P. Chem 1

$$
\left.A, B:(1)\left\langle V_{x}^{2}\right\rangle=\frac{R T}{M}=\frac{K_{B} T}{M}=\int_{-a}^{\infty} V_{x}^{2}\right)^{2}\left(V_{x}\right) d_{2} V_{x} \begin{aligned}
& K_{B} N_{a}=R \\
& m N a=M
\end{aligned}
$$

(2) $\int_{-\infty}^{\infty} f\left(v_{x}\right) d v_{x}=1$

$$
\rightarrow f\left(v_{x}\right)=\left(\frac{m}{2 \pi k_{B} T}\right)^{1 / 2} e^{-m v_{x}^{2} / 2 k_{B} T}
$$

Add in $V_{y} V_{z}$
$P_{1}=$ prob. during class that Dr. Nielsen is writing on doc. camera $=0.6$
$P_{2}=$ prob. Dr. Nelsen is blinking

$$
\begin{aligned}
& 50 \mathrm{~min} \cdot \frac{12 \text { blinks }}{8 e c}=\frac{1}{3} s=600=200 \mathrm{~s} \\
& 50 \mathrm{~min} \cdot 60 \mathrm{sec}=3000 \mathrm{sec} \quad \frac{200}{3000}=0.067
\end{aligned}
$$

$P_{3}=$ Prob. asking/answering a questions $=0.1$
Joint prob. that he's writing and blinking: $P_{1} P_{2}=0.04$) independent, you prob that he's writing and questions $\neq P_{1} P_{3}$

$$
\begin{aligned}
& P_{i}=\frac{m V_{x, i}}{L_{x}(L y L z)}=\frac{m V_{x,} I}{V} \rightarrow P_{\text {Tot }}=\sum_{i=1} P_{i}=\frac{m}{V} \sum_{i=1} V_{x, i} \\
& v^{2}=\underline{v} \cdot \underline{v}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}=3 v_{x}^{2} \quad \quad \text { average } \\
& P=P_{\text {TOT }}=\frac{1}{3} \frac{M}{v} \sum_{i=1}^{N} V_{i}{ }^{2} \text { define }\left\langle v^{2}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} V_{i}{ }^{2} \\
& P=\frac{1}{3} \frac{m N}{v}\left(V^{2}\right. \\
& P V=\frac{\left.m N L V^{2}\right\rangle}{3}=n R T \\
& \left\langle v^{2}\right\rangle^{v_{2}}=v_{\text {rms }} \quad\left\langle v^{2}\right\rangle=\frac{3 n R T}{m N}=\frac{3 R T N / N_{A}}{N M / N_{A}}=\frac{3 R T}{M}=\left\langle v^{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{x}, v_{y}, v_{2}\right) & =f\left(v_{x}\right) f\left(v_{y}\right) f\left(v_{2}\right) \\
& =\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} e^{-m v^{2} / 2 K_{B} T}
\end{aligned}
$$

want $f(x)$ where $v=(v \cdot v)^{1 / 2}=\sqrt{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}}$ makes a sphere (shell)
V_{x}, V_{y}, V_{z} values which yield the same speed V_{0}, satisfy $V_{x}{ }^{2}+V_{y}{ }^{2}+V_{z}{ }^{2}=V_{0}{ }^{2}$

$$
\begin{gathered}
\frac{4}{3 \pi v_{0}^{3}}=\text { filled volume } \\
\downarrow \text { donative } \\
4 \pi v_{0}^{2} d v=\text { shell spere } \\
f(x)=\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} 4 \pi v_{0}^{2} e^{\frac{-m v^{2}}{2 k T}} \text { Maxwell-Boltzman }
\end{gathered}
$$

$d v$ is thickness

FIGURE 27.2

$$
\begin{aligned}
\left.V_{r m s}=L v^{2}\right\rangle^{1 / 2} & =\left(\int_{-\infty}^{\infty} v^{2} f(x) d v\right)^{1 / 2} \\
& =\left(\frac{3 k_{B} T}{m}\right)^{1 / 2} \\
& =944 \mathrm{~m} / \mathrm{s} \\
1 L_{B} T=\frac{G T}{m} & =\frac{8.31 \cdot 100 L L}{285 / \mathrm{mol}}=2.97 \times 10^{5} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
$$

$$
\text { In at } 300 \mathrm{~K} \text { and } 1000 \mathrm{~K} .7 \text { chemical reactions } \begin{aligned}
V_{\text {mean }} & =\int_{-\infty}^{\infty} V f(v) d v=\left(\frac{8}{\pi} \frac{\mathrm{KT}}{\mathrm{~m}}\right)^{1 / 2} \\
& =870 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

why is $V_{r m s}>V_{\text {mean }}$? enhancing big \#s in $v_{r m s}$ do we have big molecules?

$$
\begin{aligned}
& V_{m p}(\text { most probable })=\frac{d f(x)}{d V}=0=\left(\frac{2 K T}{m}\right)^{1 / 2}=770 \mathrm{~m} / \mathrm{s} \\
& \text { wori't really use. }
\end{aligned}
$$

collisions with walls:

$$
\text { time } \Delta t
$$

$$
\text { Collision volume : } V=A \cdot V_{x} \Delta t
$$

*Visit this next class

