

15

Lecture 12

2/4/23

HEAT = World
internal combustion engine
A.C., refrigerator
Focus on
PUnimited conversion (repeated)
⇒ efficiency
twrning word into heatiworld → heat
$$O \vee @ 100\%$$
. N
heat → world isothurmal expansion of gas
 $g_t w = \theta = AU \Rightarrow w^2 - q$ (100% conversion)
system (gas) has changed because it expanded.
We really want unimited conversion
sacrifice 100% efficiency
Heat Engine
torm
 $doing umpt |W|$
 $doing umpt |W|$
 $doing umpt |W|$
 $doing umpt |W|$
 $bc sping
in spice η
 $bc sping
in spice η
 $W = \theta$
 $W = \theta$
 $W = equily torm
 $bc sping$
 $M = \theta$
 $W = \theta$
 $W = heat to simplify
 $M = \theta$
 $W = heat world of energy statement$
Thermal
Efficiency $\Rightarrow \eta = \frac{|W|}{|q_1|}$
 $A = W = \frac{1}{|q_1|}$
 $A = 0$
 $M = 0$$$$$

Ch 20: heversible :
$$\Delta S = 0 = |P_{V,1}| = -|Q_{c}|$$

 $|T_{u}| = |T_{c}|$
 $|T_{u}| = |T_{u}|$
 $|T_{u}|$
 $|T_{u}|$
 $|T_{u}| = |T_{u}|$
 $|T_{u}|$
 $|T_{$