P. Chem

Lecture Notes \#3
Last Class : at constant volume,

$$
\left.\Delta U=q+w=q=q_{v} \Rightarrow C_{v}=\frac{q_{v}}{\Delta T}=\frac{\Delta U}{\Delta T}=\frac{\partial U}{\partial T}\right)_{v}=C_{v}
$$

Today: at constant Pressure
Define Enthalpy $H \equiv U_{\uparrow}+\underset{\sim}{V}$
state functions \uparrow state state functions

$$
d H=d U+P d V+\underset{V-0=0}{\text { product rule }}>\longrightarrow_{\substack{\text { be constant } \\ \text { pusscrue? }}}
$$

get things in quantities we can actually measure experimentally

$$
\begin{aligned}
& \quad \text { where } \omega=-P_{\text {ex }}+\Delta V \\
& \Delta U=q+\omega=\delta q+\delta \omega=\delta q-P_{\text {ext }} d V
\end{aligned}
$$

(from previous lecture)

$$
\begin{aligned}
& d H=\delta q-P d V=\delta q \Rightarrow \Delta H=q_{p} \\
& \left.\Rightarrow C_{p}=\frac{q_{p}}{\Delta T}=\frac{\Delta H}{\Delta T}=\frac{\partial H}{\partial T}\right)_{p}=C_{p}
\end{aligned}
$$

From HW I, for an ideal gas
only depends on T_{1} since ideal gas particles pass through one another. Volume doesnt matter.

$$
C_{P}-C_{V}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}
$$

$$
\left.C_{P}-C_{V}=D \cdot \frac{2 V}{\partial T}\right)_{P}+P\left(\frac{\frac{2 R T}{P}}{2 T}\right)_{P}=0+n R \quad\left(C_{P}-C_{V}=0+n R \rightarrow n \overline{C_{P}}-n C_{V}=0+n R\right)
$$

very important, should go on Exam note card
$n \overline{C_{V}}=C_{V} \quad$ (n cancels out)

* look at heat capacity links on his website under extra material. he shows you this to demonstrate real life applications. Why this is important. Alsorits something you can actually measure. *
 $C_{v}=\infty$ at boiling point
H is a state function so; iak how to meacureftis, but I know heal capacity, care:

Hess's Law

$$
\left.\begin{array}{l}
\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2}(9) \rightarrow \mathrm{CO}_{(\mathrm{s})} \quad \Delta H=-110 \mathrm{KJ} \\
\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(9) \quad \Delta H=-283 \mathrm{~kJ}
\end{array}\right\} \begin{aligned}
& \text { Can combine these } 2+0 \\
& \text { get an answer yon do nt } \\
& \text { know. }
\end{aligned}
$$

More systematic: use $\Delta H_{F}=$ heats of formation

$$
\begin{aligned}
& \Delta H_{f} \text { of } \mathrm{H}_{2} \mathrm{O}(1) \quad \Delta \mathrm{H}_{2}(9)+\frac{1}{2} \mathrm{O}_{2}(9) \rightarrow \mathrm{H}_{2} \mathrm{O}(1) \\
& \frac{1}{2} \text { be fore } \\
& \text { in single mols }
\end{aligned}
$$

Taken from his chapter 19 lecture notes on his website.

Consider $a A+b B \longrightarrow y^{y}+z Z$

Nous add the final piece :use heat capacities and heats of fusion etc. for phase changer to handle the temp.

Need to knows heat capacities of the reactants and products and info about it t for any phase transitions.

N: th, this st $\mathrm{l}_{\mathrm{x} \times \mathrm{n}}$ can be calculated

