P. Chem 1 Constant V: DU=q $\Rightarrow NH = \int_{H_{1}}^{H_{2}} dH = \int_{T}^{T_{2}} \frac{\partial H}{\partial T} \int_{V} dT = \int_{T}^{T_{2}} \frac{\partial H}{\partial T}$ du= Sq, + Sw = Sq, choose rev path $\Rightarrow dU = \delta q_{HV} = TdS \Rightarrow dS = \pm dU$ $\Delta S = \int_{1}^{2} dS = \int_{T}^{T_{2}} \frac{1}{T} \frac{\partial u}{\partial T} \int_{V}^{T} dT = \int_{T}^{T_{2}} \frac{Cv}{T} dT$ Constant P: DH=q, $\Delta H = \int_{T}^{z} \Delta H = \int_{T}^{T_{z}} \frac{\partial H}{\partial T} dT = \int_{T}^{T_{z}} C_{p} dT$ $d H = \delta q_{rw} = T d S : \Delta S = \left(\frac{1}{T} \frac{\partial H}{\partial T} \right)_{p} dT = \int_{T}^{T_{2}} \frac{C p}{T} dT$

2/10/23

3rd Law: S(T=0) = 0 $\Delta S = S(T_2) - S(T_1)$ Put $T_1 = 0$ $\Rightarrow S(T_2) = \int_0^{T_2} \frac{CP}{T} dT$

 $\underbrace{ex} \quad water \quad at \; latm, \; loo^{\circ}c \;, \; liquid \cong vapor \\ AS = \underbrace{qrev}_{T} = \underbrace{AHvap}_{Tvap} = \underbrace{AHvap}_{Tvap} \\ T_{vap} = \underbrace{T_{bolling}} \\ Beginning \; ? end \; of \\ AS_{rxn} = S(products) - S(reactants) \\ Chapter \; ZI \end{aligned}$

Ch 22 Free energy.

Motivation -> S = entropy gives a criterion for spontineity but not convenient because we need to know too much about surroundings

Table 9.2 Different kinds of work that can be done by a system.

Type of work	Intensive variable	Extensive differential	Expression for work
General	force, F	change in distance, dr	$W = \int F dr$
Expansion	pressure, P	change in volume, dV	$W = \int P dV$
Electrical	voltage difference, ΔE	change in charge, dq	$w = \int \Delta E dq$
Surface	surface tension, γ	change in surface area, <i>dA</i>	$W = \int \gamma \ dA$
Stretching	tension, τ	change in length, dl	$W = \int \tau dl$
Chemical	chemical potential difference, $\Delta\mu$	change in number of moles of the molecule, <i>dn</i>	$w = \int \Delta \mu \ dn$

(Adapted from D.S. Eisenberg and D.M. Crothers, Physical Chemistry: With Applications to the Life Sciences. Menlo Park, CA: Benjamin/Cummings, 1979. With permission from Benjamin/ Cummings.) Xon website "different types of useful work"