waiting cost than the base model. At low fees, low-cost customers
sometimes buy priority in the base model, a socially undesirable outcome. Compensation attracts
low-cost customers to the regular queue without deterring high-cost customers from buying priority,
leading to a more efficient service order. Third, when the priority fee is higher, low-cost customers are
unlikely to buy priority in either model, so the “filtering” benefit of compensation is negligible and the
base model tends to yield lower aggregate waiting cost. Moreover, when we allow optimization of the
priority fee, the base model consistently achieves lower aggregate waiting cost than the compensation
model. Thus, compensation does not deliver a short-term performance benefit when the priority fee
can be optimized or if the priority fee is high.

We then take our models to the laboratory. We present two studies: the All-Human Study and
the One-Human Study. In the All-Human Study, we collected data from several queues in which
subjects made their decisions and then physically stood in line and waited to be served. This deviation
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from the standard method of conducting laboratory experiments was intentional because the lack
of anonymity highlighted any potential behavioral issue that may arise in a real situation in which
customers pay for priority, effectively “cutting in line” in front of others. However, the real-time
and sequential nature of the All-Human Study implies slow and expensive data collection. So, we
conducted additional experiments in the One-Human Study, in which individual subjects played
our game repeatedly against computerized agents. Subjects in the One-Human Study exhibited
qualitatively similar behavior to the All-Human Study, and the larger data set from the One-Human
Study provides much higher power.

In our experiments, although subject decisions are directionally in line with equilibrium predictions,
subjects exhibit behavioral regularities with managerial implications. In particular, low-cost subjects
represented a greater proportion of priority purchase decisions (and a smaller proportion of regular-
queue decisions) than predicted, in both the base and compensation model treatments.

We leverage the larger data set from the One-Human Study to compute system-wide performance
measures. Comparing these measures against those in equilibrium and with FCFS service yields
prescriptive insights for operating a priority service system. First, in terms of aggregate waiting
cost, compensation fails to achieve the predicted performance gain for low fees. Thus, despite its
predicted benefit in equilibrium for such fees, compensation in priority service systems appears not to
have a short-term performance benefit with human decision makers. Still, we conjecture that service
providers might choose to implement it to calm strong resistance to a priority program, or, if socially
motivated, for performance benefits if (i) they are constrained to charge a low priority fee and (ii) they
can successfully nudge customers toward rational decisions. In this case, our results provide a tool for
service providers to assess how customers’ priority purchasing decisions (and the resulting system
performance) will change if compensation is implemented. Second, even in the base model the higher
fraction of low-cost customers in the priority queue harms the social welfare relative to the equilibrium.
At the socially optimal fee, the reduction in aggregate waiting cost relative to FCFS is barely a third
of that predicted by the equilibrium. Low-cost customers buying priority is socially undesirable even
if individually rational, but our low-cost subjects purchase priority even more than in the rational
equilibrium. This behavioral regularity thwarts the priority mechanism because high-cost customers
cannot overtake a low-cost customer if that customer bought priority earlier in the sequence. Third,
and perhaps most important, at high priority fees, not only low-cost customers but also high-cost
customers overbuy priority, i.e., customers tolerate higher priority fees than they rationally should.
Thus, a service provider can potentially capitalize on customers’ deviations from equilibrium to earn
even more priority revenue. Not only do we find that the revenue-optimal priority fee is higher based
on subject decisions than in equilibrium, but also the maximum revenue is higher by nearly 5%.
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So, we find that behavioral deviations in priority service systems lead to worse (i.e., higher) aggregate
waiting cost relative to the rational equilibrium, but they permit a revenue-maximizing service provider
to set a higher priority fee and earn more revenue. The managerial prescription depends on the service
provider’s priorities. For performance-critical systems, our findings suggest that the service provider
should attempt to influence customers toward rational decisions so that low-cost customers do not
occupy slots in the priority queue. One way to accomplish this is to communicate to customers that
the regular-queue experience is a good one, hopefully convincing low-cost customers that priority
is a luxury and not a necessity, while also touting the time-saving benefits of priority to those who
especially dislike waiting. Indeed, Killington Ski Resort’s community letter explicitly tried to reassure
customers that “the impact [of the priority option] on lift line wait times across our mountains is
negligible,” whereas Killington elsewhere employs phrases like “upgrade” and “maximize your time”
(Killington 2021) to catch the attention of high-cost customers who especially dislike waiting. On
the other hand, Universal Orlando Resort’s practices seem more in line with our findings on revenue
maximization: the price for Universal Express, which provides access to a priority queue, can be more
than $200 (Universal Orlando Resort 2023), even more than the admission ticket to the park! In this
spirit, our results suggest that a provider focused on revenue can set the price for priority high and
let nature run its course, anticipating that although they may cry foul as documented above, plenty
of customers will likely pay up anyway.

2. Literature Review
Theoretically, strategic customer behavior in priority service systems has been studied extensively. A
seminal work is Kleinrock (1967), in which customers bid for priority and are served in decreasing
order of their bids. This system is equivalent to an infinite number of priority classes. In Adiri and
Yechiali (1974), the service provider administers a finite number of priority classes, with a fixed price
for each class. Both of these papers study queueing systems in steady state. Additional work in this
stream includes Hassin and Haviv (1997), which studies priority purchasing in an observable M/M/1
queue, and references therein. Yang et al. (2016) gives an excellent review of the theoretical priority-
pricing literature. Hassin and Haviv (2003) and Hassin (2016) provide useful surveys. Additionally,
and reflecting the current interest in and importance of priority service systems, Cui et al. (2023)
theoretically studies several methods for assigning priority and waiting time in queues, such as
line-sitting (paying someone else to wait in line on one’s behalf) and distance-based priority (giving
priority to customers who have traveled farther to the system).

In Yang et al. (2016), the focus is on transfer mechanisms in a marketplace in which customers bid
for favorable positions in line. An auction mechanism in which customers submit bids to overtake
others based on their value of time is shown to result in efficient service. Rosenblum (1992) shows
that in a G/M/S system, customers can achieve a socially efficient equilibrium by paying to trade
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positions; importantly, waiting costs are common knowledge. Wang et al. (2019) studies a model of
priority-purchasing for both unobservable and observable queues. In the observable setting, which is
closer to our work, in equilibrium customers should purchase priority only when the queue is long. The
analysis is in steady state and only symmetric equilibria are considered. Gurvich et al. (2019) study
price-waiting-time menus and the number of priority classes to offer, also in steady state and with an
unobservable queue. They find that a social planner and a revenue-maximizing provider offer exactly
two priority classes. However, a revenue maximizer may induce too many or too few priority customers
relative to the first-best. Haviv and Winter (2020) derives revenue-optimal mechanisms for a two-class,
steady-state queueing system. Their mechanisms result in different customers paying different fees to
join the same priority class, while we implement a single priority price. Roet-Green and Shetty (2022)
studies a social planner who divides service resources between expedited and regular service options,
and customers choose in advance of their service needs whether to buy access to the expedited option.
The customers must be pre-processed to access the expedited service, and, importantly, the service
time itself is shorter for expedited customers. The resource allocation optimization is solved, and
the expedited service is shown to sometimes benefit not only overall welfare but also all individual
customers. In addition to endogenous service times, key differences from our work are that (i) resources
are divided between the regular and expedited service, rather than shared as in our model, (ii) their
analysis is in steady state, and (iii) their queues are unobservable. Finally, a rare analytical study on
social preferences in queueing is Allon and Hanany (2012), which studies queue-jumping behavior.
None of these works consider redistribution of priority payments.

Rather than the conventional steady-state queueing system, we study a sequential game in a finite
system. Such a model affords us two important benefits. First, it allows us to drill down into the
detailed dynamics of customer decisions at different positions in the queue. Second, it is well suited
for behavioral experiments. Subjects may not understand stationary distributions or the dynamics of
an unobservable queue, but a fixed number of customers and observable moves is more approachable.
Eliminating this cognitive challenge allows us to focus on the key incentives in priority queueing. In
this sense, our modeling approach is similar to Kremer and Debo (2016), but with different motivation.
Like ours, their model is of a finite, observable queue in which customers decide sequentially; their
focus is on whether customers learn about product quality through the actions of others who may be
privately informed. Also like us, Kremer and Debo (2016) first studies the model analytically and then
tests the theory via experiments, finding that uninformed subjects indeed learn from informed ones.

Another study with finite queues is the “static” model in Erlichman and Hassin (2015); there, instead
of a flat priority fee, each customer may pay a certain amount per overtaken customer; the equilibrium
has no overtaking. By contrast, in our model, priority purchases are common in equilibrium: two key
differences between their framework and ours are that (i) in their model, customers choose how many
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others they wish to overtake and pay per customer, and (ii) in their model, a customer who overtakes
others has no ability to avoid being overtaken herself by later customers. Curiel et al. (1989) is
another example of a finite queueing game (they use the term “sequencing game” from the scheduling
literature); they use cooperative game theory to investigate what sequence customers will self-select.
For more on the scheduling literature, see Pinedo (2012) and references therein.

On the behavioral side, Larson (1987) offers many examples of the importance of individual
perceptions of social justice in queueing. Allon and Kremer (2018) gives an overview of the current
state of behavioral queueing research. In a laboratory setting, El Haji and Onderstal (2019) studies
different auction mechanisms to determine service order, both of which award all payments to other
customers. Like Haviv and Winter (2020), these mechanisms can result in different customers paying
different amounts, and they are much more complicated than a two-class priority system. Buell (2021)
studies last-place aversion, a special disutility from being at the very back of a queue. Dold and
Khadjavi (2017) conducts experiments in which one subject can bribe another to reduce her own
waiting time. Their subjects displayed strong social preferences, perhaps due to the individual nature
of the transactions, unlike our setup where the service provider handles payments.

Previous theoretical studies have explored customer and firm decisions in priority service environ-
ments with priority payments kept either by the service provider or traded among customers. Yang
et al. (2016) also incorporates a combination of these, such that customers pay a fee to participate in
trading and then engage in transfer payments. Previous behavioral studies have focused on one or the
other of these settings: either the service provider keeps the payments, or the customers pay each
other to trade positions. We believe that we are the first to study both theoretically and behaviorally
the impact of the recipient of the priority payment on priority-purchase decisions.

3. The Model
Consider a service system with a single server and two queues, “regular” and “priority”. There are N

customers in the system who choose queues sequentially according to some order (e.g., random), and
the server begins processing only after all customers have made their decisions.

All N customers must be processed by the server. For ease of exposition, we assume that each service
lasts exactly one unit of time. We note, however, that all of our results would hold unchanged for
general independent and identically distributed service times because each customer makes her decision
based on her expected waiting time and decisions are made before any service begins. Customers
i ∈ {1, . . . ,N} value the service at V > 0, which is deterministic and homogeneous. They incur a
waiting disutility proportional to their total waiting time (including the time in service), with cost
coefficients Ci > 0. These waiting costs are independent and identically distributed across customers,
drawn from a distribution with cumulative distribution function (CDF) F with nonnegative and
bounded support. Each customer’s waiting-cost realization is her private information.
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Each customer at the time of her decision observes both the regular and priority queues and has a
one-shot, irrevocable opportunity to either (i) pay a price p to join at the end of the priority queue,
or (ii) join at the end of the regular queue at no cost.5 Let c̄ be an upper bound on the waiting
cost random variables and c a lower bound. To ensure that no customer has an incentive to balk,
and also that priority is at least cheap enough that it would be worth purchasing to move from last
to first place, we assume V ≥ c̄N and p ≤ c(N − 1), respectively. The setup of the game and the
parameters—including p, N , F , and V —are common knowledge.

Due to the random waiting costs, our equilibrium concept is perfect Bayesian equilibrium (PBE). In
a PBE, each customer i must use Bayes’ rule to update her beliefs about the waiting costs of customers
1, . . . , i − 1 after observing their decisions. However, the waiting costs for these customers are not
payoff-relevant for customer i because only their actions, which are observable, affect her waiting time.
Hence, her beliefs about these customers are irrelevant. Regarding the customers after her, there is
no information that customer i can use to update the prior distribution F for their waiting costs
until after she has already made her decision. So, in the PBE, each customer determines her optimal
action for each state by calculating her expected net utility after inferring the waiting-cost-dependent
optimal strategies of the customers after her and taking expectation over their waiting costs.

For i ∈ {1, . . . ,N}, let xi be the number of customers that purchase priority, up to and including the
i-th customer to make her decision. By convention we take x0 = 0. We will refer to the i-th customer
as customer i. The quantity xi defines the state of the priority and regular queues that is observed by
customer i + 1. For i ≤ i′, by definition we have xi ≤ xi′ . Denote by σi(xi−1,Ci) a strategy function
of customer i; that is, σi : Z+ × supp(Ci) → {0,1} maps from the number of customers xi−1 that
customer i observes in the priority queue and her waiting cost Ci to a decision of either the regular
queue (encoded as 0) or the priority queue (encoded as 1). Let σi,j represent a vector of strategy
functions (σi, . . . , σj) for customers i, . . . , j. Conditional on her own waiting-cost realization ci, let
UR,i(xi−1; σi+1,N ) be customer i’s net utility from joining the regular queue if customers i + 1, . . . ,N

follow the strategies σi+1,N and the number of customers in the priority queue that customer i

observes is xi−1. This utility is random even though customer i knows her own waiting cost because
the strategies σi+1,N are functions of the later customers’ random waiting costs, which are not known
to her. Similarly, let UP,i(xi−1) be customer i’s net utility from joining the priority queue, given xi−1.
Unlike the regular queue, customer i’s utility from joining the priority queue is known to her and
does not depend on the strategies of later arrivals because they will not be able to overtake her.
4. Base Model
We start with the base model, in which all payments for priority are kept by the service provider, and
we perform backward induction to characterize the equilibrium priority purchasing strategies.

5 To break ties, we assume that a customer joins the priority queue if indifferent between the two options.
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4.1. Equilibrium Analysis and Structural Results

When customer N makes her decision, she observes xN−1 customers in the priority queue, and

N −1−xN−1 customers in the regular queue. As the last customer, her utility from each decision is fully

determined by xN−1. For waiting-cost realization cN , her utility from the regular queue is UR,N (xN−1) =

V − cNN . Similarly, her utility from the priority queue is UP,N(xN−1) = V − p − cN(xN−1 + 1).

