Chem 3321 homework \#7 out of 70 marks - due April 10, 2023
Problem 1, 10 marks
By measuring the equilibrium between the liquid and vapor phases of an acetone (A) ethanol (E) solution at $57.2^{\circ} \mathrm{C}$ and 1.00 atm it was found that $x_{A}=0.400$ and $y_{A}=0.516$. Calculate the activities and activity coefficients for both components in this solution using the Raoult's law basis. The vapor pressure of th\& pure components at this temperature are: $P_{A}^{*}=786$ torr and $P_{E}^{*}=551$ torr. (x_{A} is the mold fraction in the liquid and y_{A} the mole fraction in the vapor.)
(y) Activity Coefficient - measure of how much a solution differs from an ideal solution
(a) Activity - measure of "effective concentration" of a species in mixture

$$
\begin{aligned}
& Y_{a}=a_{A}\left|x_{A} \quad a_{A}=P_{A}\right| P_{A}^{*} \quad P_{a}=y_{A} P_{\text {TOT }} \\
& P_{a}=(0.516)(760)=\text { answer }
\end{aligned}
$$

$$
P_{\text {TOT }}=1 \mathrm{~atm}
$$

convert since evengthing is in Torr so,
then plug answer into:

$$
P_{\text {TOT }}=760 \text { Tort }
$$

$$
\begin{aligned}
& a_{A}=P_{A} \mid P_{A}^{*}=\text { answer } \\
& \left.a_{E}=P_{E} \mid P_{E}^{*}=\text { answer (where } P_{E}=\mid-P_{A}\right)
\end{aligned}
$$

then,

$$
y_{A}=a_{A} \mid x_{A}=a n s w e r
$$

and

$$
\psi_{E}=a_{E} \mid X_{E}=\text { answer (where } X_{E}=1-X_{A} \text {) }
$$

You should have 4 answers, the activity and activity coefficient for both Ethanol and acetone

The total vapor pressure of a $4 \mathrm{~mol} \underset{\substack{* \\ P_{H_{20}}}}{\substack{*}}$ solution of NH_{3} in water is 50.00 mm Hg at 20 ${ }^{\circ} \mathrm{C}$; the vapor pressure of pure water is 17.00 mm Hg at this temperature. Apply Henry's and Raoult's laws to calculate the two partial pressures and the total vapor pressure of a 5 mol $\%$ solution.

$$
\begin{aligned}
& X_{N H 3}=\frac{4}{100}=0.04 \\
& X_{\mathrm{H}_{2} \mathrm{O}}=100-0.04=0.96
\end{aligned}
$$

$$
\begin{aligned}
& \text { Raoult's Law }=P_{A}=X_{A} P_{A}^{*} \\
& \text { Henry's Law }=P_{A}=K_{A} X_{A} \\
& \text { Dalton's Law }=P_{\text {total }}=P_{A}+P_{B}
\end{aligned}
$$

$$
\overbrace{P_{\text {total }}}=\underbrace{K_{H} X_{\mathrm{NH}_{3}}}_{\text {Hing's }}+\underbrace{X_{\mathrm{H}_{20}} P_{H_{20}}^{*}}_{\text {Raoult's }}
$$

solve for K_{H}
then, at 5\%,
$X_{\mathrm{NH}_{3}}=\frac{5}{100}=0.05$
$X_{\mathrm{H}_{2} \mathrm{O}}=100-0.05=0.95$

$$
\begin{array}{ll}
\text { so, } P_{\mathrm{NH}_{3}}=K_{\mathrm{H}} X_{\mathrm{NH}_{3}} & \text { (tHen's) } \\
\text { and, } P_{\mathrm{H}_{2} \mathrm{O}}=X_{\mathrm{H}_{2} \mathrm{O}} P_{\mathrm{H}_{2} \mathrm{O}}^{*} \quad \text { (haoult's) } \\
\text { then, } P_{\text {tot }}=P_{\mathrm{NH}_{3}}+P_{\mathrm{H}_{2} \mathrm{O}} \quad \text { (Dalton's) }
\end{array}
$$

You should have 3 answers at the end.

Problem 3, 10 marks
The average human with a body weight of $70 . \mathrm{kg}$ has a blood volume of 5.00 L . The Henry's law constant for the solubility of N_{2} in $\mathrm{H}_{2} \mathrm{O}$ is 9.04×10^{4} bar at 298 K . Assume that this is also the value of the Henry's law constant for blood and that the density of blood is $1.00 \mathrm{~kg} \mathrm{~L}^{-1}$.
(a) Calculate the number of moles of nitrogen absorbed in this amount of blood in air of composition $80 . \% \mathrm{~N}_{2}$ at sea level, where the pressure is 1 bar , and at a pressure of 50 . bar.

plug in : solve. What about at 50 bar? multiply by 50
(b) Assume that a diver accustomed to breathing compressed air at a pressure of 50 . bar is suddenly brought to sea level. What volume of N_{2} gas is released as bubbles in the diver's bloodstream? (The volume of N_{2} you calculate is far more that is needed to cause the formation of arterial blocks due to gas-bubble embolisms.)

$$
\Delta n=n_{N_{2}}^{\text {Lobar }}-n_{N_{2}}^{\text {bar }}=a n s w e r
$$

$$
\begin{aligned}
& P V=n R T \\
& V=\frac{n R T}{P} \text { and solve. }
\end{aligned}
$$

