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RESEARCH PROBLEM

Low-fidelity wake modeling
The oversimplified static nature of low-fidelity wake models

that do not account for the complex aerodynamic interactions
among turbines limits their utility for closed-loop model-based
wind farm control.

Question
Can we use data to introduce dynamical augmentations to low-
fidelity static wake models and accurately capture power and
thrust force measurements in accordance with large-eddy simu-
lations (LES) and SCADA data?

LOW-FIDELITY WAKE MODELING

The actuator disk concept for energy extraction:
The turbine rotor is modeled as a disk and its behaviour
is analysed within a control volume.

Thrust force: F =
1

2
ρACT u2

Extracted power: P =
1

2
ρACP u3

Analytical wake models:
• Jensen model
• Park model
• Frandsen model
• Gaussian deficit model

⋆ Example:
4× 1 wind farm

(∗) LES data [1,2] (•) Analytical model [6]
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⋆ Model predictions fail to capture quantities and trends.

DATA-DRIVEN VS PHYSICS-BASED MODELING

data first-principal 
physics

?

model

Data-driven: flexible but not robust
small-data issues

Physics-based: good robustness
trade-off (complexity vs accuracy)

⋆ How can data be used to refine the predictive
capability of physics-based models?

APPROACH: STOCHASTIC DYNAMICAL MODELING [3,4]

Stochastically forced linearized equations

linearized
dynamics

stochastic
input

stochastic
output

• view second-order statistics as data for inverse problems
• identify input statistics to account for available velocity statistics in output

STOCHASTIC WAKE MODELS [5]
• Model dynamics of fluctuations (v) around base flow (ū):

u = ū + v ū = [u] [v] = 0

F =
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2
ρACT

(
ū2 + v2

)
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(
ū3 + 3 ū v2

)
v2 :=

∫
S

[
v(x, t)2

]
dx

⋆ Analytical base flow ū: Gaussian deficit model [6]
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⋆ Model fluctuation dynamics using linearized Navier-Stokes and
shape forcing statistics to match LES data [5]

ψ̇ = Aψ + B d

v = C ψ filter
linear

system
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RESULTS
• Predictions of power and thrust force

(∗) LES data [1,2] (•) Analytical model [6] (⃝) Data-enhanced model [5]
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• Prediction of velocity intensities

LES: z

Stochastic model: z

x

CONCLUSION

Stochastic dynamical models improve predictive capability of low-fidelity wake
models in capturing power and thrust force in wind farms, in addition to tur-
bulent intensities.

Outlook:
• Extension to 3D flows to capture vortex shedding effects and wake curl

• Model-based feedback control
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