Homework 6

Problem 1, 10 marks
We can ice skate because the pressure on the ice lowers its freezing temperature creating a thin film of water under the skate blades. Calculate the freezing temperature of ice for a 70 kg person standing on ice skate blades of dimension 0.25×12.0 inches.
Data: 1 inch $=2.54 \mathrm{~cm} ; \rho\left(\mathrm{H}_{2} \mathrm{O}(\ell)\right)=0.997 \mathrm{~g} / \mathrm{cm}^{3} ; \rho\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right)=0.917 \mathrm{~g} / \mathrm{cm}^{3} ; \Delta \mathrm{H}_{\text {gus }}\left(\mathrm{H}_{2} \mathrm{O}\right)$ $=6.01 \mathrm{~kJ} / \mathrm{mol} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2} \unlhd$ don't forget to convert!!.

Use Clapeyron Equation: integrate assume independent of T

$$
\frac{d P}{d T}=\frac{\Delta \bar{H}}{T \Delta \bar{V}} \Rightarrow d P=\frac{\Delta \bar{H}}{\Delta \bar{V}} \frac{d T}{T} \Rightarrow \Delta P=\frac{\Delta \frac{T}{H}}{\Delta \bar{V}} \ln \left(\frac{T_{2}}{T_{1}}\right)
$$

Then, plug back into $\Delta P=\frac{\Delta \bar{H}}{\Delta \bar{V}} \ln \left(\frac{T_{2}}{T_{1}}\right)$ and solve for T_{2} * Use Kelvin to check yourself, make sure all units cancel out except for Kelvin.

Looking for 4 things
when grading (hignuted)

How to derive Clapeyron
Equation \downarrow
https://chem.libretexts.org/Bookshelves/
Physical and Theoretical_Chemistry Textbook M aps/Physical_Chemistry_(LibreTexts)! 23\%3A Phase Equilibrial/ 23.03\%3A The Chemical Potentials of a Pure S ubstance in Two Phases in Equilibrium

Problem 2, 10 marks
Freeze drying (lyophilization) is a process where water contained in a sample is evaporated into the gas phase at low pressures and temperatures below the freezing temperature of water. What is the maximum pressure at which a sample can be freeze dried if the demperature is not to exceed $-10.5^{\circ} \mathrm{C}$? Kelvin Data: $\Delta \mathrm{H}_{\text {fus }}^{0}=6.01 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\text {vap }}^{0}=40.65 \mathrm{~kJ} / \mathrm{mol}$; the vapor pressure of ice is 611 Pa at 273.15 K.

Enthalpy is a state function so, :

$$
\Delta H_{\text {sub }}=\Delta H_{\text {pus }}+\Delta H_{\text {rap }}=\text { answer }
$$

Use Clapeyron Equation:

$$
\frac{d P}{d T}=\frac{\Delta \bar{A}}{T \Delta \bar{V}} \Rightarrow \text { what is } \Delta \bar{V} \text { ? }
$$

The Clapeyron equation can be developed further for phase equilibria involving the gas phase as one of the phases. This is the case for either sublimation (solid \rightarrow gas) or vaporization (liquid \rightarrow gas). In the case of vaporization, the change in molar volume can be expressed

$$
\Delta V=V_{g a s}-V_{\text {liquid }}
$$

Since substances undergo a very large increase in molar volume upon vaporization, the molar volume of the condensed phase (liquid in this case) is negligibly small compared to the molar volume of the gas (ie., $V_{\text {gas }} \gg V_{\text {liquid }}$). So,

So, use ideal gas law

$$
\begin{aligned}
& \text { explanation } \Delta V \approx V_{\text {es }} \\
& \frac{d T}{T^{2}}=\frac{1}{T^{2}} d T=\int T^{-2} d T=\left.\frac{T^{-1}}{-1}\right|_{T_{1}} ^{T^{2}}=\frac{T_{2}^{-1}}{-1}-\left(\frac{T_{1}^{-1}}{-1}\right)=T_{2}^{-1}+T_{1}^{-1}=\frac{1}{T_{2}}+\frac{1}{T_{1}}
\end{aligned}
$$

$$
V=\frac{R T}{P} \text {, and phiginto clapeyron eq: } \frac{d T}{T_{2}}=-d\left(\frac{1}{T}\right)
$$

$$
\frac{d P}{d T}=\frac{\Delta \bar{H}}{T \Delta \bar{V}} \Rightarrow \frac{d p}{d T}=\frac{P \Delta H}{R T^{2}} \Rightarrow d p=\frac{p \Delta H}{R} \frac{d T}{T^{2}} \Rightarrow \int_{P_{1}}^{P_{2}} \frac{d P}{P}=-\frac{\Delta H}{R} \int_{T_{1}}^{T_{2}} d\left(\frac{1}{T}\right)
$$

How to derive this
https://chem.libretexts.org/
Bookshelves/.
Physical and Theoretical Ch emistry_Textbook_Maps/.
Physical_Chemistry_(Flemin g).

08\%3A_Phase_Equilibrium/ 8.05\%3AThe_Clausius-

Clapeyron_Equation

$$
\Rightarrow \ln \left(\frac{P_{2}}{p_{1}}\right)=\frac{-\Delta H}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)_{5}
$$

this is the Clausius-Clapeyron eq.
Plug in \#'s and solve for P_{2}
Looking for these 4 things

Problem 3, 10 marks
The vapor pressure of water at $20^{\circ} \mathrm{C}$ is 17.54 torr. Using this data and $\Delta \mathrm{H}_{v a p}^{0}=40.65$ $\mathrm{kJ} / \mathrm{mol}$ for water calculate $\Delta \mathrm{G}_{298}^{0}$ for the change $\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$? (Hint: the form of the van't Hoff equation is identical to the Clausius-Clapeyron equation)

$$
\begin{aligned}
& \text { Comparison is } K_{P}(T)=P(T) \\
& \qquad \begin{array}{l}
\ln \left(\frac{P_{2}}{P_{1}}\right)=-\frac{A H}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
\text { SO. } P_{2}
\end{array}=K_{P(298)}
\end{aligned}
$$

Looking for these 2 things

$$
\Delta G_{2 a 8}^{0}=-R T \ln \left(K_{p}\right)
$$