Problem 4, 10 marks
The partial molar volumes of water and ethanol in a solution with $x_{\mathrm{H}_{2} \mathrm{O}}=0.45$ at $25^{\circ} \mathrm{C}$ are 17.0 and $57.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ respectively. Calculate the volume change upon mixed sufficient ethanol with 3.75 mol of water to give this concentration. The densities of water and ethanol are 0.997 and $0.7893 \mathrm{~g} \mathrm{~cm}^{-3}$ respectively at this temperature.

$$
\begin{array}{ll}
X_{H_{2 O} \mathrm{O}}=0.45 \quad \bar{V}_{H_{2 O}}=17 \mathrm{~cm}^{3} / \mathrm{mol} & \bar{V}_{E}=57.5 \mathrm{~cm}^{3} / \mathrm{mol} \quad T=298 \\
V=\frac{m}{D} & X_{H_{20}}=\frac{n_{H z O}}{n_{H_{2 O}}+n_{E}} \\
\bar{V}_{H_{2 O}}^{*}=\frac{18.02 \mathrm{~g} / \mathrm{mol}}{0.9979 / \mathrm{cm}^{\prime}}=\text { answer } & 0.45=\frac{3.75 \mathrm{~mol}}{3.75 \mathrm{~mol}+n_{E}} \text { solve for } n_{E} \\
\bar{V}_{E}^{*}=\frac{46.07 \mathrm{~g} 1 \mathrm{~mol}}{0.789391 \mathrm{~cm}^{3}}=\text { answer } &
\end{array}
$$

then, $\quad \Delta V=V_{2}-V_{1}$ and $V=\bar{V}_{n}$

$$
\Delta V=\left(n_{H_{2} \mathrm{O}}\right)\left(\bar{V}_{\mathrm{H}_{2} \mathrm{O}}-\bar{V}_{\mathrm{H}_{2} \mathrm{O}}^{*}\right)+\left(n_{E}\right)\left(\bar{V}_{E}-\bar{V}_{E}^{*}\right)
$$

Problem 5, 10 marks
A solution of sucrose in water freezes at $-0.200{ }^{\circ} \mathrm{C}$. Calculate the vapor pressure of this solution at $25^{\circ} \mathrm{C}$ (accurate to 0.001 mm Hg). The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.506 mm Hg and the molal freezing-point constant for water is $1.86{ }^{\circ} \mathrm{C} / \mathrm{m} .{ }_{\mathrm{mol} / \mathrm{kg}} \mathrm{J}_{\mathrm{f}}$

$$
\lambda^{P_{\mathrm{H}_{2} \mathrm{O}}}=X_{\mathrm{H}_{2} \mathrm{O}} P_{\mathrm{H}_{2} \mathrm{O}}^{*}
$$

* can keep in ${ }^{\circ} \mathrm{C}$ since they cancel 0 or
answer

$$
x_{H_{2 O}}=1-x_{\operatorname{suc}}
$$

Plug in? solve

$$
X_{\text {sue }}=\frac{M \cdot \text { molar mass of } \mathrm{H}_{2} \mathrm{O}}{1000 \mathrm{~s} \cdot \mathrm{~kg}}
$$

Problem 6, 10 marks
Calculate the osmotic pressure of a 2 molal aqueous solution of sucrose at room temperature assuming ideal (Raoult's Law) behavior. Compare to the value of $\pi=58.0 \mathrm{~atm}$ which accounts for non-ideal behavior.
$\pi=$ CRT where $C=M \cdot P_{H_{2} O}$ * assume density of dilute solution is the density of pure water. (0.99751 m 2

$$
\begin{aligned}
C= & M \cdot P_{\mathrm{H}_{2} \mathrm{O}} \\
C= & 2 \mathrm{~mol} / \mathrm{kg} \cdot P_{\mathrm{H}_{2} \mathrm{O}} \\
& \downarrow \\
C= & \frac{2 \mathrm{~mol}}{10005 \mathrm{H}_{2} \mathrm{O}} \cdot \frac{0.997 \mathrm{~g}}{1 \mathrm{~mL}} \cdot \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=\text { answer in } \frac{\mathrm{mol}}{\mathrm{~L}}
\end{aligned}
$$

then plug into $\pi=C R T \rightarrow(K E L V I N)$ to get $\pi_{\text {ideas }}$

$$
\text { comparison: } \%=\frac{\pi_{\text {non-ideal }}-\pi_{\text {ideal }}}{\pi_{\text {non -ideal }}} \times 100
$$

2 answers expected!

Problem 7, 10 marks
$\nwarrow_{2.20} \mathrm{~g}$ of a polymer is dissolved in enough water to make 300 mL of solution. The osmotic pressure is found to be 7.45 torr at $20^{\circ} \mathrm{C}$. Determine the molar mass of the polymer.

$$
\pi=C R T \quad \begin{aligned}
& \text { plugin } \\
& C=\frac{\pi}{R T}=\text { answer }
\end{aligned}
$$

$$
293 \mathrm{~K}
$$

$$
c=\frac{m}{M \cdot V}
$$

Then,

$$
\underset{\text { (molarmass) }}{M}=\frac{m^{\text {(mass) }}}{C \cdot V}=\text { answer in glmol }
$$