Optimally, she will purchase priority if and only if UR,N(xN−1) ≤ UP,N(xN−1), i.e.,

V − cNN ≤ V − p − cN(xN−1 + 1) ⇐⇒ xN−1 ≤ N − 1 − p

cN

. (1)

So, customer N purchases priority only if the priority queue is below a threshold length that is a

function of her waiting cost, i.e., she uses a cost-dependent threshold strategy.6

Definition 1 (Cost-Dependent Threshold Strategy). A cost-dependent threshold strat-

egy for customer i is a strategy function σi such that σi(k + 1, ci) ≤ σi(k, ci) for all ci in the support

of Ci and k ∈ {0, . . . , i − 2}. For such a strategy, denote x̄i−1(Ci) := max{k : σi(k,Ci) = 1}.

We will see that customers 1, . . . ,N − 1 optimally also use cost-dependent threshold strategies, but

to prove this requires us to establish an important property of the system under such strategies.

Lemma 1 (Effect of One Additional Priority-Queue Customer). Consider a customer i ∈

{1, . . . ,N − 1}, and suppose that customers j ∈ {i + 1, . . . ,N} use cost-dependent threshold strategies

x̄j−1(Cj). Given these strategies, let Lk
i be the random number of services (including her own) that

customer i will wait through if xi−1 = k and she chooses the regular queue. For k ∈ {0, . . . , i − 2}, we

have

0 ≤ E[Lk
i ] − E[Lk+1

i ] ≤ 1.

All proofs can be found in the e-companion. Lemma 1 reveals a qualitative feature of cost-dependent

threshold strategies that facilitates comparison of a customer’s waiting time in the regular queue

for different queue states that she observes. Namely, if every customer behind a focal customer uses

such strategies, then the difference is at most 1 between the expected numbers of services that the

focal customer must wait through after choosing the regular queue upon observing k versus k + 1

priority-queue customers in front of her. This lemma exemplifies the sample-path proof approach that

we use repeatedly to navigate the randomness in each customer’s waiting cost. Ex ante, customers

earlier in the order must account for an enormous number of possible strategy functions for the later

customers, mapping from each waiting-cost realization and queue state to an action. However, for

a fixed sample path of waiting-cost realizations, each customer will use a pure strategy. We exploit

6 The case in which σi(xi−1, ci) = 0 for all possible xi−1 can be expressed by the threshold strategy x̄i−1(ci) = −1 for
the realization ci; we adopt this convention.
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the pure strategies to analyze the outcomes on each sample path, circumventing the combinatorial
problem described above to reveal the structure of the equilibrium.

A focal customer i who chooses the regular queue will wait through at least i services because
she will not overtake anyone in either queue. However, if the customers after i use fixed threshold
strategies, more priority purchases in front of her may reduce the number of priority purchases after
her because some customers whose thresholds are not exceeded if xi = k may be exceeded if xi ≥ k + 1.
In Lemma 1, we prove that on a given waiting-cost sample path, if xi = k + 1, among customers
i + 1, . . . ,N there is either the same number of priority purchases or one less, compared to the case
with xi = k. Thus, if xi−1 = k + 1 and customer i chooses the regular queue, then she will wait through
either the same number of services or one less than if xi−1 = k and she chose the regular queue.
This result holds for any threshold strategies among customers i + 1, . . . ,N , so if these customers
use cost-dependent threshold strategies, then it holds for every sample path and is preserved by
expectation, hence the lemma. With Lemma 1 in hand, we can characterize the structure of the PBE.

Theorem 1 (Base Model: Cost-Dependent Threshold Strategies). In the unique PBE of
the base model, all customers use cost-dependent threshold strategies on the priority queue length,
below which customers purchase priority.

The sample-path approach used in Lemma 1 is agnostic to the form of the waiting-cost distribution,
and therefore so is Theorem 1. Intuitively, Lemma 1 implies that the value of priority for customer i is
less when observing k + 1 priority customers in front of her than when observing k priority customers;
in the regular queue her expected waiting time will be the same or better with xi−1 = k + 1, but in
the priority queue she will wait longer if xi−1 = k + 1, with one more priority customer served before
her than if xi−1 = k. Consequently, if priority is not worth the fee with k priority customers before
customer i, then neither is it worth it with k + 1, so a threshold strategy is optimal.

Because all customers use cost-dependent threshold strategies in equilibrium, we might expect
the equilibrium path to be “smooth” in that consecutive customers all make the same decision up
to a point, after which a switch occurs and the rest of the customers make the opposite decision.
However, this is not the case because the optimal thresholds differ among customers, even for the same
waiting-cost realization. If customer thresholds oscillate, then the equilibrium path might reflect an
almost arbitrary sequence of customer decisions. To better understand the equilibrium, we establish
the following theorem about the relationship among the optimal thresholds.

Theorem 2 (Base Model: Increasing Thresholds). Let x̄∗ = (x̄∗
0(C1), . . . , x̄∗

N−1(CN)) be the
vector of equilibrium threshold functions. For a constant c in the support of F , we have

x̄∗
i−1(c) ≤ x̄∗

i (c) for i = 1, . . . ,N − 1. (2)

Moreover, for c < c′, we have x̄∗
i (c) ≤ x̄∗

i (c′).
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Theorem 2 implies that a customer earlier in the order will have a lower threshold than one later in
the order, conditional on the same waiting-cost realization. A given priority queue length k implies
one more regular queue customer for customer i + 1 to overtake than for customer i, so intuitively,
customer i + 1 should be willing to purchase priority up to a higher priority queue length than
customer i due to her greater time savings from priority for each given priority queue length. Thus,
higher thresholds for later customers makes intuitive sense. However, the outcome also depends on
the actions of the later customers. We use a similar sample-path approach to that used in Lemma 1
to compare the difference in expected regular-queue waiting time for customers i and i + 1 if both
observe the same priority queue length. In this case, customer i + 1 has a longer expected waiting time
in the regular queue than customer i. Thus, a customer further back in the order finds priority more
attractive for a given priority queue length, and hence the equilibrium thresholds are increasing as we
move back in the order for a given waiting cost. Also, as we would expect, customer i’s threshold is
increasing in her waiting cost.
4.2. Numerical Examples and Equilibrium Computation

Despite our structural results, calculating the equilibrium is still computationally difficult, even for
simple waiting-cost distributions. Customers may need to take expectation over a huge number of
possible vectors of thresholds for the later customers. In Appendix H, we provide an algorithm to
compute the PBE threshold functions. This algorithm codifies the backward induction process in
which each customer must take expectation over all possible equilibrium strategies of the customers
after her. For each customer i, starting from customer N , we must determine the probability of each
threshold vector among customers i + 1, . . . ,N that occurs with positive probability (this process is
trivial for customer N). The result is a finite probability distribution over vectors of integers, but it
can have as many as

∏N
j=i+1(j + 1) mass points, and N − 1 such distributions must be determined.

With this probability distribution, customer i can calculate her expected utility from each action as a
function of her waiting cost and choose her threshold function accordingly.

We apply our algorithm to compute the PBE thresholds for two-point distributions with equal
probabilities, and we plot the PBE thresholds for two different distributions in Figure 1. As expected,
the thresholds increase as we move back in the order, and the thresholds are higher for the higher
realization. In Figure 1(a), we observe two different “patterns” in the strategies, one for each realization.
The thresholds for customers early in the order who draw a waiting cost of 1 are equal to the maximum
possible priority queue length that they can observe (the first customer has a threshold of 0, the second
a threshold of 1, etc.), meaning that these customers will purchase priority no matter what state
they observe. This is a “protective” strategy: customers purchase priority to avoid being overtaken
by others. On the other hand, customers early in the order who draw a waiting cost of 0.4 take the
opposite approach. Their thresholds are -1, meaning that they will choose the regular queue in any
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(b) Waiting Cost Ci ∈ {1, 2}
Figure 1 PBE thresholds for two-point waiting-cost distributions (prior probability 1/2 for each waiting-cost

realization, N = 20, V = 35, and p = 6).

state. For these customers, priority is expensive relative to their lower waiting cost, so they will only
purchase priority if there are many regular-queue customers to overtake, which can only happen
further back in the order. Notably, despite the threshold structure for given waiting cost, the random
waiting costs mean that the realized path of play may not follow a simple pattern.

Comparing the two plots highlights the impact of the randomness in the waiting costs. The
thresholds for a waiting cost of 1 are different in the two plots because of the different thresholds for
the other realization. In the right panel, it is more important to protect her position than in the left
panel: “protective” purchases continue only through customer 6 in the left panel (other realization of
0.4), while they go through customer 10 in the right panel (other realization of 2) because the waiting
cost and thus the thresholds for the other realization are higher in the right panel.

From our results, a service provider knows that in equilibrium customers use cost-dependent
threshold strategies, and he can use our algorithm to calculate the equilibrium, as well as to perform
sensitivity analysis to evaluate the effect of parameter changes. For instance, the provider may have
a good estimate of the range of customers’ waiting costs but not their distribution. He can use our
results and algorithm to calculate the equilibrium for different possible distributions over this range,
to assess what range of outcomes to plan for.

5. Compensation Model
In the base model, the service provider kept all payments: we now move to a setting in which a
fraction γ ∈ (0,1] of the priority revenue is redistributed to the regular-queue customers.7

7 If all customers purchase priority, then the payments are deemed to be forfeited. However, as in the base model, it
is clearly sub-optimal for customer N to purchase priority if the first N − 1 customers have all purchased priority
because she would not improve her wait but would forfeit compensation. Therefore, the set of PBE would be the same
under most reasonable assumptions about the priority payments in this outcome.
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5.1. Structural Results
The compensation model has more complicated dynamics, and it is not obvious ex ante what form
the equilibrium strategies should take. Formally, if xN customers purchase priority, leaving N − xN

customers in the regular queue, then each regular-queue customer receives a payment of

γ
( pxN

N − xN

)
. (3)

For customer N with realized waiting cost cN who arrives to find xN−1 customers in the priority
queue, her utility from purchasing priority is the same as in the base model, namely UP,N(xN−1) =
V − p − cN(xN−1 + 1). However, her utility from joining the regular queue is different because the
compensation must be added to her utility, which (noting that xN = xN−1 in this case) yields

UR,N(xN−1) = V + γ
( pxN−1

N − xN−1

)
− cNN.

Customer N will purchase priority if and only if UR,N(xN−1) ≤ UP,N(xN−1), which for γ = 1 is
equivalent to

V + pxN−1

N − xN−1
− cNN ≤ V − p − cN(xN−1 + 1)

⇐⇒ xN−1 ≤ N − 1
2

(
1 +

√
1 + 4pN

cN

)
. (4)

For γ < 1, the threshold takes a similar form but with a significantly more complicated expression
under the radical, and the strategies of earlier customers are still more complex because of the required
equilibrium inference. To characterize the overall equilibrium structure requires us to understand the
impact of compensation on the equilibrium strategies, which we accomplish in the next lemma.

Lemma 2 (Compensation Effect of One Additional Regular-Queue Customer).
Consider a customer i ∈ {1, . . . ,N − 1}, and suppose that customers j ∈ {i + 1, . . . ,N} use
cost-dependent threshold strategies x̄j−1(Cj). Let gγ

i (k) be customer i’s compensation after choosing
the regular queue if xi−1 = k, for compensation fraction γ. For k ∈ {0, . . . , i − 2}, we have

E[gγ
i (k)] ≤ E[gγ

i (k + 1)].

If the number of priority purchases in front of a focal customer increases by one, then Lemma 1 shows
for a sample path that there will be either the same number or one less priority purchase after her.
Thus, the total number of priority purchases is the same or one more. So, either the compensation is
the same or, if there is one more priority purchase, then it is more because the (increased) priority
revenue is split among fewer regular-queue customers. The expected compensation from choosing the
regular queue after observing priority queue length k is thus weakly less than for k + 1. Thus, more
customers in the priority queue means both a diminished waiting-cost gain from choosing priority
(Lemma 1) and more compensation in the regular queue (Lemma 2), so for long enough priority queue
lengths it is optimal to choose the regular queue.
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Theorem 3 (Compensation: Cost-Dependent Threshold Strategies). In the unique PBE
of the compensation model, all customers use cost-dependent threshold strategies on the priority queue
length, below which customers purchase priority.

Although the threshold structure is maintained, the dynamics are more complex here because of
the impact of the non-linear compensation on incentives and equilibrium inference. Nonetheless, we
can still show that the equilibrium thresholds follow a similar pattern to the base model.

Theorem 4 (Compensation: Increasing Thresholds). Let x̄∗ = (x̄∗
0(C1), . . . , x̄∗

N−1(CN)) be
the vector of equilibrium threshold functions in the compensation model. For a constant c in the
support of F , we have

x̄∗
i−1(c) ≤ x̄∗

i (c) for i = 1, . . . ,N − 1. (5)

Moreover, for c < c′, we have x̄∗
i (c) ≤ x̄∗

i (c′).

Theorem 4 uses a related argument to Lemma 2, showing that the expected compensation for customer
i + 1 if xi = k is lower than customer i’s expected compensation if xi−1 = k. Combined with the effect
on waiting time from being one spot farther back in the queue (see the proof of Theorem 2), the
reduced compensation implies that customer i + 1 finds priority relatively more valuable than would
customer i. Additionally, in a given state, if priority is worth the fee for a customer with a lower
waiting cost, then it is clearly also worth the fee with a higher waiting cost.

Despite the shared structure of cost-dependent, increasing threshold strategies, the equilibria are
different in the base and compensation models because compensation makes priority less valuable by
improving the regular-queue outcome. The next theorem formalizes this intuition and highlights the
side effect of redistributing priority proceeds, which service providers should consider carefully.

