Problem 1.
20-5. In this problem, we will prove that Equation 20.5 is valid for an arbitrary system. To do this, consider an isolated system made up of two equilibrium subsystems, A and B, which are in thermal contact with each other; in other words, they can exchange energy as heat between themselves. Let subsystem A be an ideal gas and let subsystem B be arbitrary. Suppose now that an infinitesimal reversible process occurs in A accompanied by an exchange of energy as heat $\delta q_{\text {rev }}$ (ideal). Simultaneously, another infinitesimal reversible process takes place in B accompanied by an exchange of energy as heat $\delta q_{\text {rev }}$ (arbitrary). Because the composite system is isolated, the First Law requires that

$$
\delta q_{\mathrm{rev}}(\text { ideal })=-\delta q_{\mathrm{rev}}(\text { arbitrary })
$$

Now use Equation 20.4 to prove that

$$
\oint \frac{\delta q_{\mathrm{rev}}(\text { arbitrary })}{T}=0
$$

Therefore, we can say that the definition given by Equation 20.4 holds for any system.
Equation $\left.20.5 \rightarrow \int \frac{\alpha q \text { rev }}{T}=\varnothing \quad \begin{array}{l}\text { infinitesimal reversible process } 821 \\ \text { exchange of } \& q \text { rev }\end{array}\right\} \begin{aligned} & \text { Doth } A \\ & 3\end{aligned} \quad B$

$$
\delta q_{\text {rev }}(i d e a l)=-\delta q_{r e r}(\operatorname{arbitrary})
$$

$$
\alpha q_{\operatorname{rev}}(A)=-\delta q_{\operatorname{rev}}(B)
$$

show $\oint \frac{\delta q(\text { arbitram) }}{T}=0$
heat transfer

$$
\begin{aligned}
& \text { use eq 20.1 } \rightarrow \delta q_{\text {rev }}=d U \text {-dwrev } C_{r}(T) d T+P d V \\
& =C_{V}(T) d T+\frac{n R T}{V} d V \\
& \therefore \delta q_{\operatorname{rev}}(B)=-\underbrace{-\frac{\operatorname{Cr}(T) d T}{V} d V}_{q_{\operatorname{rev}}(A)} \\
& \frac{\alpha \operatorname{qrev}(B)}{T}=\frac{-C V}{T} d T+\frac{n R T}{\frac{x}{T}} d V \\
& =d\left[\int \frac{-C V(T)}{T} d T-n R \int \frac{d V}{V}+C\right] \\
& \text { function }=\varnothing
\end{aligned}
$$

$$
\begin{aligned}
& \oint d y=\varnothing \\
& \oint d y=\int_{1}^{2} d y+\int_{2}^{1} d y=y_{2}-y_{1}+\left(y_{1}-y_{2}\right)=\varnothing
\end{aligned}
$$

therefore: $\oint \frac{\delta \text { qurev (arbirrary) }}{T}=\varnothing$
Probum \#2
Calculate AIt? AS for system! surrounding when 1 mol of water is vaporized at $100^{\circ} \mathrm{C}$. Value of $\$ H_{\text {vap }}=40.65 \mathrm{~kJ} / \mathrm{mol}$ Comment on sish of $\bar{A} S^{\circ}$ vap

$$
\begin{aligned}
& \text { at const. } \Delta H=\Delta U+\Delta(P V) \\
& \text { pressure, } \quad \Delta u=q 1-w=q-P \Delta v
\end{aligned}
$$

$$
\Delta H_{s h s}=\Delta H_{r a p}
$$

$$
\Delta H_{\text {sus }}=-\Delta H_{\text {surr }}
$$

$$
\Delta S=\frac{\delta q_{r r v}}{T} \text { where } \Delta H=q
$$

$$
\text { so, } \Delta S=\frac{\Delta H_{\text {sus }}}{T}
$$

* Convert to

Relvin
and $\Delta S_{\text {sus }}=-\Delta S_{\text {surr }}$

Problem \# 3
Calculate ΔS of system and surr when I mol of ideal monoatomic gas doubles in volume.
a) isothermal reversible expansion page 822

$$
\begin{gathered}
\begin{array}{r}
\Delta T=\varnothing \\
\Delta U=\varnothing
\end{array} \quad\left[\Delta S=\int \frac{q_{\text {rev }}}{T_{1}} \Rightarrow \int_{V_{1}}^{V_{2}} \frac{1}{T_{1}} \frac{n R T_{1}}{V} d V \Rightarrow n R \int_{V_{1}}^{V_{2}} \frac{d V}{V}\right] \\
\Delta S=n R \ln \left(\frac{2 V}{V}\right) \\
\Delta S_{\text {suster this frombook }}=-\Delta S_{\text {surr }}
\end{gathered}
$$

b) isothermal, irreversal, in vaccum

$$
\begin{aligned}
& \Delta T=\varnothing \\
& \Delta u=\varnothing \\
& D_{\text {ex }}^{\downarrow}=\varnothing \\
& \Delta S_{\text {surr }}=\frac{q_{\text {suvv }}}{T}=\frac{-q_{\text {sus }}^{\text {acual }}}{T} \\
& \omega=\varnothing \\
& \text { irrev } \Delta S_{\text {sustem }}={ }^{\text {reV }} \Delta S_{\text {system }}=n R \ln \left(\frac{2 V}{V}\right) \\
& \Delta S_{\text {surr }}=\frac{q_{\text {surr }}}{T} \text { where } \begin{aligned}
\Delta U & =q_{\text {surrt }} \omega \\
D & =q \text { surr }+\varnothing \text { so, }
\end{aligned} \Delta S_{\text {surr }}=\varnothing \\
& D=q \text { surr }+\varnothing \text { so, } \\
& q \text { surv }=\theta \\
& \text { In vacuum means } \Delta S_{\text {surr }}=\theta
\end{aligned}
$$

c) adiabatic reversible expansion

$$
\Delta q=\varnothing \quad \Delta S=\frac{q_{\text {riv }}}{T} \quad \Delta S_{\text {sustem }}=-\Delta S_{\text {surv }}
$$

d) adiabatic irreversible expansion into a vacuum

$$
\Delta q=D \quad * \text { from notes, since } \Delta S \text { is a state }
$$

