## Name:

## Chem 3321 test $\# 2$ solutions, out of 45 marks

I want complete, detailed answers to the questions. Show all your work to get full credit.

DATA:
$\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \mathrm{bar}=760$ torr
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
$1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
Avogadro's constant $=\mathrm{N}_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\pi=3.14159$
$1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J}$ (electron volt to joule conversion)
mass conversion from amu to kg: $1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{amu}$
$C_{P}-C_{V}=n R$ for any ideal gas

## Problem 1 - 10 marks

Equation 1 of Cold denaturation as a tool to measure protein stability by D. Sanfelice and P.A. Temussi, Biophysical Chemistry 208 (2016) 4-8, is

$$
\begin{equation*}
\Delta G=\Delta H_{m}\left(1-\frac{T}{T_{m}}\right)+\Delta C_{p}\left[\left(T-T_{m}\right)-T \ln \left(\frac{T}{T_{m}}\right)\right] \tag{1}
\end{equation*}
$$

This equation gives the free energy difference, at an arbitrary temperature $T$, between a folded and unfolded protein ( $\Delta G=\Delta G_{\text {unfolding }}$ ) in terms of the melting enthalpy $\Delta H_{m}$, the melting temperature $T_{m}$, and the heat capacity difference between the folded (F) and unfolded ( U ) protein $\Delta C_{p}=C_{p}^{U}-C_{p}^{F}$. In this equation it is assumed that $C_{p}^{U}$ and $C_{p}^{F}$ are independent of temperature. Your overall goal in this problem is to derive Equation 1.
a) - $\mathbf{1}$ mark For a given state of the protein (F or U), consider a change in the temperature. For this process, write down an expression relating the enthalpy change to the heat capacity.

Solution:

$$
\begin{equation*}
\Delta H=\int_{T_{1}}^{T_{2}} C_{p} d T \tag{2}
\end{equation*}
$$

b) - $\mathbf{1}$ mark For a given state of the protein (F or U), consider a change in the temperature. For this process, write down an expression relating the entropy change to the heat capacity.

Solution:

$$
\begin{equation*}
\Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{p}}{T} d T \tag{3}
\end{equation*}
$$

c) - 2 marks At the melting temperature $T_{m}$, what is the value of $\Delta G$ ? Using this value, write an expression for the melting entropy $\Delta S_{m}$ in terms of the melting enthalpy $\Delta H_{m}$.

Solution:

$$
\begin{equation*}
\Delta G=0 \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Delta S_{m}=\frac{\Delta H_{m}}{T_{m}} \tag{5}
\end{equation*}
$$

d) - $\mathbf{2}$ marks Draw a thermodynamic cycle connecting the folded and unfolded protein, and connecting the melting temperature $T_{m}$ with an arbitrary temperature $T$.

Solution:

e) - 4 marks Use parts a), b), c), and d) to derive Equation 1.

Solution:

Corresponding to the arrows and quantities of part d),

$$
\begin{gather*}
\Delta H_{F}=\int_{T}^{T_{m}} C_{p}^{F} d T=C_{p}^{F}\left(T_{m}-T\right)=-C_{p}^{F}\left(T-T_{m}\right)  \tag{6}\\
\Delta H_{U}=\int_{T_{m}}^{T} C_{p}^{U} d T=C_{p}^{U}\left(T-T_{m}\right)  \tag{7}\\
\Delta S_{F}=\int_{T}^{T_{m}} \frac{C_{p}^{F}}{T} d T=C_{p}^{F} \ln \left(T_{m} / T\right)=-C_{p}^{F} \ln \left(T / T_{m}\right)  \tag{8}\\
\Delta S_{U}=\int_{T_{m}}^{T} \frac{C_{p}^{U}}{T} d T=C_{p}^{U} \ln \left(T / T_{m}\right) \tag{9}
\end{gather*}
$$

Again using part d), we can now assemble everything.

$$
\begin{equation*}
\Delta G=\Delta H_{F}+\Delta H_{m}+\Delta H_{U}-T\left(\Delta S_{F}+\Delta H_{m} / T_{m}+\Delta S_{U}\right) \tag{10}
\end{equation*}
$$

which when rearranged gives Equation 1.

## Problem 2-10 marks

Consider the equilibrium

$$
\text { Native }(\text { folded }) \rightleftharpoons \text { denatured (unfolded) }
$$

For a protein at 298 K , the Gibbs energy change associated with denaturation is $\Delta G^{\circ}=$ $30.6 \mathrm{~kJ} / \mathrm{mol}$ and the entropy change associated with denaturation (also at 298 K ) is $\Delta S^{\circ}=$ $1.30 \mathrm{~kJ} /(\mathrm{K} \mathrm{mol})$.
a) - $\mathbf{3}$ marks Calculate the Gibbs energy change for the denaturation of the protein at 310 K . Assume the enthalpy and entropy are temperature independent between 298 K and 310 K . Note: this assumption is equivalent to assuming that $\Delta C_{p}=0$, which is reasonably accurate since the temperature range being considered is small.

Solution:
We can calculate

$$
\begin{equation*}
\Delta H=\Delta G+T \Delta S=418 \mathrm{~kJ} / \mathrm{mol} \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta G=418-(310)(1.3)=15 \mathrm{~kJ} / \mathrm{mol} \tag{12}
\end{equation*}
$$

b) - $\mathbf{3}$ marks calculate the equilibrium constant at 310 K .

Solution:
From $\Delta G^{\circ}=-R T \ln K$ we get $K=2.9 \times 10^{-3}$
c) - $\mathbf{3}$ marks What fraction of the protein is in its native form at 310 K ?