Theorem 5 (Thresholds Lower in Compensation Model). For the base model, let x̄∗
i−1(Ci)

be the equilibrium threshold function for customer i ∈ {1, . . . ,N}. Similarly, in the compensation model
with compensation fraction 0 < γ ≤ 1, let x̄∗

i−1,γ(Ci) be the equilibrium threshold function for customer
i. For i ∈ {1, . . . ,N} and all ci in the support of Ci, we have

x̄∗
i−1,γ(ci) ≤ x̄∗

i−1(ci),

i.e., the thresholds with compensation are lower than the corresponding thresholds in the base model.
Furthermore, for fixed cost-dependent threshold strategies for customers j ∈ {i+1, . . . ,N}, customer i’s
optimal threshold with waiting-cost realization ci decreases with γ.

Compared to the base model, the effect of one additional priority customer is magnified with
compensation. Theorem 5 establishes an unambiguous relationship between the equilibrium thresholds
in the two models: thresholds are lower with compensation, which also implies fewer priority purchases.
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Table 1 Equilibrium thresholds and total purchases with deterministic waiting costs (N = 20, V = 35, c = 1).
Base Model Compensation Model (γ = 1)

p xN x̄∗ xN x̄∗

3 17 (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,14,15,15,16,16) 12 (0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
6 14 (0,1,2,3,4,5,6,7,8,8,9,9,10,10,11,11,12,12,13,13) 9 (-1,-1,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8)
9 11 (0,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10) 7 (-1,-1,-1,-1,-1,-1,-1,0,0,1,1,2,2,3,3,4,4,5,5,6)
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(b) Waiting Cost Realization ci = 2
Figure 2 PBE thresholds with/out compensation for waiting costs drawn from {1, 2} (prior probability 1/2 for

each waiting-cost realization, N = 20, V = 35, p = 6).

Comparing the thresholds among different compensation fractions is difficult because if the thresholds
behind a focal customer decrease with the compensation fraction, then a higher compensation fraction
means a shorter wait time but less compensation in the regular queue. Still, if we fix the strategies
behind a focal customer, then Theorem 5 shows that the focal customer’s optimal threshold decreases
with γ. Numerically, we observe that the equilibrium thresholds also decrease with γ.
5.2. Numerical Examples

We first look briefly at the special case of deterministic waiting costs. Table 1 compares the thresholds
and number of priority purchases from the base model with those in the compensation model with
γ = 1. Recall that a customer with a threshold of -1 means will join the regular queue no matter what.
The thresholds in both models decrease with the priority fee. Also, as implied by Theorem 5, the
equilibrium thresholds are lower with compensation, leading to fewer priority purchases.

In Appendix H, we also provide an algorithm to compute the PBE thresholds for arbitrary
distributions in the compensation model. We compute the equilibrium and plot the changing thresholds
for a two-point waiting-cost distribution with equal probabilities in Figure 2. As expected, the
threshold is decreasing in γ, and the difference can be significant. For example, for customer 20 with
waiting-cost realization 1, the threshold of 13 in the base model is more than 60% higher than the
threshold of 8 for γ = 1. The case of γ = 1/2 is also plotted, with predictably intermediate results:
thresholds are lower than in the base model but higher than with γ = 1.
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6. System-Wide Performance Measures
Understanding the operation of priority service systems and our compensation mechanism in particular
requires understanding not only customer strategies but also system-wide performance measures. Our
measures of interest are (i) aggregate waiting cost, (ii) customer surplus, and (iii) provider net revenue
from priority. We give the formal definition of each performance measure in Appendix I.

The performance measures depend on the path of play, which itself depends on the PBE thresholds
and thus on the waiting-cost realizations. To compute the expected values of these measures thus
requires considering each realization separately, of which there are an enormous number (2N even for
a two-point distribution). The concomitantly huge number of possible equilibrium paths makes it
extremely difficult to analytically compare such measures across different parameter instances and
compensation fractions. Instead, in this section, we perform two numerical studies: one that varies
many parameters to cover a wide range of different scenarios, and another that considers a smaller
number of scenarios in order to illuminate the effect of the priority fee, which will be important in
our laboratory experiments. Throughout the section, we consider two-point waiting-cost distributions,
and when making comparisons in words (e.g., “greater than”), the comparisons are in the weak sense.

First Numerical Study. For each instance in our first numerical study, we compute the PBE
thresholds and then determine the equilibrium path under each of the 2N possible vectors of wait-
ing costs. We consider N ∈ {10,12,14,16,18,20}, p ∈ {2,4,6}, γ ∈ {0,1/4,1/2,3/4,1}, supp(Ci) ∈

{{1,2},{1,4},{1,5},{2,4},{2,5},{3,5},{4,5}}, and δ ∈ {1/4,1/2,3/4}, where δ denotes the proba-
bility mass on the smaller element in the support of Ci (which also determines the probability of each
possible waiting-cost vector). Note that the priority fees are relatively low in this study compared
to the total waiting cost a customer can expect to incur. The combinations yield a total of 1,890
parameter instances, and in each instance, we set V = c̄N , where c̄ is the larger element in the support
of Ci. For all instances, we compute the expected values of our three performance measures.

First, an important goal of any priority system is to promote social welfare; that is, a system with
a priority option should ideally result in a lower aggregate waiting cost than an equivalent system
without a priority option. This goal is met in 100% of the parameter instances in our study; that is,
in all 1,890 instances, the expected aggregate waiting cost with a priority option is lower than that
with first-come, first-serve (FCFS) service. Importantly, this finding holds both in the instances with
compensation (γ > 0) and those without (γ = 0). Second, recall from Theorem 5 and surrounding that
compensation reduces the expected total number of priority purchases. Since the priority option aims
to promote efficiency by serving higher-cost customers earlier, we might expect that this reduction
in priority purchases would harm social efficiency. However, perhaps counterintuitively, in 1,511 of
1,512 instances with γ > 0 (99.9%), the aggregate waiting cost is lower than for γ = 0 and the same
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Table 2 Summary statistics for system-wide performance measures in first numerical study.

γ
Agg. Wait. Cost Less
Than FCFS (Freq.)

Surplus Exceeds
FCFS (Freq.)

Agg. Wait. Cost Less
Than Base Model (Freq.)

0 100% 0.53% -
1/4 100% 12.17% 99.74%
1/2 100% 29.37% 100%
3/4 100% 67.20% 100%
1 100% 99.47% 100%

other parameters. That is, despite entailing fewer priority purchases, compensation reduces aggregate
waiting cost in this study with low priority fees.

What leads to this finding? By definition, a given amount of money is worth more time to a
low-waiting-cost customer than to a high-waiting-cost customer. Thus, implementing compensation
is more likely to change a low-cost customer’s queue choice from priority to regular than to cause
such a change for a high-cost customer. A low-cost customer whose decision switches from priority to
regular will now be overtaken by any later high-cost customers who purchase priority, which reduces
the aggregate waiting cost. Indeed, we observe in Figure 2 that the PBE thresholds for γ = 1 versus
γ = 0 tend to be farther apart in the left panel (low cost realization) than in the right panel (high
cost realization). To validate the intuition, we compare the number of priority purchases in the base
model for high- and low-cost customers against the corresponding numbers for γ > 0. For γ > 0, the
expected number of low-cost customers purchasing priority is 1.98 less on average than for the same
parameters with γ = 0, but the expected number of high-cost customers purchasing priority is only
0.15 less; also, in 1,463 of 1,512 instances with γ > 0 (97%), the reduction in expected low-cost priority
purchases is of greater magnitude compared to the reduction in expected high-cost priority purchases.
That is, as conjectured, the actions of low-cost customers are more affected by compensation than
those of high-cost customers. We summarize the above findings in the following observation.

Observation 1 (Aggregate Waiting Cost for Small Priority Fee). When the priority fee
is relatively small: (i) in both the base model (γ = 0) and compensation model (γ > 0), the aggregate
waiting cost is lower than under FCFS, and (ii) the aggregate waiting cost is lower in the compensation
model (γ > 0) than in the base model (γ = 0).

Since compensation redirects a portion of priority payments to customers, we expect it to increase
customer surplus, and indeed, for all 378 combinations of N , p, supp(Ci), and δ in our study, the
customer surplus is increasing in the compensation fraction γ. Next, we group the parameter instances
by γ and compute the percentage of cases in which the surplus is higher than that under FCFS. We
see from Table 2 that the customer surplus more frequently exceeds that of FCFS as γ increases. In
the base model (γ = 0), customer surplus exceeds that of FCFS only in 2 of 378 cases. By contrast,
for γ = 3/4, this happens in more than 2/3 of cases, and for γ = 1, in almost all (376 of 378). These
findings validate our intuition about the value of compensation for increasing customer surplus.
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Observation 2 (Customer Surplus). Customer surplus is higher in the compensation model

(γ > 0) than in the base model (γ = 0). Moreover, for high (low) compensation fractions, customer
surplus is higher (lower) than under FCFS.

Second Numerical Study. We now want to obtain a better understanding of the impact of
the priority fee on equilibrium customer decisions and system performance. To accomplish this, we
consider a smaller cross product of values for the other parameters so that we can consider a much
wider range and finer grid of priority fees. We fix δ = 1/2 and N = 10, and we consider γ ∈ {0,1}

and supp(Ci) ∈ {{1, 2},{1,4},{1, 5},{2, 4},{2, 5},{3,5},{4, 5}}. We again let V = c̄N , where c̄ is the
larger element in the support of Ci. An upper bound on the range of prices to consider is easily
determined: if p > c̄(N −1), then no customer will buy priority in equilibrium because the fee is strictly
more than her waiting cost savings even if she has high waiting cost and priority allows her to overtake
all N − 1 other customers. Thus, we consider prices p ∈ {1/2,1,3/2, . . . , c̄(N − 1), c̄(N − 1) + 1/2}.

Comparing base and compensation models for a fixed priority fee, the aggregate waiting cost is
lower with compensation (γ = 1) than in the base model (γ = 0) in 37% of instances (205 of 547).
For these, the average fee is 13.70, versus 25.19 for the 63% of cases where the base model performs
better; compensation performing better with lower fees aligns with our finding in the first numerical
study. This phenomenon can also be understood with similar intuition from the first study. In cases
where compensation achieves lower aggregate waiting cost, there are on average 1.24 fewer low-cost
priority purchases in the compensation model than in the base model; that is, compensation is filtering
out low-cost customers from the priority queue. On the other hand, in cases where the base model
achieves lower aggregate waiting cost, the number of low-cost priority purchases in the compensation
model is almost exactly the same as in the base model (only 0.017 fewer purchases on average). The
reason is that in these latter cases, the fee is usually high enough that almost no low-cost customers
(0.042) purchase priority even in the base model, so the potential for further “filtering” is negligible.

It turns out that when we allow optimization of the priority fee, the base model tends to perform
better. In other words, optimally choosing the priority fee acts as a substitute for implementing
compensation in terms of filtering low-cost customers out of the priority queue. Indeed, for all seven
supports of Ci that we consider, the lowest aggregate waiting cost in the base model is lower than the
lowest aggregate waiting cost in the compensation model. We also ran the same computations for the
case with N = 14, and again in all seven instances, the base model achieves lower aggregate waiting
cost when the priority fee can be optimized. So, despite the promising feature of compensation that it
prevents low-cost customers from buying priority when they otherwise would, unfortunately it does
not do this job better than can be accomplished by optimally setting the priority fee in the base
model. Combining the above findings leads to our third observation about system performance.



A. E. Frazelle, E. Katok: Paid Priority in Service Systems 20

Regular

🙍🙎🙎🙍

🤵🧑🌾

Potential Customers

🙋
Priority

Decision

Priority

👩🎤

🙍

🕵

Observed Information
Private:
• Decision Sequences
• Waiting Costs

Common Knowledge:
• Priority Fee
• Queue States
• Remaining Customers

Final Results
• Final Queue States
• Own Position
• Round Earnings

Figure 3 All-Human Study session flow.

Observation 3 (Effect of Priority Fee on Aggregate Waiting Cost). The aggregate wait-
ing cost tends to be lower (higher) with compensation than under the base model when the priority fee
is low (high). If the fee is optimized to minimize aggregate waiting cost, then the aggregate waiting
cost is lower in the base model than the compensation model.

Armed with these findings about system performance, as well as our structural results about
equilibrium customer decisions, we next test our model’s predictions in the laboratory.
7. Behavioral Experiments
We conducted several controlled laboratory experiments with human subjects who were incentivized
based on their decisions. The purpose of these experiments was to test the extent to which human
behavior resembles the equilibrium and then use these behavioral insights to test the performance of
service systems with a range of priority fees in the base model and the compensation model.

An all-human queue constitutes only a single observation, and processing an entire queue involves
serving each customer, a lengthy process that is not ideal for repetition. However, in testing an
equilibrium model, it is important to allow participants to learn to play the game by allowing them to
play repeatedly. Also, understanding how participants react to different priority fees requires multiple
observations with each fee. To tackle these challenges, we used a two-part process. We first conducted
a study (the All-Human Study) collecting data from several queues consisting of 10 people (N = 10)
for the base and compensation models. We then conducted a second study (the One-Human Study) in
which one human participant interacted with nine computerized agents programmed to play the best
reply. The human participants played 100 rounds of the game, each round facing a randomly-drawn
priority fee, decision sequence, own waiting cost, and the waiting costs of the computerized agents.
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7.1. All-Human Study

Protocol. We conducted five sessions for the base treatment and 10 sessions for the compensation
treatment, for a total of 15 sessions. Each session included 10 participants (N = 10), with a different
group of subjects for each session. Because the main purpose of this behavioral experiment is to identify
any systematic deviations from the models’ predictions, we conducted the sessions in person, so that
participants actually waited to be served in live queues, and participants who purchased priority
were served before participants who did not. This departure from the standard method of conducting
laboratory experiments was intentional because the lack of anonymity highlighted any potential
behavioral issue that may arise in a real situation in which customers pay for priority, effectively
“cutting in line” in front of other customers. As a first step to understanding the behavioral effects of
priority payment redistribution, we tested the special case of a two-type waiting cost distribution
(High or Low with equal probability), with a compensation fraction γ = 1 in the compensation model
treatment (γ = 1 maximizes the difference between the models and thus should also magnify differences
in outcomes: the other experimental parameters were chosen with similar motivation). The combined
endowment of $15 and a participation fee of $5 imply a valuation V = $20. We set the priority fee p

at $1.50, and the waiting cost c at $0.50 for low-type customers and $1.50 for high-type customers per
service, including the subject’s own. Indexing the waiting cost to the number of services rather than
time serves two purposes. First, it allows flexibility in the implementation by eliminating the need to
ensure that each service took exactly the same amount of time, which would have been more difficult
in the live setting than in a computerized setup. Second, since we imposed a specific waiting cost on
the subjects, indexing to the number of services instead of time further divorced subject decisions
from their own intrinsic waiting costs. For similar reasons, we ensured that all subjects were released
from the experiment at the same time; that is, their decisions only affected their monetary payoffs,
not their total time commitment to the experiment.

