P. Chem

Lecture 6
Heat \rightleftharpoons Work
internal combustion engine
A.C, refrigerator

Focus on
(1) Unlimited conversion (repeated)
(2) efficiency
both met
turning work intoneatiwork \rightarrow heat (1) v (2) 100%
heat \rightarrow work isothermal expansion of gas

$$
q+w=\theta=\Delta u \Rightarrow w=-q(100 \% \text { conversion })
$$

system (gus) has changed because it expanded.
We really want unlimited conversion sacrifice 100% efficiency

Heat Engine

* sign is convention use absolute to simplify in this example arrows tell us direction of energy flow
* assume T doesht change be CODD? HOT is so bight does nit change (live and page of HW)
T_{H}, T_{C} don't change temperature
bc going
in cycle T
1 st Law: $\Delta U=\varnothing$ conservation impious in: out $\Rightarrow\left|q_{H}\right|=|w|+\left|q_{C}\right| \quad \begin{aligned} & \text { conservation } \\ & \text { of }\end{aligned}$

Thermal

$$
\begin{aligned}
& \text { Efficiency } \Rightarrow \eta_{n}=\frac{|w|}{|q|} \\
& \eta_{\text {max }}=r e v . \text { conditions }
\end{aligned}
$$

* you get most work out of reversible conditions (theoretical limit, bi notreally possible) key point of ch 19
ch 20: $\begin{aligned} & \text { Reversible: } \Delta S=\varnothing \\ &\left(\text { because } S_{i}=S_{f}\right)\end{aligned}=\frac{\left|q_{H}\right|}{\left|T_{H}\right|}=\frac{-\left|q_{c}\right|}{\left|T_{c}\right|}$

$$
\Rightarrow \frac{\left|q_{H}\right|}{T_{H}}=\frac{\left|q_{C}\right|}{T_{C}} n_{\max }=\frac{\left|q_{H}\right|-\left|q_{C}\right|}{\left|q_{H}\right|}=1-\frac{\left|q_{c}\right|}{\left|q_{H}\right|}=1-\frac{\left|q_{H}\right|}{T_{H}} \cdot \frac{T_{C}}{\left|q_{H}\right|}
$$

$\eta_{\text {max }}=1-\frac{T_{C}}{T_{H}}$ Theoretical maximum nothing to do with actual engine, omy T
When do you get max eff? T_{H} is big, T_{C} is small
Nuclear power: Turbines \rightarrow steam $\rightarrow T_{H}$ is steam (hotter, more efficient)
T_{C} is enviomment
Refrigerator: Air Conditioning
(run heat engin backwards)

Sst $\mid a w$: in = out $|w|+\left|q_{c}\right|=\left|q_{H}\right|$
anows going in arrows going ont
$C O P=$ coefficient of performance
COP $=\frac{\left|q_{c}\right|}{|w|} \begin{aligned} & \text { want to extract most heat possible with minimum energy } \\ & \text { expenditure }\end{aligned}$
Max efficiency: Reversible Conditions $\triangle S=\varnothing$ che $=\frac{\left|q_{c}\right|}{T_{C}}=\frac{\left|q_{H}\right|}{T_{H}}=\frac{\left|q_{c}\right|}{T_{C}}=\frac{\left|q_{H}\right|}{T_{H}}$

$$
\operatorname{CoP}_{\text {max }}=\frac{\left|q_{c}\right|}{\left|q_{H}\right|-\left|q_{c}\right|}=\frac{\left|q_{c}\right|}{\frac{\left|q_{c}\right| \cdot T_{H}}{T_{c}}-\left|q_{c}\right|}=\frac{1}{\frac{T_{H}}{T_{c}}-\mid}=\frac{1}{\frac{T_{H}}{T_{c}}-\frac{T_{c}}{T_{c}}}=\frac{1}{\frac{T_{H}-T_{c}}{T_{c}}}=\frac{T_{c}}{\frac{T_{H}-T_{c}}{}}
$$

$$
T_{A}=-113^{\circ} \mathrm{F} \Rightarrow \text { COP }_{\text {max }}=\frac{293}{23}=11.7 \text { actual a/c typncally } \sim 2.5
$$

so not actually efficient

* Keep in mind this is unites
Least amount of work to get max efficiency