Solution:

$$
\begin{equation*}
K=\frac{x_{\text {denatured }}}{x_{\text {native }}}=\frac{\left(1-x_{\text {native }}\right)}{x_{\text {native }}}=2.9 \times 10^{-3} \tag{13}
\end{equation*}
$$

from which we get $x_{\text {native }}=0.997$
d) - 1 mark Based on your answer for parts (a), (b) and (c), is the protein structurally stable at 310 K ?

Solution:
Yes because $\Delta G>0$ and $K<1$ for the denaturation process, and $x_{\text {native }} \approx 1$.

## Problem 3-5 marks

At 350 K , pure toluene and pure hexane have vapor pressures of $3.57 \times 10^{4} \mathrm{~Pa}$ and $1.30 \times 10^{5} \mathrm{~Pa}$, respectively.
a) - $\mathbf{3}$ marks Calculate the mole fraction of hexane in the liquid mixture that boils at 350 K at a pressure of 1 atm .

Solution:
$P_{\text {total }}=101325 \mathrm{~Pa}$ and thus we have

$$
\begin{equation*}
x_{H} P_{H}^{*}+\left(1-x_{H}\right) P_{T}^{*}=101325 \tag{14}
\end{equation*}
$$

which yields $x_{H}=0.696$.
b) - $\mathbf{2}$ marks Calculate the mole fraction of hexane in the vapor that is in equilibrium with the liquid of part (a).

Solution:

$$
\begin{equation*}
y_{H}=\frac{(0.696)\left(1.3 \times 10^{5}\right)}{101325}=0.893 \tag{15}
\end{equation*}
$$

## Problem 4-10 marks

Under certain conditions, water vapor dissociates into $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$. At 2000 K and 1 bar, water vapor is $0.53 \%$ dissociated. At 2100 K and 1 bar, it is $0.88 \%$ dissociated. Deter-
mine the enthalpy of the dissociation reaction, assuming it is constant over this temperature range.
solution:

$$
\begin{array}{rlc}
\mathrm{H}_{2} \mathrm{O}(g) & \longrightarrow \mathrm{H}_{2}(g)+1 / 2 O_{2}(g) \\
\mathrm{H}_{2} \mathrm{O}(g) & \rightleftharpoons H_{2}(g)+0.5 O_{2}(g) \\
I: 1 & \rightleftharpoons 0 & 0 \\
C:-x & \rightleftharpoons x & 0.5 x \\
E: 1-x & \rightleftharpoons x & 0.5 x \\
& \\
K & =\frac{x \times \sqrt{0.5 x}}{1-x}
\end{array}
$$

$2000 \mathrm{~K}: 0.53 \%$ dissociated $\Rightarrow \mathrm{x}=0.0053 \Rightarrow \mathrm{~K}(2000 \mathrm{~K})=0.0002749$
$2100 \mathrm{~K}: 0.88 \%$ dissociated $\Rightarrow \mathrm{x}=0.0088 \Rightarrow \mathrm{~K}(2100 \mathrm{~K})=0.00058891$
Van't Hoff equation,

$$
\begin{aligned}
\ln \left[\frac{0.0002749}{0.00058891}\right] & =\frac{-\Delta H}{R} \times\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
\Delta H & =266.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

## Problem 5-10 marks

a) - 5 marks Determine the value of $\mathrm{dT} / \mathrm{dP}$ for water at its normal boiling point of 373.15 K given that the molar enthalpy of vaporization is $40.65 \mathrm{~kJ} / \mathrm{mol}$, and the densities of the liquid and vapor are $0.9584 \mathrm{~g} / \mathrm{mL}$ and $0.6010 \mathrm{~g} / \mathrm{L}$, respectively (note the units difference mL vs L). The molar mass of water is $18.015 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& \frac{d P}{d T}=\frac{\Delta \bar{H}_{\text {vap }}}{T \Delta \bar{V}} \\
& \Delta \bar{V}=\bar{V}_{g}-\bar{V}_{l}=29.956 \mathrm{~L} \mathrm{~mol}^{-1}
\end{aligned} \quad \begin{aligned}
\frac{d T}{d P} & =\frac{T \Delta \bar{V}}{\Delta \bar{H}_{\text {vap }}}=\frac{373.15 \mathrm{~K}^{2} 29.956 \mathrm{~L} \mathrm{~mol}^{-} 1 \times 8.314 \mathrm{~J}}{40650 \mathrm{~J} \mathrm{~mol}^{-1} \times 0.082 \mathrm{atmL}}=27.88 \mathrm{~K} \mathrm{~atm}^{-1}
\end{aligned}
$$

## b) - 5 marks Estimate the boiling point of water at 2 atm .

Solution:
There are two ways to do this problem. The simplest way (since we did part a) is to say that

$$
\begin{equation*}
T_{2}=T_{1}+\frac{d T}{d P} \Delta P \tag{16}
\end{equation*}
$$

which is $373.15+27.88(2-1)=373.15+27.88=401.03 \mathrm{~K}$.
Another way is to write (since liquid water doesn't enter into the equilibrium expression)

$$
\begin{equation*}
\ln (2 / 1)=-\frac{40650}{8.31451}\left(\frac{1}{T_{2}}-\frac{1}{373.15}\right) \tag{17}
\end{equation*}
$$

which yields $T_{2}=394 \mathrm{~K}$.
The two estimates are different because the first one assumes a linear relationship and the second one assumes a logarithmic relationship (which naturally comes from the ideal gas behavior so that it should be more accurate).