Figure 3 displays the flow of experimental sessions in the All-Human Study. Upon entering the
room, participants were asked to log into the experimental software on their phones. We decided to
keep track of the decisions with the aid of the software in order to streamline the data collection
process; this also provided a smooth transition to the One-Human Study.

Once all participants were seated, read instructions that describe the game (see Appendix J), and
provided their Informed Consent, the session started and each participant observed their own decision
sequence and waiting cost (either $0.50 or $1.50), as well as the priority cost (which was $1.50 in the
All-Human Study). They also observed the current state of both queues, which were empty at the
beginning of the session, and filled up as the session progressed.

Participants were called to make the priority decision in the order of their sequence numbers. Upon
making the decision, each participant entered it into the software on their smartphone, then physically
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got up and stood in the chosen queue. After all participants had made their decisions and were
standing in their chosen queues, they were served. The service consisted of recording the subject’s
earnings on a receipt, having them sign the receipt, and paying the subject. Subjects in the priority
queue were served first, with FCFS service within the priority queue; once all priority subjects had
been served, the regular queue subjects were served, also FCFS within the regular queue. Participants
left the session after all ten were served.

Results. We conducted five sessions for the base model treatment. In each session, the waiting cost
corresponding to each decision sequence was generated randomly and independently. Thus, the baseline
treatment consisted of five unique cost draw sets, which we call cost profiles. For the compensation
treatment, we used five identical profiles. Upon examining the compensation treatment data, we
decided to check whether the compensation aspect was sufficiently salient. To do this, we added to all
compensation screens a blue box that computed the minimum and maximum possible compensation
if the current decision-maker were to join the regular queue. The minimum compensation scenario
is one in which all remaining customers join the regular queue, while the maximum compensation
scenario is one in which all remaining customers join the priority queue. We repeated the identical
five cost profiles for the compensation treatment with this added feature. It turned out that the
saliency feature made no difference to behavior or the measures, so we pooled the data for the ten
compensation treatment sessions. But findings remain the same with and without this data pooling.

Important quantities for the experiments include the five cost profiles (see Table EC.1 in Appendix A),
the equilibrium paths and lengths of the priority and regular queues for both models (Table EC.2),
and the observed behavior in each session of the two treatments (Table EC.3). Another measure that
will be indicative of behavioral deviations from equilibrium is the percentage of low-cost customers
occupying each queue. Note that the compensation treatment includes two instances of each profile—10
sessions. We first observe that in agreement with Theorem 5, priority queues are significantly shorter
and regular queues significantly longer in the compensation treatment than in the base treatment.
Also, in equilibrium, the regular queue should consist exclusively of low-cost customers in all five
profiles for both treatments. But in our experiment, four of five sessions in the base model treatment,
and eight of ten sessions in the compensation model treatment have at least one high-cost customer
in the regular queue.

In Table 3, we report summary statistics for performance measures observed in the two models, and
also for comparison, the same measures in equilibrium (for the same five waiting-cost profiles). As
another comparison, we report the aggregate waiting cost and surplus that would have resulted in the
FCFS regime. Notable behavioral regularities that we would like to emphasize are: (1) The proportion
of low-cost customers observed in the priority queue is higher than in equilibrium in both treatments,
and the difference is significant in the compensation treatment but not in the base treatment. (2)
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Table 3 Average performance measures in All-Human Study.
Base Compensation FCFSEquilibrium Observed Equilibrium Observed

Priority Length 7.8
(0.20)

7
(0.32)

5.4
(0.24)

6+

(0.15) -

Priority Proportion Low 0.52
(0.10)

0.62
(0.07)

0.31
(0.12)

0.62∗

(0.06) -

Regular Length 2.2
(0.20)

3
(0.32)

4.6
(0.24)

4+

(0.15) -

Regular Proportion Low 1 0.57∗

(0.12) 1 0.63∗

(0.09) -

Aggregate Waiting Cost 46.1
(3.9)

47.7
(4.4)

39.9
(3.1)

48.7∗

(3.6)
48.9
(4.4)

Surplus 142.2
(4.1)

141.8
(4.5)

160.1
(3.1)

151.3∗

(3.6)
151.1
(4.4)

Revenue 11.7
(0.30)

10.5
(0.47) 0 0 -

Note: ∗H0: Observed = Equilibrium p < 0.05; +H0: Base = Compensation p < 0.05

The proportion of low-cost customers observed in the regular queue is significantly lower than in
equilibrium in both treatments. These behavioral deviations from equilibrium do not result in any
significant difference between observed and equilibrium waiting costs or customer surplus levels in
the base condition. They do, however, lead to significantly higher waiting costs (and lower surplus
levels) in the compensation condition. Observed as well as equilibrium waiting costs (and surplus
levels) also do not significantly differ from what they would have been under the FCFS regime in the
base condition. In the compensation condition, waiting costs (and surplus levels) should be lower in
equilibrium than under the FCFS, but observed averages are not different from FCFS.8

Next, we analyze individual decisions by fitting a sequence of logit models, where the dependent
variable is the choice to buy priority, and the independent variables are in the first column of Table 4.
The estimates show that the rational decision has no explanatory power. Recall that the rational
decision depends on comparing the current priority queue length to a threshold that depends on the
waiting cost. Model (2) shows that priority queue length does affect behavior in the predicted direction
(longer length decreases the likelihood of choosing priority), but Model (3) shows that waiting cost
does not affect behavior. In Model (4) we add the sequence number to the model and it turns out
that the sequence number has explanatory power, being positive and significant, which indicates that
customers who choose later are more likely to purchase priority. The sequence number should not affect
the priority choice after controlling for the rational decision. So, participants overreact to the priority
queue length, but the effect on the aggregate likelihood of choosing priority is offset by considering

8 Since the measures in Table 3 are aggregated at the session level, the sample size is small, so the statistical power to
identify differences in these measures is limited. To augment the qualitative insights from the All-Human Study, it is
worthwhile to consider an alternative experimental design that permits efficient collection of a larger sample; this we
accomplish with the One-Human Study in Section 7.2.
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Table 4 Random effect logit model estimates for All-Human Study.
(1) (2) (3) (4)

Rational Decision 0.209 0.0786 0.185 -0.455
(1 = Priority, 0 = Regular) (0.401) (0.417) (0.704) (0.805)

Compensation -0.325 -0.620 -0.558 -1.608*
(1 = Compensation, 0 = Base) (0.434) (0.463) (0.567) (0.729)

Priority Queue Length -0.354*** -0.351*** -1.623***
(0.102) (0.104) (0.381)

Waiting Cost -0.118 0.118
(1 = High, 0 = Low) (0.625) (0.718)

Sequence Number 0.838***
(0.236)

Constant 0.652 2.086** 2.017** 2.412**
(0.486) (0.663) (0.755) (0.874)

N (groups) 150 (15) 150 (15) 150 (15) 150 (15)
Log Likelihood -97.71 -91.06 -91.05 -83.55
χ2 1.7 13.09 13.18 22.63

Note: Panel variable is group ID; Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 4 One-Human Study session flow.

the sequence number, with which the priority queue length is positively correlated (correlation is 0.44,

which does not raise concerns about multicollinearity). The net effect is that, although the proportion

of low-cost customers in the priority queue is significantly higher than equilibrium, the average total

number (low-cost plus high-cost) of participants who purchase priority in the All-Human Study is not

significantly different from the equilibrium prediction, as shown in Table 3. This finding, however, is

for a single priority fee; when we vary the priority fee (in the One-Human Study below), the outcomes

at high fees differ from the equilibrium prediction.
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Table 5 Proportion of decisions to join each queue by low-cost customers in the One-Human Study.
Base Compensation

Proportion Low Equilibrium Observed Equilibrium Observed
Priority 0.20 0.34∗ 0.11 0.38∗

Regular 0.67 0.58∗ 0.63 0.53∗

Note: H0: Observed = Equilibrium ∗ p < 0.05

7.2. One-Human Study

Protocol. Figure 4 displays the flow of experimental sessions in the One-Human Study. Besides
being done entirely on the computer, the One-Human Study differed from the All-Human Study in
three major ways: (1) each human participant played with nine computerized agents programmed to
play the best reply (i.e., the PBE strategies for their realized waiting costs), (2) the task was repeated
for 100 rounds, and (3) the priority cost was randomly chosen each round from a range between $0.50
to $20, each 50-cent increment equally likely. The waiting cost for a customer (human or computerized)
was $1 or $2 per service with equal probability, and subjects started with an endowment of $20 and
received a $5 participation fee, implying V = 25.9 Subjects were paid based on their earnings averaged
over all rounds in the session. We kept the decision screen identical to the decision screen in the
All-Human Study. The information that participants observed was also the same. After each decision,
participants saw the outcome, which included decisions made by the computerized agents who made
their decisions after the subject, and the resulting waiting cost and total cost for the round. Each
round all players (human and computerized) drew new waiting costs and sequence numbers, and the
priority fee for the group was also determined. This information was displayed on the decision screen.

We conducted one session each, for the base treatment and the compensation treatment. Each
treatment included 50 people, each using an individual cost profile. As in the All-Human Study, we
matched cost profiles across the two treatments, but in this study, the sequence number of the human
player and the priority cost for the round were also matched across the two sessions.

Results. Recall that in the All-Human Study, we identified two behavioral regularities, both of
which we can directly measure in the One-Human Study: (1) The proportion of low-cost customers
observed in the priority queue is significantly higher than in equilibrium in both treatments. (2)
The proportion of low-cost customers observed in the regular queue is significantly lower than in
equilibrium in both treatments. To make a qualitative comparison of this between the All-Human
and the One-Human Studies, we measure the proportion of observed and equilibrium decisions to
join each queue by low-cost customers and display the summary in Table 5.

We observe both behavioral regularities in the One-Human Study that we did in the All-Human
Study: priority queues have too many low-cost participants, and regular queues have too few of them.

9 We assumed for our analytical models that p ≤ c(N − 1). Although some of the parameter settings in the One-Human
Study do not satisfy this assumption, it can be shown that all of our theoretical results continue to hold if the
assumption is dropped.
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Table 6 Random effect logit model estimates for the One-Human Study (γ = 0).
(1) (2) (3) (4)

Rational Decision 1.915∗∗∗ 1.792∗∗∗ 1.337∗∗∗ 0.977∗∗∗

(1 = Priority, 0 = Regular) (0.0710) (0.0735) (0.101) (0.107)
Priority Queue Length 0.0977∗∗∗ 0.0290 -0.261∗∗∗

(0.0165) (0.0220) (0.0354)
Waiting Cost 0.428∗∗∗ 0.610∗∗∗

(1 = High, 0 = Low) (0.0827) (0.0867)
Priority Fee -0.0544∗∗∗ -0.158∗∗∗

(0.0103) (0.0148)
Sequence Number 0.211∗∗∗

(0.0200)
Constant -1.387∗∗∗ -1.498∗∗∗ -1.315∗∗∗ -1.134∗∗∗

(0.130) (0.133) (0.202) (0.206)
N (groups) 5000 (50) 5000 (50) 5000 (50) 5000 (50)
Log Likelihood -2691.1 -2673.8 -2653.3 -2592.9
χ2 727.3 745.1 765.6 798.2

Note: Panel variable is subject ID; Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This link gives us the confidence to conclude that behavior in our One-Human Study is qualitatively
similar to behavior in the All-Human Study, so we will compute the relevant system-wide measures
based on the behavior in the One-Human Study.

Analysis of Individual Decisions. We begin by fitting a set of logit models similar to the
ones that we used in analyzing behavior in the All-Human Study but separate for the base and
compensation treatments, and with the additional independent variable Priority Fee. We present
these estimates in Table 6 for the base case and Table 7 for the compensation case.

Comparing estimates of the full models (Model 4) for the All-Human Study in Table 4 and the
One-Human Study in Tables 6 and 7, we see that behavior is qualitatively similar. The signs of the
variables for the priority queue length, waiting cost, and sequence number are the same. Because the
One-Human Study included a range of values for the priority fee, we can also measure its effect, which
is negative and significant, as expected. Additionally, in the One-Human Study, the Rational Decision
variable is positive and significant, so the behavior is qualitatively consistent with the equilibrium
prediction. Also, unlike in the All-Human Study, all variables in Model (4) are statistically significant.
The One-Human Study has more than 30 times the amount of data than the All-Human Study, so
the power is much higher (which was one of the reasons for this design).

System-Wide Performance Measures. We are interested in comparing system performance
between the base and compensation treatments, as well as comparing observed measures to equilibrium
predictions and the FCFS regime. Since each decision in the One-Human data includes one human
subject and nine automated customers programmed to follow the equilibrium, comparing the observed
measures directly to the equilibrium would not be meaningful. Instead, we conducted a simulation
study in which agents are programmed to behave according to the models we estimated in Tables 6
and 7 for the base and compensation treatments, respectively. As we already showed that behavior
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Table 7 Random effect logit model estimates for the One-Human Study (γ = 1).
(1) (2) (3) (4)

Rational Decision 1.347∗∗∗ 1.208∗∗∗ 1.059∗∗∗ 0.586∗∗∗

(1 = Priority, 0 = Regular) (0.0756) (0.0790) (0.101) (0.108)
Priority Queue Length 0.137∗∗∗ 0.111∗∗∗ -0.238∗∗∗

(0.0232) (0.0290) (0.0388)
Waiting Cost 0.148 0.370∗∗∗

(1 = High, 0 = Low) (0.0808) (0.0854)
Priority Fee -0.0159 -0.105∗∗∗

(0.00885) (0.0116)
Sequence Number 0.241∗∗∗

(0.0174)
Constant -1.175∗∗∗ -1.271∗∗∗ -1.269∗∗∗ -1.618∗∗∗

(0.170) (0.174) (0.226) (0.235)
N (groups) 5000 (50) 5000 (50) 5000 (50) 5000 (50)
Log Likelihood -2673.5 -2656.1 -2653.4 -2548.5
χ2 317.3 344.5 348.9 483.9

Note: Panel variable is subject ID; Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

in the One-Human Study is close to the behavior in the All-Human Study, we expect the measures
that we obtain from these simulations to be similar to analogous measures if we were to conduct the
same experiments with all human subjects.10 Details of the simulation procedure are provided in
Appendix B; we intentionally use an extremely large sample size to yield negligible standard errors,
so for comparisons, we treat sample averages as essentially equal to the true means.

