Example For Problem 1
Derive an expression for $\frac{\alpha}{k_{T}}$ where $\alpha=\frac{1}{V}\left(\frac{\partial \bar{V}}{\alpha T}\right)_{P}$
Link to complicated problem

$$
K_{r}=-\frac{1}{\bar{V}}\left(\frac{\partial \bar{V}}{\partial P}\right)_{T}
$$

https://chem.libretexts.org/Bookshelves/L
Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical Chemistry_(Fleming)/ O4\%3A-Putting_the_First Law to Work /403\%3A Compressibility and Expansivity.

Practice problem I This problem shows you what steps to take so you can solve the homework
problem 1.
Given:

$$
\begin{gathered}
\left.\frac{\alpha}{K_{T}}=\frac{\partial P}{\partial T}\right)_{V} \\
P V R T T \\
P \bar{V}=R T
\end{gathered}
$$

Calculate for deal gas law:
Start by differentiating ideal gas law with respect to Tholding V constant. This comes from: $\left.\frac{\sigma}{K}=\frac{\partial P}{\partial T}\right)_{V}$
Dun forget change of V at product rule constant y is θ change of $\begin{gathered}\text { over } \\ \text { change of } T \text { is } \theta\end{gathered}$

$$
\begin{aligned}
& \left.L^{V\left(\frac{\partial P}{\partial T}\right)_{V}}+\underset{\sim}{\theta}+\left(\frac{\partial V}{\partial T}\right)_{k}=R \frac{\partial T}{\partial T}\right)_{k} \quad \frac{P \bar{V}}{F}=\frac{R T}{\bar{V}} \uparrow \\
& \frac{\bar{V}\left(\frac{\partial P}{\partial T}\right)_{V}}{\bar{V}}=\frac{R}{\bar{V}}=\left.\frac{\partial P}{\partial T}\right|_{\bar{V}}=\frac{R}{V} \quad \frac{P}{T}=\frac{R}{\bar{V}} \\
& \frac{\alpha}{K_{T}}=\frac{R}{T}=\frac{P}{T} \\
& \kappa=\frac{1}{+} \quad k=\frac{1}{\rho}
\end{aligned}
$$

Differentiate with respect to T_{1} at constant P_{1}
Probum 2 bc C_{p} is constant D, and you have to add T

$$
\begin{aligned}
& C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \quad H \equiv U+P V \\
& \text { show } \left.\left.\quad C_{P}=\frac{\partial U}{\partial T}\right)_{P}+P \frac{\partial V}{\partial T}\right)_{P} \\
& \left.\left.\frac{\partial H}{\partial T}\right)_{P}=\frac{\partial U}{\partial T}\right)_{P}+\left(\frac{i}{\partial T}\left(\frac{\partial T}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}\right.
\end{aligned}
$$

a)
b)

$$
\begin{aligned}
& \text { b) } C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} \text { using "now-natural derivative" } \\
& \downarrow \downarrow \\
& u=u(T, V) \quad C_{p}-C_{V}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)+P\left(\frac{\partial V}{\partial T}\right)_{p} \\
& \uparrow
\end{aligned}
$$

Differentiate with respect to $T_{\text {, at constant } P_{1}}$ be C_{P} is constant P_{1} and you have to add T into the mix. Why? to get C_{v} in terms of C_{p}

$$
\begin{aligned}
&\left.\frac{d U}{d T}\right)_{p}=\underbrace{}_{\left.\left.\left(\frac{\partial U}{\partial T}\right)_{V} \frac{d T}{d T}()_{p}+\frac{\partial U}{\partial V}\right)_{T} \frac{d V}{d T}\right)_{p}} \quad C_{p}=\frac{\partial U}{\partial T})_{p}+p \frac{\partial V}{\partial T})_{p}^{l} \\
&\left.+p \frac{\partial V}{\partial T}\right)_{p}
\end{aligned}
$$

Plug in and cancel stuff at this point

$$
\begin{aligned}
& C_{p}-C_{V}=\underbrace{\left.\left.\left[\frac{d U}{d T}\right)_{p}\right]+\frac{P}{2 T}\right)_{p} \underbrace{\left.-\frac{\partial U}{2 T}\right)_{V}}_{C_{V}}}_{C_{p}} \\
& \left.\left.\left.\left.\left.C_{p}-C_{V}=\frac{\partial U}{2 T}\right)_{V}+\frac{\partial U}{2 V}\right)_{T}+\frac{d V}{d T}\right]_{p}+p \frac{\partial V}{\partial T}\right)_{p}-\frac{2 U}{2 T}\right)_{V}
\end{aligned}
$$