$\Delta D=D$,
it reversible, so we can use $\Delta s=\frac{\text { prev }}{T}$

$$
P_{\text {ext }}=\varnothing
$$

$$
\omega=\theta
$$

because $\Delta U=\theta$, we use isothermal $\frac{a}{T}$

$$
\left.\Delta S=n R \ln \left(\frac{V_{2}}{V_{1}}\right)_{\pi} \text { where } \frac{2 v}{V}\right)
$$

Probum 4
I mol ideal gas
$T_{\text {suss }}=300 \mathrm{~K}$ isothermal until $P=P_{\text {ext }}$ (iverevsibue)

$$
V_{1}=25 \mathrm{~L} \quad V_{F}=10 \mathrm{~L}
$$

$T_{\text {surf }}^{\prime}=300 \mathrm{k}$ find $S_{\text {suse }}$, Sur, Suniv isothermal, irreversible
$\Delta T=\varnothing \quad L \Delta \Delta$ is state function so we can use $\Delta S_{\text {sis }} n R \ln \left(\frac{v_{2}}{r_{1}}\right)$
$P_{\text {ext }}=P_{f}$ where δq sys $=\delta \omega=P_{f} A V$

* in this case $\Delta S \neq 0$ and

$$
P_{f}=\frac{n R T_{f}}{V_{f}} \text { then, } W=-P_{f}\left(\frac{V_{f}}{V_{i}}\right)
$$

$\Delta S_{\text {surv }} \neq \Delta S_{\text {syr }}$
and $q=-w$ and $\Delta S=-\frac{\delta q \text { sur r }}{T}$
and $S_{\text {univ }}=S_{\text {suss }}+S_{\text {sur }}$ find P_{f} to find w to find q to find $S_{\text {sur r }}$ where $P_{f}=P_{\text {ext }}$ using ideal gas law
Problem 5
2.5 mol ideal monoatomic gas
$T_{1}=310 \mathrm{~K} \quad P_{1}=1$ bar
calculate $q, w, \Delta U, \Delta H, \Delta S$
can use $\quad D S_{\text {sui }}=-\Delta S_{\text {shr }}$ as long as $q \neq \varnothing$ $S_{\text {surv }}=\varnothing$ When adiabatic for prob 5,
a) gas heated to 675 K and constant Pext $=1$ bar First, find V_{1}, use $P V=n R T \Rightarrow V_{1}=\frac{n R T_{1}}{P_{1}}$ * constant pressure
then, using Charle's law: at $\Delta P=\varnothing, \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$

$$
\text { so } \begin{aligned}
& V_{2}=V_{1} \cdot \frac{T_{2}}{T_{1}} \text { then } \omega=-P_{\text {ext }} \Delta V \\
& \Delta U=\frac{3}{2} n R T \\
& \text { at constant } q=\Delta H=\Delta U+P \Delta V \\
& \text { pressure } J(\Delta U-\omega)
\end{aligned}
$$

and $\sin \omega \quad q=C_{v} n R \Delta T, \quad \Delta S=\frac{\delta q_{r r v}}{T}=\int \frac{C_{v}(T)}{T} d T f \frac{n R}{v} d v$

$$
=\frac{3}{2} n R \ln \frac{T_{f}}{T_{1}}+\frac{3}{2} n R \ln \left(\frac{V_{f}}{V_{1}}\right)
$$

b) $T_{2}=675 \mathrm{~K}$ at constant volume, $V_{1}=V_{f}$

$$
\begin{aligned}
& \Delta U=q+\pi^{0} \quad \omega=0 \quad \frac{P V}{v}=\frac{n R T}{v} \\
& q=\Delta U=\frac{3}{2} n R \Delta T \\
& \Delta H=\Delta U+\Delta(P V)=\Delta U+\Delta\left(\frac{n R T}{0} \cdot 0,0\right)=\Delta U+n R \Delta T \\
& \Delta S=\frac{3}{2} n R \ln \frac{T_{f}}{T_{1}}+\frac{-3}{2} n R \ln \left(\frac{V_{f}}{V_{1}}\right) \Delta_{\theta}
\end{aligned}
$$

c) Reversible isothermal expansion, $P_{F}=3 P_{i} \quad P_{1} V_{1}=P_{2} V_{2}$

$$
\text { why } \rightarrow \begin{gathered}
\Delta T=\varnothing \\
\downarrow
\end{gathered} \quad T=310 \mathrm{~K} \quad 1 \cdot v_{1}=3 \cdot v_{2}
$$

$$
\Delta U=\Delta H=\varnothing
$$

$$
w=-q=-n R \ln \left(\frac{v_{f}}{v_{1}}\right)<\begin{aligned}
& v_{f}=3 \\
& v_{1}=1
\end{aligned}
$$

Dropping pressure means volume goes up proportionally

$$
\Delta S=\frac{\infty}{2} n R \ln \frac{T_{t}}{T_{1}}+n R \ln \frac{v e}{r_{1}}
$$