The findings for customer surplus are straightforward. With simulated subjects, the surplus is
higher with compensation than under FCFS or the base model; however, due to sub-optimal choices,
the improvement with compensation above FCFS is smaller than in equilibrium, and the gap in
surplus for the base model versus FCFS is larger than in equilibrium. Hereafter, we focus on the other
two performance measures, namely aggregate waiting cost and provider revenue.

We first consult Figure 5,11 which plots the aggregate waiting cost against the priority fee p for the
base model, compensation model, and FCFS. There are similar features in the equilibrium (left panel)
and with simulated subjects (right panel). In both cases, there is a region of low priority fees where
compensation achieves lower aggregate waiting cost than the base model; the aggregate waiting cost
follows a broadly decreasing-then-increasing pattern; and the waiting-cost-minimizing fees for the base
and compensation models are roughly the same for simulated subjects as in the PBE. The first point
aligns with Observation 1 from Section 6, although the range of fees where the observation holds is

10 In the One-Human Study we have data for 100 independent observations (50 participants in two treatments make
100 decisions each, each participant representing an independent observation). If we were to collect data for 100
priority purchase decisions in all-human queues, we would have needed 1,000 participants, and because each complete
queue includes 10 people, each person making a decision and waiting for the other nine, each replication would have
taken 10 times longer. Therefore, each participant would have been able to make only 10 instead of 100 decisions,
which would have significantly limited the range of priority costs and sequence numbers each person would have been
exposed to.
11 In order to effectively depict the respective curvatures, different vertical axis scales are used in the two panels.
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(b) Simulated Subjects
Figure 5 Aggregate waiting costs (N = 10, waiting cost Ci ∈ {1, 2}).

much smaller with simulated subjects than in equilibrium, and the difference is also much smaller
even in this range. Moreover, in line with Observation 3, with simulated subjects as in equilibrium,
we find that when the priority fee can be optimized, the best-case aggregate waiting cost is lower in
the base model than with compensation. Thus, overall, compensation in a priority service system
appears not to offer the short-term social welfare benefit that we might hope for given its ability in
equilibrium to filter low-cost customers out of the priority queue. However, we conjecture that a firm
still might choose to implement it for other reasons related to customer relations, e.g., to combat
the negative customer response stoked by priority queues that we document in the introduction. In
this case, our results and insights can aid managers in assessing how customers’ priority purchasing
decisions (and the system performance) will change if compensation is implemented.

Interestingly, at the socially optimal fee and for most fees considered, the magnitude of improvement
in aggregate waiting cost compared to FCFS is much smaller with simulated subjects (4.5% at optimal
for base model) than in the PBE (13.0%): observe the differing scales on Figure 5’s vertical axis. Why
is this? As discussed (see, e.g., Table 5), low-cost customers represent a significantly greater proportion
of priority purchases in our experiments than in equilibrium. Accordingly, compare Figure 6(a)
(equilibrium) and (b) (simulated subjects) for the base model: as the fee increases, the number of
equilibrium low-cost priority purchases quickly drops to near zero, but low-cost subjects continue to
buy priority across the whole range of fees. The pattern is decreasing as expected, but at a much
shallower rate, so that apart from very low fees, there are far more low-cost customers in the priority
queue relative to the equilibrium. A similar phenomenon occurs in the compensation case (plots
omitted for brevity). These sub-optimal decisions lead to higher aggregate waiting cost. Low-cost
customers buying priority is always socially undesirable, and our subjects do this even more than in
equilibrium; this behavioral regularity thwarts the priority mechanism because high-cost customers
cannot overtake a low-cost customer if that customer bought priority earlier in the sequence.
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(b) Purchases: Simulated Subjects

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Priority Fee p

0

5

10

15

20

25

30

35

Pr
ov

id
er

 N
et

 R
ev

en
ue

Simulated Subjects
PBE

(c) Provider Revenue
Figure 6 Priority purchases and provider revenue (both averages) for PBE vs. simulated subjects in base model.

On the other hand, customers overbuying priority at high fees has another important ramification,
one that may be welcomed by some service providers. As the fee increases, the number of priority
purchases decreases both with simulated subjects and in equilibrium. However, the decrease is shallower
with simulated subjects, both for low-cost customers, as noted above, and also for high-cost customers
(Figure 6 (a) vs. (b)).12 Thus, for high fees, the total number of priority purchases is higher than in
equilibrium, i.e., customers tolerate higher priority fees than they rationally should. In other words,
customers’ behavioral deviations allow the provider to raise the price of priority higher than it would
in equilibrium and extract even more priority revenue. Turning now to Figure 6 (c), we see that not
only is the revenue-optimal priority fee meaningfully higher with simulated subjects ($11.50) than in
equilibrium ($8), but also the maximum revenue is nearly 5% higher.

In short, behavioral deviations lead to increased revenue but worse (i.e., higher) aggregate waiting
cost. For performance-critical or publicly-operated systems where aggregate waiting cost is paramount,
our results imply that service providers should attempt to nudge customers closer to the equilibrium
priority-purchasing strategies, especially low-cost customers. On the other hand, customers’ behavioral
deviations will lead them to tolerate high priority fees and continue to buy priority. So, a service
provider with revenue as its primary objective can price accordingly and let the cash roll in.

8. Conclusion
Priority service systems are increasingly prevalent, and different providers operate them differently
and charge varying prices. Also, compensation of inconvenienced customers has shown promise, but
its operation in priority systems is not well understood. We have illuminated how to operate a priority
service system (with or without compensation) through a theoretical and behavioral lens.

12 This finding is also consistent with actual subject decisions in the One-Human Study. For priority fees of $10.50
or more, priority was optimal (i.e., the equilibrium choice) in only 11% (568 of 5,062) of decision opportunities, but
subjects purchased priority in more than 26% (1,334 of 5,062) of these (the findings are similar if we break out base
vs. compensation or low vs. high cost: in each group, subjects purchase priority more frequently than in equilibrium).
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We have studied a model of a priority service system designed to be tested in the lab, with two
variants: one a traditional priority system (base model), and another in which priority payments are
partially or fully redistributed as compensation to regular-queue customers (compensation model).
Theoretically, we derived structural results for how customers make decisions and uncovered key
strategic drivers. The equilibrium in both the base and compensation model follows a cost-dependent,
increasing-threshold structure. Also, because compensation makes the priority queue less attractive,
customers in the compensation model have lower thresholds than those in the base model, all else
equal. Due to our sequential setup and the huge cross-product of possible equilibrium strategies given
customers’ random waiting costs, our theoretical results required careful and innovative sample-path
analysis to reveal the equilibrium’s structure without handling each scenario separately. Additionally,
we analyzed system-wide performance measures. We found that for a low priority fee, compensation
can actually reduce aggregate waiting cost by filtering low-cost customers out of the priority queue;
however, this finding does not hold for higher priority fees or when the priority fee is optimized.

We then took our model and its predictions to the laboratory. Directionally, subject behavior in
our experiments was in line with predictions, but some key behavioral deviations have significant
consequences for service providers. We found that subjects with low waiting costs represented a
greater proportion of priority purchases than the equilibrium predicted. This behavioral regularity
prevents the priority mechanism from achieving its full social potential, such that fewer high-cost
customers are able to overtake low-cost customers, leading to higher aggregate waiting cost than
with fully rational customers. Additionally, we found that compensation, despite its promise, failed
to deliver. A traditional priority system outperformed it in terms of aggregate waiting cost both in
equilibrium and in simulations based on our experiments. However, we also identified a notable benefit
(to service providers) of customers’ behavioral deviations: at high fees, more customers purchased
priority than predicted. This irrationally high willingness to pay for priority potentially allows service
providers to extract more revenue from customers than they could if customers were fully rational. In
deciding whether to attempt to influence customers toward rational decisions, a provider thus faces a
tradeoff: the status quo (with behavioral deviations) brings more revenue but worse social efficiency.
The way forward is then dictated by the relative importance ascribed to these two measures.

Future behavioral queueing research has much to investigate, including a few avenues suggested
by our work and its limitations. First, all subjects in our experiments received the service, so we
did not separate willingness to pay for priority (which is principally dependent on the waiting cost)
from willingness to pay for the service itself. In practice, these could be statistically dependent;
this could affect the propensity of customers with different waiting costs to purchase priority, and
an experimental study incorporating these features could be a fruitful direction for future research.
Second, our experiments imposed specific (monetary) waiting costs on subjects. This approach gives
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the experimenter the most control and follows the convention in the literature (see, e.g., Section 5
of Allon and Kremer 2018), but it has its drawbacks, which present a shared challenge for most
queueing-based experiments. Specifically, individuals likely possess their own intrinsic waiting costs,
and imposing monetary waiting costs on subjects does not facilitate inference about these intrinsic
costs. At the same time, intrinsic waiting costs are not only difficult to infer but may also be non-linear
in time (and customer preferences may depend both on the notion of “cost” and on the customer’s
perception of elapsed time). Some past work has attempted to understand the functional form of
waiting disutility (see Section 2.1 of Allon and Kremer 2018 for a survey); an exciting but daunting
challenge for future work is to successfully harmonize and disentangle the competing goals of (i)
experimentally testing a theoretical queueing model in a controlled environment and (ii) incorporating
or inferring subjects’ intrinsic waiting preferences. Third and finally, our experiments comprised a
One-Human Study and an All-Human Study, each offering its own (dis)advantages. The One-Human
Study was conducted virtually and with one human player in a given instance of the game; this
facilitated a large sample while retaining the essential features of the model. However, it also entailed
subjects interacting with computerized agents playing the equilibrium strategy, which could be difficult
for subjects to conceptualize. To make this notion more accessible, our instructions informed subjects
that the computerized agents were “programmed to make decisions in a way that would maximize
their earnings.” The All-Human Study, on the other hand, involved human subjects in all positions
of the game and required them to physically wait in queues; this was ideal for external validity but
hampered data collection due to the time commitment and expense. For future behavioral queueing
experiments, all-human studies with large samples would be the ideal solution but a difficult one to
bring to fruition; innovative approaches to behavioral experiments may be needed to enable this, and
field experiments could also complement such work.
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Appendix

A. Additional Tables

Table EC.1 Cost profiles in the All-Human Study.
Sequence

Profile 1 2 3 4 5 6 7 8 9 10
1 H L H H H L L H L H
2 H H L L L L H L H H
3 H L L L L L H H H L
4 H L L L L L L H L L
5 L L H L L L L L L H

Table EC.2 Equilibrium paths and summary statistics in equilibrium for the All-Human Study.
Base Model (γ = 0): Priority Regular

Profile PBE Path (1: Pri., 0: Reg.) Length Low High Length Low High
1 1 1 1 1 1 0 1 1 0 1 8 2 6 2 2 0
2 1 1 1 1 1 0 1 0 1 1 8 3 5 2 2 0
3 1 1 1 1 1 0 1 1 1 0 8 4 4 2 2 0
4 1 1 1 1 1 0 1 1 0 0 7 5 2 3 3 0
5 1 1 1 1 1 0 1 0 1 1 8 6 2 2 2 0

Average: 7.8 4 3.8 2.2 2.2 0
Comp. Model (γ = 1): Priority Regular
PBE Path (1: Pri., 0: Reg.) Length Low High Length Low High

1 1 0 1 1 1 0 0 1 0 1 6 0 6 4 4 0
2 1 1 0 0 0 0 1 1 1 1 6 1 5 4 4 0
3 1 0 0 0 1 0 1 1 1 0 5 1 4 5 5 0
4 1 0 0 0 1 0 1 1 0 1 5 3 2 5 5 0
5 0 0 1 0 1 0 1 1 0 1 5 3 2 5 5 0

Average: 5.4 1.6 3.8 4.6 4.6 0

B. Details of Simulation for One-Human Study

In the simulations, we considered the same sets of parameters tested in the One-Human Study, i.e., N = 10,
compensation fraction γ ∈ {0,1}, priority fee p between $0.50 and $20 in increments of $0.50, and waiting
costs for each customer (human or computerized) drawn IID from $1 or $2 per service with equal probability.
In order to obtain estimates with negligible standard errors, we conducted 5 million replications for each
combination of priority fee and compensation fraction. Given the huge sample size, for purposes of comparison
we treat sample averages as essentially equal to the true means. For each replication, we randomly generated
the vector of 10 waiting costs. As mentioned, these waiting costs were IID across customers within a replication;
however, the waiting-cost vectors for a given replication were coupled across different values of the priority
fee and compensation fraction; that is, the vector used in the j-th replication for p = $0.50 and γ = 0 was also
used in the j-th replication for all other combinations of p and γ. We also used the same 5 million randomly
drawn waiting-cost vectors to compute equilibrium and FCFS performance measures.

ec1
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Table EC.3 Observed paths and summary statistics in the All-Human Study.
Base Model (γ = 0): Priority Regular

Profile Observed (1: Pri., 0: Reg.) Length Low High Length Low High
1 1 0 0 1 1 1 1 1 1 0 7 3 4 3 1 2
2 1 1 1 1 1 0 1 1 0 0 7 4 3 3 1 2
3 1 1 0 1 1 0 1 0 1 1 7 4 3 3 2 1
4 1 1 1 0 1 1 1 0 1 1 8 7 1 2 1 1
5 1 1 1 0 0 1 1 0 0 1 6 4 2 4 4 0

Average: 7 4.4 2.6 3 1.8 1.2
Comp. Model (γ = 1): Priority Regular

Profile Observed (1: Pri., 0: Reg.) Length Low High Length Low High
1 1 1 0 1 0 1 0 0 0 1 5 2 3 5 2 3
2 1 1 1 1 0 1 0 0 0 1 6 3 3 4 2 2
3 1 1 0 1 1 0 0 1 0 1 6 4 2 4 2 2
4 1 1 0 1 1 0 0 1 0 1 6 4 2 4 4 0
5 1 1 1 0 1 0 0 1 1 0 6 5 1 4 3 1
1 0 1 1 1 1 1 0 1 0 1 7 2 5 3 2 1
2 0 0 1 1 1 1 0 1 0 1 6 5 1 4 0 4
3 1 1 0 0 1 1 0 1 1 0 6 3 3 4 3 1
4 1 1 0 1 0 0 1 1 0 1 6 4 2 4 4 0
5 1 1 1 0 0 0 1 1 1 0 6 5 1 4 3 1

Average: 6 3.7 2.3 4 2.5 1.5

We refer to a particular combination of replication number (and the associated waiting-cost vector), priority

fee, and compensation fraction (e.g., fifth replication, p = 4.50, γ = 1) as an instance. The priority queue

length facing the i-th customer in a given instance was determined from the simulated actions of the i− 1

earlier customers in the instance, and given the priority fee and the customer’s waiting cost and sequence

number, the equilibrium decision was determined by comparing the priority queue length with the customer’s

PBE threshold. We then calculated the predicted probability of priority purchase using the logit models (4)

from Tables 6 and 7 for γ = 0 and 1, respectively. The customer’s decision (regular or priority) was then

realized from a Bernoulli distribution with the calculated probability of priority purchase.

C. Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1. We take a sample path approach. Consider a particular vector of realized waiting

costs (c1, . . . , cN ), a focal customer i, and k ∈ {0, . . . , i− 2}. Under the threshold strategy x̄j−1(cj), customer

j ∈ {i + 1, . . . ,N} purchases priority if and only if xj−1 ≤ x̄j−1(cj). Given the fixed (but arbitrary) threshold

strategies on the sample path, Lk
i is no longer random: we use ℓk

i to denote its realization corresponding to the

realized waiting costs (c1, . . . , cN ). Denote by xk
j the length of the priority queue that is observed by customer

j + 1, given that xi−1 = k, customer i chooses the regular queue, and each customer j ∈ {i + 1, . . . ,N} uses

the threshold strategy x̄j−1(cj). We proceed by cases.

Case 1: x̄j−1(cj) ̸= xk
j−1 for all j ∈ {i + 1, . . . , N}. In this case, if customer i chooses the regular queue,

then all customers j ∈ {i + 1, . . . ,N} will take the same actions whether xi−1 = k or xi−1 = k + 1. To see

this, consider customer i + 1. We have xk+1
i = xk

i + 1. Because xk
i ̸= x̄i(ci+1), we either have x̄i(ci+1)≥ xk+1

i =

xk
i + 1 > xk

i , or x̄i(ci+1) < xk
i < xk

i + 1 = xk+1
i . Either way, customer i + 1 will make the same decision with

xi = xi−1 = k as with xi = xi−1 = k + 1, and by induction, so will customers j ∈ {i + 2, . . . ,N}.



e-companion to A. E. Frazelle, E. Katok: Paid Priority in Service Systems ec3

Hence, after choosing the regular queue, customer i will wait through the same number of services whether
xi−1 = k or xi−1 = k + 1. Denoting by α the number of priority purchases among customers j ∈ {i + 1, . . . ,N},
we then have

ℓk
i = i + α = ℓk+1

i . (EC.1)

Case 2: x̄j−1(cj) = xk
j−1 for some j ∈ {i + 1, . . . , N}. In this case, define j′ by

j′ := min
{

j ∈ {i + 1, . . . ,N} : x̄j−1(cj) = xk
j−1

}
.

By the same argument as in Case 1, if customer i chooses the regular queue, then whether xi−1 = k or
xi−1 = k + 1, customers j ∈ {i + 1, . . . , j′− 1} will take the same actions in either case because x̄j−1(cj) ̸= xk

j−1

for all j ∈ {i + 1, . . . , j′− 1} (if j′ = i + 1, then this interval of customers is vacuous and thus trivially there
is no difference in this empty set of customers between the cases with xi−1 = k and xi−1 = k + 1). By the
definition of j′, we have xk

j′−1 = x̄j′−1(cj), so if xi−1 = k, then customer j′ will purchase priority because
the priority queue length will be exactly at her threshold. Also, because all customers j ∈ {i + 1, . . . , j′− 1}
take the same actions with xi−1 = k + 1 as with xi−1 = k, we have xk+1

j′−1 = xk
j′−1 + 1 = x̄j′−1(cj) + 1. So, if

xi−1 = k + 1, then customer j′ will not purchase priority because her threshold will be exceeded by one.
Consequently, we have xk+1

j′ = xk
j′−1 + 1 = xk

j′ , meaning that if customer i chooses the regular queue, then xj′

is the same whether xi−1 = k or xi−1 = k + 1.
Therefore, all customers j ∈ {j′ + 1, . . . ,N} take the same action whether xi−1 = k or xi−1 = k + 1 because

xk
j′ = xk+1

j′ implies that xk
j−1 = xk+1

j−1 for all j ∈ {j′ + 1, . . . ,N} (if j′ = N , then again this empty interval of
customers has no effect on ℓk

i or ℓk+1
i ). So, conditional on customer i choosing the regular queue, the total

number of customers to purchase priority among customers j ∈ {i + 1, . . . , j′− 1, j′ + 1, . . . ,N} is the same
whether xi−1 = k or xi−1 = k + 1. Denoting this number by β, we can write

ℓk
i = i + β + 1 = ℓk+1

i + 1, (EC.2)

where the difference of 1 between ℓk
i and ℓk+1

i is due to customer j′ purchasing priority if xi−1 = k (because
in this case xj′−1 = x̄j′−1(cj′))—and accordingly being served before customer i—but choosing the regular
queue if xi−1 = k + 1 (because in this case xj′−1 = x̄j′−1(cj′) + 1).

Equations (EC.1) and (EC.2) imply the bounds 0≤ ℓk
i − ℓk+1

i ≤ 1. Taking expectation over the waiting
costs (and by extension, over the other customers’ cost-dependent thresholds) yields the lemma. □

Proof of Theorem 1. The proof is by a double induction. Consider a customer i ∈ {1, . . . ,N − 1}, and
suppose that all customers j ∈ {i + 1, . . . ,N} use some cost-dependent threshold strategies x̄j−1(Cj). That is,
customer j purchases priority if and only if xj−1 ≤ x̄j−1(Cj).

For a given waiting-cost realization ci, consider customer i’s optimal strategy as a function of xi−1. Given
the cost-dependent threshold strategies x̄j−1(Cj) for customers j ∈ {i + 1, . . . ,N}, let 0≤ k ≤ i− 1 be the
smallest integer such that, if xi−1 = k, then it is optimal for customer i to stay in the regular queue. We
note that, by definition, it is optimal for customer i to purchase priority if xi−1 < k. If it is never optimal for
customer i to choose the regular queue, then the optimal strategy for customer i is the threshold strategy
x̄i−1 = i− 1, and by convention we say that k = i in this case. Similarly, if k = i− 1, then the optimal strategy
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for customer i is the threshold strategy x̄i−1 = i− 2. The remainder of the argument establishes that a

threshold strategy is also optimal if k≤ i− 2.

As in Lemma 1, let Lk
i denote the random number of services (including her own) that customer i will wait

through if xi−1 = k and she chooses the regular queue; the exact value of Lk
i will depend on the thresholds

used by the later customers, which in turn depend on their waiting-cost realizations. Let x̄i,j−1 be a vector of

cost-dependent threshold strategies (x̄i(Ci+1), . . . , x̄j−1(Cj)) for customers i + 1, . . . , j. For the case in which

customers i + 1, . . . ,N use the cost-dependent threshold strategies x̄i,N−1, we represent customer i’s net

utilities from choosing the regular or priority queue by UR,i(xi−1; x̄i,N−1) and UP,i(xi−1), respectively. Note

that the utility from the regular queue is a random variable because the strategies of the later customers

depend on their realized waiting costs. Taking expectation over the remaining customers’ waiting costs

(the earlier customers’ waiting costs are irrelevant because their decisions have already been observed), the

assumption that the regular queue is optimal for customer i if xi−1 = k implies

E[UR,i(k ; x̄i,N−1)] = V − ciE[Lk
i ] > V − p− ci(k + 1) = UP,i(k). (EC.3)

By Lemma 1, we then have

E[UR,i(k + 1 ; x̄i,N−1)] = V − ciE[Lk+1
i ]≥ V − ciE[Lk

i ]

> V − p− ci(k + 1)

> V − p− ci(k + 2)

= UP,i(k + 1),

(EC.4)

where the inequality on the second line holds by equation (EC.3). We conclude that if it is optimal for

customer i to choose the regular queue when xi−1 = k, then it is also optimal for her to choose the regular

queue when xi−1 = k + 1, and therefore by induction for any k≤ xi−1 ≤ i− 1. Because by the definition of k it

is optimal for customer i to join the priority queue if xi−1 < k, we conclude that customer i’s optimal strategy

for waiting-cost realization ci is the threshold strategy x̄∗
i−1(ci) = k− 1. The above derivation holds for any

realization of the waiting cost, so the overall optimal strategy for customer i is a cost-dependent threshold

strategy x̄∗
i−1(Ci).

The outer induction hypothesis is verified in equilibrium for customer N − 1 by equation (1): customer N

optimally uses the cost-dependent threshold strategy x̄∗
N−1(CN ) = ⌊N − 1− p/CN⌋. The above then implies

that it is also optimal for customers i∈ {1, . . . ,N − 1} to use cost-dependent threshold strategies. □

D. Supplementary Result and Proof for Theorem 2

Lemma EC.1. Consider a customer i∈ {1, . . . ,N − 1}, and suppose that each customer j ∈ {i + 1, . . . ,N}

uses a cost-dependent threshold strategy x̄j−1(Cj). Given these strategies, let Lk
i (Lk

i+1) be the random variable

for the number of services (including her own) that customer i (i + 1) will wait through if xi−1 = k (xi = k)

and customer i (i + 1) chooses the regular queue. For k ∈ {0, . . . , i− 1}, we have

0≤ E[Lk
i+1]−E[Lk

i ]≤ 1.
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Proof. Consider a particular vector of realized waiting costs (c1, . . . , cN ), and again let ℓk
i (ℓk

i+1) denote
the realization of Lk

i (Lk
i+1) for these waiting costs and the corresponding thresholds. If xi−1 = k and at least

one of customers i and i + 1 chooses the regular queue, then we will have xi+1 ∈ {k, k + 1}.
Case 1: x̄i(c) < k. In this case, if xi−1 = k and customer i chooses the regular queue, then we have xi = k,
and customer i + 1 will not purchase priority because her threshold is exceeded. Let the number of priority
purchases among customers i + 2, . . . ,N be denoted by α in this case. We have ℓk

i = i + α. If xi = k, and if
customer i + 1 chooses the regular queue, then the number of priority purchases among customers i + 2, . . . ,N

will also be α, so we have ℓk
i+1 = i + 1 + α, and therefore

ℓk
i+1 = ℓk

i + 1. (EC.5)

Case 2: x̄i(c) ≥ k. In this case, if xi−1 = k and customer i chooses the regular queue, then we again have
xi = k, but now customer i + 1’s strategy will prescribe priority for her because her threshold is at least
k. Denote by xk

j,m the length of the priority queue that is observed by customer j + 1, given that xm = k,
customer m chooses the regular queue, and each customer j ∈ {m + 1, . . . ,N} uses the threshold strategy
x̄j−1(cj). Suppose first that x̄j(cj+1) ̸= xk

j,i+1 for all j ∈ {i + 2, . . . ,N}. By arguments analogous to Case 1 of
the proof of Lemma 1, in this case the number of priority purchases among customers i + 2, . . . ,N will be the
same with xi+1 = k and with xi+1 = k + 1. Denoting this number by α, and for ℓk

i+1 letting customer i + 1
contemplate choosing the regular queue even though the strategy x̄i(ci) prescribes priority, we have

ℓk
i = i + 1 + α = ℓk

i+1, (EC.6)

where ℓk
i = i + 1 + α because customer i anticipates that customer i + 1 will purchase priority, and then there

will be an additional α priority purchases among customers i + 2, . . . ,N .
If instead x̄j(cj+1) = xk

j,i+1 for at least one j ∈ {i + 2, . . . ,N}, then an analogous argument to that in Case
2 of the proof of Lemma 1 implies that there will be one less priority purchase among customers i + 2, . . . ,N

with xi+1 = k + 1 than with xi+1 = k. Let these numbers be denoted α− 1 and α, respectively. We then have
ℓk

i = i + 1 + (α− 1) = i + α and ℓk
i+1 = i + 1 + α, which implies

ℓk
i+1 = ℓk

i + 1. (EC.7)

Combining equations (EC.5), (EC.6), and (EC.7) gives

0≤ ℓk
i+1− ℓk

i ≤ 1,

and taking expectation over the waiting costs completes the proof. □

Proof of Theorem 2. For a given constant c, suppose that the equilibrium threshold for customer i is
x̄∗

i−1(c)≥ k, so if xi−1 = k, then in equilibrium customer i will purchase priority. We must then have

UP,i(k) = V − p− c(k + 1)≥ V − cE[Lk
i ] = E[UR,i(k ; x̄∗

i,N−1)]. (EC.8)

Lemma EC.1 and equation (EC.8) then imply that
UP,i+1(k) = V − p− c(k + 1)≥ V − cE[Lk

i ]

≥ V − cE[Lk
i+1]

= E[UR,i+1(k ; x̄∗
i+1,N−1)],

(EC.9)
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where customer i + 1’s comparisons are made assuming the same waiting-cost realization c. Thus, for a given
k, if in equilibrium customer i purchases priority upon observing xi−1 = k, then customer i + 1 must also
purchase priority if she observes xi = k. We conclude that customer i + 1’s equilibrium threshold is at least as
large as that for customer i, which in turn implies that x̄∗

i (c)≤ x̄∗
j (c) for i < j.

Finally, consider a given customer i and two waiting-cost realizations c and c′, with c < c′. Suppose that
x̄∗

i−1(c)≥ k. Upon observing xi−1 = k, then, customer i with waiting-cost realization c will purchase priority,
which implies E[UR,i(k ; x̄∗

i,N−1 ; c)]−UP,i(k; c)≤ 0. We then have

E[UR,i(k ; x̄∗
i,N−1 ; c′)]−UP,i(k; c′) = p− c′(E[Lk

i ]− (k + 1)
)

< p− c
(
E[Lk

i ]− (k + 1)
)

= E[UR,i(k ; x̄∗
i,N−1 ; c)]−UP,i(k; c)

≤ 0.

Therefore, for customer i, for any priority queue length such that with waiting cost c she will purchase
priority, she will also purchase priority with waiting cost c′ > c for the same queue length. We conclude that
the corresponding thresholds must satisfy x̄∗

i−1(c)≤ x̄∗
i−1(c′). □

E. Proofs of Lemma 2 and Theorem 3

First, it is important to note that Lemma 1 applies to the compensation model as well as the base model
because it holds for any cost-dependent threshold strategies for customers j ∈ {i + 1, . . . ,N}, independent of
how these thresholds were determined. Theorem 3 also depends on Lemma 2.

Proof of Lemma 2. Under the cost-dependent threshold strategies x̄i,N−1, let Ak denote the random
number of priority purchases among customers j ∈ {i+1, . . .N} if xi−1 = k and customer i chooses the regular
queue. By equation (3), we have

gγ
i (k) = γ

p(k + Ak)
N − (k + Ak) and gγ

i (k + 1) = γ
p(k + 1 + Ak+1)

N − (k + 1 + Ak+1) .

Let αk denote a realization of the random variable Ak for a given vector of realized waiting costs. It follows
from the proof of Lemma 1, for any vector (c1, . . . , cN ) of waiting-cost realizations, we have αk+1 ≥ αk − 1,
which implies

γ
p(k + αk)

N − (k + αk) ≤ γ
p(k + 1 + αk+1)

N − (k + 1 + αk+1) .

Taking expectation over the waiting costs gives E[gγ
i (k)]≤ E[gγ

i (k + 1)], as desired. □

Proof of Theorem 3. The proof uses a similar approach to that of Theorem 1. Consider a customer
i ∈ {1, . . . ,N − 1}, and suppose that all customers j ∈ {i + 1, . . . ,N} use some cost-dependent threshold
strategies x̄j−1(Cj). Fix a waiting-cost realization ci for customer i. Given the cost-dependent threshold
strategies x̄j−1(Cj) for customers j ∈ {i + 1, . . . ,N}, let 0≤ k ≤ i− 1 be the smallest integer such that, if
xi−1 = k, then it is optimal for customer i to stay in the regular queue. We note that, by definition, it is
optimal for customer i to purchase priority if xi−1 < k. The cases with k = i and k = i− 1 trivially imply a
threshold strategy, as in the proof of Theorem 1. We proceed to the case with k≤ i− 2.
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As in Theorem 1, let Lk
i denote the random number of services (including her own) that customer i will

wait through if xi−1 = k and she chooses the regular queue. Taking expectation over the remaining customers’
waiting costs, the assumption that the regular queue is optimal for customer i if xi−1 = k implies

E[UR,i(k ; x̄i,N−1)] = V + E[gγ
i (k)]− ciE[Lk

i ] > V − p− ci(k + 1) = UP,i(k). (EC.10)

Lemmas 1 and 2 then imply

E[UR,i(k + 1 ; x̄i,N−1)] = V + E[gγ
i (k + 1)]− ciE[Lk+1

i ]≥ V + E[gγ
i (k)]− ciE[Lk

i ]

> V − p− ci(k + 1)

> V − p− ci(k + 2)

= UP,i(k + 1),

(EC.11)

where the inequality on the second line holds by equation (EC.10).
The same logic as in Theorem 1—with the outer induction hypothesis verified for i = N − 1 by equation (4)

(or its analog for γ < 1)—then implies that it is optimal for all customers to use cost-dependent threshold
strategies. □

F. Supplementary Result and Proof for Theorem 4

As with Lemma 1, we note that Lemma EC.1 also applies to the compensation model because it does not
depend on how the threshold strategies are determined. We also need an additional lemma for Theorem 4.

Lemma EC.2. Consider a customer i∈ {1, . . . ,N − 1}, and suppose that each customer j ∈ {i + 1, . . . ,N}

uses a cost-dependent threshold strategy x̄j−1(Cj). Under these strategies for the other customers, let Ak
i

(Ak
i+1) denote the random number of priority purchases among customers j ∈ {i+2, . . .N} if customer i (i+1)

observes xi−1 = k (xi = k) and chooses the regular queue. Also, let gγ
i (k) (gγ

i+1(k)) be the compensation that

customer i (i + 1) receives by choosing the regular queue after observing xi−1 = k (xi = k), for compensation

fraction γ. For k ∈ {0, . . . , i− 1}, we have

E[gγ
i+1(k)]≤ E[gγ

i (k)].

Proof. Let αk
i (αk

i+1) denote a realization of the random variable Ak
i (Ak

i+1) for a given vector of realized
waiting costs (and note that we are using Ak

i and Ak
i+1 to both cover the same customers i+2, . . . ,N , different

from Ak in the proof of Lemma 2). From the proof of Lemma EC.1, for any vector (c1, . . . , cN ) of waiting-cost
realizations, we have αk

i ≥ αk
i+1− 1.

Case 1: x̄i(ci+1) < k. In this case, customer i + 1 will not purchase priority if xi = k, we will have αk
i = αk

i+1,
and both customers will receive the same compensation in the respective scenario, i.e., we have

gγ
i+1(k) = γ

p(k + αk
i+1)

N − (k + αk
i+1) = γ

p(k + αk
i )

N − (k + αk
i ) = gγ

i (k).

Case 2: x̄i(ci+1) ≥ k. In this case, customer i+1 will purchase priority upon observing xi = k. By arguments
in the proof of Lemma EC.1, we will either have αk

i+1 = αk
i , or αk

i+1 = αk
i + 1. If αk

i = αk
i+1, then because

customer i + 1’s strategy prescribes priority if xi = k, customer i will receive one more customer’s worth of
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compensation from choosing regular with xi−1 = k than would customer i + 1 from choosing regular with
xi = k, so we have

gγ
i+1(k) =

p(k + αk
i+1)

N − (k + αk
i+1) <

p(k + 1 + αk
i+1)

N − (k + 1 + αk
i+1) = p(k + 1 + αk

i )
N − (k + 1 + αk

i ) = gγ
i (k).

If instead αk
i+1 = αk

i + 1, then we have

gγ
i+1(k) =

p(k + αk
i+1)

N − (k + αk
i+1) = p(k + 1 + αk

i )
N − (k + 1 + αk

i ) = gγ
i (k),

where the last equality holds because for customer i’s calculations, customer i + 1 will purchase priority if
xi = k by the assumption of this case, so after customer i there will be αk

i + 1 priority purchases in total.
We conclude that for any waiting-cost realizations and their corresponding thresholds, we have gγ

i+1(k)≤
gγ

i (k). Taking expectation over the waiting costs completes the proof. □

Proof of Theorem 4. For a given constant c and compensation fraction γ, suppose that the equilibrium
threshold for customer i + 1 is x̄∗

i (c) < k ≤ i− 1, so if xi = k, then in equilibrium customer i + 1 will not
purchase priority. We must then have

UP,i+1(k) = V − p− c(k + 1) < V + E[gγ
i+1(k)]− cE[Lk

i+1] = E[UR,i+1(k ; x̄∗
i+1,N−1)]. (EC.12)

Lemmas EC.1 and EC.2 and equation (EC.12) then imply that

UP,i(k) = V − p− c(k + 1) < V + E[gγ
i+1(k)]− cE[Lk

i+1]

≤ V + E[gγ
i (k)]− cE[Lk

i ]

= E[UR,i(k ; x̄∗
i,N−1)],

where customer i + 1’s comparisons are made assuming the same waiting-cost realization c. Thus, if in
equilibrium customer i + 1 chooses the regular queue upon observing xi = k, then it must also be that
customer i chooses the regular queue if she observes xi−1 = k. Put another way, there does not exist a queue
length k such that customer i will purchase priority if xi−1 = k but customer i + 1 will choose the regular
queue if xi = k, for the same waiting-cost realization. We conclude that customer i + 1’s equilibrium threshold
is at least as large as that for customer i, which in turn implies that x̄∗

i (c)≤ x̄∗
j (c) for i < j.

Finally, consider a given customer i and two waiting-cost realizations c and c′, with c < c′. Suppose that
x̄∗

i (c)≥ k. Upon observing xi−1 = k, then, customer i with waiting-cost realization c will purchase priority,
which implies E[UR,i(k ; x̄∗

i,N−1 ; c)]−UP,i(k; c)≤ 0. We then have

E[UR,i(k ; x̄∗
i,N−1 ; c′)]−UP,i(k; c′) = p + E[gγ

i (k)]− c′(E[Lk
i ]− (k + 1)

)
< p + E[gγ

i (k)]− c
(
E[Lk

i ]− (k + 1)
)

= E[UR,i(k ; x̄∗
i,N−1 ; c)]−UP,i(k; c)

≤ 0.

Therefore, for customer i, for any priority queue length such that with waiting cost c she will purchase
priority, she will also purchase priority with waiting cost c′ > c for the same queue length. We conclude that
the equilibrium threshold functions must satisfy x̄∗

i−1(c)≤ x̄∗
i−1(c′). □
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G. Supplementary Result and Proof for Theorem 5

Lemma EC.3. Take i ∈ {1, . . . ,N − 1}, and for customers i + 1, . . . ,N , consider two vectors of cost-

dependent threshold functions, x̄i,N and x̄′
i,N , with elements x̄j(Cj) and x̄′

j(Cj), respectively. For a sample

path of realizations (ci+1, . . . , cN ), suppose that x̄′
j(cj)≤ x̄j(cj) for all j ∈ {i + 1, . . . ,N}. Let αk

i (α̃k
i ) be the

number of priority purchases among customers i + 1, . . . ,N if xi−1 = k, customer i chooses the regular queue,

and the thresholds are x̄i,N (ci+1, . . . , cN ) (x̄′
i,N (ci+1, . . . , cN )). For k ∈ {0, . . . , i− 1}, we have

α̃k
i ≤ αk

i .

Proof. Consider the thresholds x̄i,N (ci+1, . . . , cN ). Let xk
j−1 be the priority queue length observed by

customer j if xi−1 = k and customer i chooses the regular queue, given these thresholds. For some j′ ∈

{i + 1, . . . ,N}, consider also the vector of thresholds obtained from x̄i,N (ci+1, . . . , cN ) by reducing by 1 the
threshold of customer j′, from x̄j′−1(cj′) to x̄j′−1(cj′)− 1 (the other thresholds are the same as in the original
vector). Under these modified thresholds, let x

k(−)
j−1 be the priority queue length observed by customer j if

xi−1 = k and customer i chooses the regular queue.
For each customer j ∈ {i+1, . . . , j′−1}, we have xk

j−1 = x
k(−)
j−1 , so these customers will take the same actions

either way, and there will be the same number of priority purchases among these customers for either vector
of thresholds. We thus have xk

j′−1 = x
k(−)
j′−1.

For customer j′, then, if x
k(−)
j′−1 = xk

j′−1 ̸= x̄j′−1(cj′), then either x̄j′−1(cj′)− 1 < x̄j′−1(cj′) < xk
j′−1 = x

k(−)
j′−1, or

x
k(−)
j′−1 = xk

j′−1 ≤ x̄j′−1(cj′)− 1 < x̄j′−1(cj′). In either case, customer j′ takes the same action for either vector
of thresholds. In this case, we will also have xk

j−1 = x
k(−)
j−1 for j ∈ {j′ + 1, . . . ,N}, so these customers also will

take the same actions under either vector of thresholds. Thus, we have

αk
i = α̃k

i . (EC.13)

If instead x
k(−)
j′−1 = xk

j′−1 = x̄j′−1(cj′), then customer j′ purchases priority with her original threshold
x̄j′−1(cj′), but not with her modified threshold x̄j′−1(cj′)− 1. There are two cases.
Case 1: x

k(−)
j−1 ̸= x̄j−1(cj) for all j ∈ {j′ + 1, . . . , N}. In this case, because of customer i’s different

action, we have xk
j′ = x

k(−)
j′ + 1. So, similar to the above for customer j′, by the hypothesis of this case, for

customer j′ + 1, we either have x
k(−)
j′ < xk

j′ = x
k(−)
j′ + 1 ≤ x̄j′(cj′+1), or x̄j′(cj′+1) < x

k(−)
j′ < x

k(−)
j′ + 1 = xk

j′ .
Hence, customer j′ + 1 will take the same action under both the original threshold vector and that with the
threshold for customer j′ decreased by 1. By induction, we then have xk

j−1 = x
k(−)
j−1 +1 for all j ∈ {j′ +2, . . . ,N}.

Therefore, customers j′ + 2, . . . ,N will also take the same actions under either vector by the same reasoning
as for customer j′ + 1. In total, then, there is one less priority purchase among customers j ∈ {i + 1, . . . ,N}

when customer j′ has a decreased threshold, so we have

αk
i = α̃k

i + 1. (EC.14)

Case 2: x
k(−)
j′′−1 = x̄j′′−1(cj′′) for some j′′ ∈ {j′ + 1, . . . , N}. We have xk

j−1 = x
k(−)
j−1 + 1 for j ∈ {j′ +

1, . . . , j′′} by the same reasoning as in Case 1 because of customer i’s different actions under the two threshold
vectors. Customers j ∈ {j′ + 1, . . . , j′′− 1} will thus take the same actions under either the original or the
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modified threshold vectors, also by arguments in Case 1. For customer j′′, we have x̄j′′−1(cj′′) = x
k(−)
j′′−1 < xk

j′′−1,
so customer j′′ will purchase priority for the modified threshold vector (when customer j′ has her threshold
reduced by 1), but not for the original vector. Summarizing, other than customers j′ and j′′, all customers
j ∈ {i + 1, . . . ,N} will take the same action under either threshold vector. Under the original vector, customer
j′ will purchase priority but customer j′′ will choose the regular queue, while under the modified vector,
customer j′ will choose the regular queue but customer j′′ will purchase priority. In either case, there is
exactly one priority purchase among these two customers (and no change at all for the other customers), so
we conclude that in this case

αk
i = α̃k

i . (EC.15)

Combining equations (EC.13), (EC.14), and (EC.15) gives α̃k
i ≤ αk

i . By induction, we can successively reduce
the thresholds customer by customer and in increments of 1 until we reach x̄′

i+1,N (ci+1, . . . , cN ). Because
α̃k

i ≤ αk
i at every step of this process, we have the desired result. □

Proof of Theorem 5. Consider a customer i∈ {1, . . . ,N − 1}, and suppose that x̄∗
j−1,γ(cj)≤ x̄∗

j−1(cj) for
j ∈ {i + 1, . . . ,N} and all cj in the support of Cj . For customers i + 1, . . . ,N , consider a given sample path of
waiting costs (ci+1, . . . , cN ). In the base model (compensation model with compensation fraction γ), let αk

i

(αk
i,γ) be the number of priority purchases among customers i + 1, . . . ,N , under the equilibrium thresholds

for the waiting-cost sample path (ci+1, . . . , cN ) if xi−1 = k and customer i chooses the regular queue. For
k ∈ {0, . . . , i− 1}, Lemma EC.3 and our hypothesis that x̄∗

j−1,γ(cj)≤ x̄∗
j−1(cj) together imply that αk

i,γ ≤ αk
i ,

i.e., the number of priority purchases after customer i will be weakly less with compensation than without.
Let Ak

i (Ak
i,γ) be the random variable for the number of priority purchases after customer i in the base model

(compensation model). Because αk
i,γ ≤ αk

i on every sample path, taking expectation over the waiting costs
yields

E[Ak
i,γ ]≤ E[Ak

i ]. (EC.16)

Moreover, since the number of services Lk
i (Lk

i,γ) that customer i must wait through if xi−1 = k and she
chooses the regular queue in the base model (compensation model) is equal to i plus the number of priority
purchases after her, equation (EC.16) also implies

E[Lk
i,γ ] = i + E[Ak

i,γ ]≤ i + E[Ak
i ] = E[Lk

i ]. (EC.17)

Let UP,i(xi−1;Ci) (UP,i,γ(xi−1;Ci)) be the utility from purchasing priority in the base model (compensation
model), and similarly UR,i(xi−1;Ci) (UR,i,γ(xi−1;Ci)) for the utility from the regular queue. Because priority
customers are not compensated even in the compensation model, we have UP,i,γ(xi−1;Ci) = UP,i(xi−1;Ci).
Suppose that for waiting-cost realization ci, if xi−1 = k, then in equilibrium in the base model, customer i

chooses the regular queue. In this case, we must have UP,i(xi−1; ci) < E[UR,i(xi−1; ci)]. In the compensation
model, customer i’s compensation in the regular queue is gγ

i (k), which is random but nonnegative. We have

UP,i,γ(xi−1; ci) = UP,i(xi−1; ci)

< E[UR,i(xi−1; ci)]

= V − ciE[Lk
i ]

≤ V − ciE[Lk
i,γ ] + E[gγ

i (k)] = E[UR,i,γ(xi−1; ci)].
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Therefore, for any priority queue length k such that customer i will choose the regular queue in the base model,
she will also choose the regular queue in the compensation model with the same waiting-cost realization,
under any compensation fraction 0 < γ ≤ 1. Under our hypothesis that x̄∗

j−1,γ(cj)≤ x̄∗
j−1(cj) for customers

j ∈ {i + 1, . . . ,N} and all cj in the support of Cj , this implies that also x̄∗
i−1,γ(ci)≤ x̄∗

i−1(ci) for customer i

and all ci in the support of Ci. For γ = 1, the induction hypothesis is verified for i = N − 1 by comparing
equations (1) and (4) under our assumption that p≤ c(N − 1). For γ < 1, the comparison requires some
algebra, but it follows by the same assumption, completing the proof of the first part of the theorem.

The second part of the theorem, that a customer’s threshold decreases in the compensation fraction for
fixed strategies of the customers after her, follows by a related but simpler argument, which we merely sketch
here for brevity. For fixed strategies of the later customers and two compensation fractions γ < γ′, we have
Lk

i,γ = Lk
i,γ′ . We also have gγ

i (k)≤ gγ′

i (k). These two relations make the regular queue more attractive as the
compensation fraction increases, so the optimal threshold decreases in the compensation fraction. □
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H. Algorithms to Compute PBE Threshold Functions

Here, we give algorithms to calculate the PBE threshold functions for an arbitrary continuous waiting-
cost distribution in both models. The analogous algorithms for discrete distributions are obtained in the
natural way. The conditions in the indicator functions in the last lines of both algorithms are equivalent to
UP,i(k)≤ E[UR,i(k)] under the respective models. Finally, note that for fixed thresholds, Lk

i is deterministic
and can be calculated easily by iteratively recording the decisions prescribed for each customer given their
thresholds and determining the number of priority purchases after customer i. For each customer i, the
resulting threshold function is an increasing step function in the waiting-cost realization ci.

Algorithm 1: Compute PBE cost-dependent thresholds for base model
Result: Vector x̄∗ of threshold functions
for i = N,N − 1, . . . ,1 do

for (x̄m
i , . . . , x̄m

N−1)∈
{
×N−1

j=i {−1,0,1, . . . , j}
}

do
πm←

∏N
k=i+1

∫
1{x̄∗

k−1(c) = x̄m
k−1}dF (c) // PBE probability of threshold

vector m
end

x̄∗
i−1(ci)←−1 for ci in support of Ci;

for k ∈ {0,1, . . . , i− 1} do
λk

i ←
∑

m πmLk
i ((x̄m

i , . . . , x̄m
N−1)) // Expected services to wait through

x̄∗
i−1(ci)← x̄∗

i−1(ci) +1{ci ≥ p/(λk
i − (k + 1))} for ci in support of Ci // If priority

is preferred at current k, increment previous threshold
end

end

Algorithm 2: Compute PBE cost-dependent thresholds for compensation model
Result: Vector x̄∗ of threshold functions
for i = N,N − 1, . . . ,1 do

for (x̄m
i , . . . , x̄m

N−1)∈
{
×N−1

j=i {−1,0,1, . . . , j}
}

do
πm←

∏N
k=i+1

∫
1{x̄∗

k−1(c) = x̄m
k−1}dF (c) // PBE probability of threshold

vector m
end

x̄∗
i−1(ci)←−1 for ci in support of Ci;

for k ∈ {0,1, . . . , i− 1} do
λk

i ←
∑

m πmLk
i ((x̄m

i , . . . , x̄m
N−1)) // Expected services to wait through

ρk
i ←

∑
m πmgγ

i (k) // Expected compensation

x̄∗
i−1(ci)← x̄∗

i−1(ci) +1{ci ≥ (p + ρk
i )/(λk

i − (k + 1))} for ci in support of Ci // If

priority is preferred at current k, increment previous threshold
end

end
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I. Performance Measure Definitions

In this appendix, we formally define each of the performance measures considered in Sections 6 and 7. As in
Appendix H, the exposition is for a continuous waiting-cost distribution, and the corresponding quantities for
a discrete distribution can be obtained in the natural way.

The starting point for calculating performance measures in equilibrium is the output from Algorithm
1 or 2, namely a vector x̄∗ of PBE threshold functions. Let L∗

i be the random variable for the number
of services (including her own) that customer i waits through in the PBE. Furthermore, for waiting-cost
realization vector (c1, . . . , cN )∈ supp(C1, . . . ,CN ), let ℓ∗

i (c1, . . . , cN ) be the realization for L∗
i associated with

the threshold vector
(
x̄∗

0(c1), . . . , x̄∗
N (cN )

)
. Also, let A∗ be the random variable for the total number of priority

purchases in the PBE, and let α∗(c1, . . . , cN ) be the realization for A∗ associated with the threshold vector(
x̄∗

0(c1), . . . , x̄∗
N (cN )

)
. For each (c1, . . . , cN ), both ℓ∗

i and α∗ can be determined by simple bookkeeping.
Recalling that γ = 0 in the base model and γ > 0 in the compensation model, we have the following

definitions that apply to both models.
Definition EC.1 (Aggregate Waiting Cost). The expected aggregate waiting cost CAgg is

CAgg = E
[ N∑

i=1

CiL
∗
i

]
=

∫
· · ·

∫
×N

j=1supp(Cj)

( N∑
i=1

ciℓ
∗
i (c1, . . . , cN )

)
dF (c1) · · ·dF (cN ).

Definition EC.2 (Customer Surplus). The expected customer surplus S is

S = V N −CAgg− pγE[A∗] = V N −CAgg− pγ

∫
· · ·

∫
×N

j=1supp(Cj)

α∗(c1, . . . , cN )dF (c1) · · ·dF (cN ).

Definition EC.3 (Provider Net Revenue). The expected provider net revenue Z from priority pur-
chases (i.e., after subtracting compensation payments) is

Z = p(1− γ)E[A∗] = p(1− γ)
∫
· · ·

∫
×N

j=1supp(Cj)

α∗(c1, . . . , cN )dF (c1) · · ·dF (cN ).

The versions of these measures used in Section 7 for the experiments and logit simulations are the analog
of the above for sample averages: for each instance of the game, we compute the measures based on the
waiting-cost realization vector and the path of play, and we then take the average across the instances. For
fair comparisons, when computing equilibrium and FCFS measures in Section 7, we also use sample averages,
computed with the same set of waiting-cost realization vectors as in the experiment or simulation.
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J. Laboratory Instructions

The instructions below are for the compensation treatment (γ = 1) in the All-Human Study (for the sessions
where minimum and maximum compensation were displayed). The instructions for the other treatments are
similar to these; they are omitted due to space constraints but are available from the authors upon request.

Instructions 

 

You are about to participate in an experiment in the economics of decision-making. If you follow these instructions 

carefully and make good decisions, you will earn money that will be paid to you in cash at the end of the session. 

If you have a question at any time, please raise your hand and the experimenter will answer it. We ask you not to 

talk with one another for the duration of the experiment. 

 

Overview of the Game 

You are in the role of a customer waiting to receive a service.  When you entered the room you were given a slip of 

paper with a Participant code.  Please use your phone to go to  

https://utd.sophielabs.net 

and type in your participant code to log into the software.  You will see the informed consent form.  Please read and 

sign it.  Once the experimenter starts the game you will see a screen that has your sequence number.   The sequence 

numbers were generated randomly.  Also on the screen is your personal waiting cost, which is $0.50 or $1.50.  

Waiting costs were also generated randomly and $0.50 and $1.50 are equally likely.  There are 10 people in the 

room. Each person will start with $15, called your endowment.  Each person will be called in the order of his or her 

sequence number and will be asked to decide to either join the Regular Queue or purchase a spot in the Priority 

Queue.  The priority queue costs $1.50.  The regular queue is free.  Priority Queue fees that have been collected 

will be added up and equally divided and paid to the Regular Queue customers.  We will call this amount 

Compensation. 

 

Compensation depends on how many people purchase priority, and how many people join the regular queue.  The 

minimum amount comes about if all remaining people join the regular queue.  The maximum amount comes about 

if all remaining people purchase priority. 

 

For example, suppose there are currently two people in the priority queue and two people in the regular queue, and 

the fifth player is deciding.  If this player joins the regular queue, the minimum compensation happens if the 

remaining 5 people also join the regular queue:  

$1.50 × 2

2 + 1 + 5
=
$3

8
= $0.37 

The maximum compensation happens if the remaining 5 purchase priority:  

$1.50 × (2 + 5)

2 + 1
=
$10.50

3
= $3.50 

At the start of each round, we will show you the possible minimum and maximum compensation amounts, given 

the current composition of the two queues.   

 

You will record your decision on your phone and stand to join your chosen queue.  After both queues have been 

formed, the virtual service will start.  Each service will take approximately 1 minute.  The service will be performed 

for priority queue customers first, followed by the regular queue customers.  Within each queue, the service will be 

performed in the order of your sequence number.  Each service that you wait through (including your own) costs 

your waiting cost (either $0.50 or $1.50).  After your service has been completed you will be paid your total 

earnings, calculated as follows. 

 

$5 participation fee + $15 endowment - $1.50 if you purchased Priority – (your waiting cost) x (the number of 

services you waited) + Compensation if you did not purchase Priority. 

 

 

Figure EC.1 Instructions for compensation treatment in the All-Human Study (page 1)
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Example: 

Suppose your sequence number is 7 and your waiting cost is $1.50.  When your turn to make the decision comes, 

you observe that there are 6 people in front of you, 3 in the priority queue and 3 in the regular queue.  Suppose you 

decided to join the regular queue.  Suppose that, of the 3 remaining people behind you, 2 joined the priority queue.  

This means that once the service starts, there will be 3+2 = 5 people in the priority queue, and 5 people (including 

you) in the regular queue.  Out of those 5 people in the regular queue, 3 are in front of you.  This means that you 

will wait for 5+3+1 = 9 services.  Your total waiting cost will be 9 x $1.50 = $13.50.  Your Compensation will be 

($1.50 x 5)/5 = $1.5.  Your total earnings will be: $5 + $15 - $13.50 + $1.50 = $8.00 

 

Now suppose that you chose to pay $1.50 and join the priority queue.  In this case, your total waiting cost will be 

$1.50 x (3+1) = $6 because you only have to wait for the 3 Priority people in front of you, and your own service.  

Your total earnings will be: $5 + $15 -$1.50 - $6 = $12.50 

 

How you will be paid 

As soon as your service is completed, you will be paid your earnings in cash and in private. You will remain in the 

room until everyone has been served. Everybody will leave the session at the same time. 

 

 

Decision Screen:    Final Screen: 

 

 

Figure EC.2 Instructions for compensation treatment in the All-Human Study (page 2)
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