Chem 3321 homework #7 out of 70 marks – due April 10, 2023 Problem 1, 10 marks

By measuring the equilibrium between the liquid and vapor phases of an acetone (A) ethanol (E) solution at 57.2 °C and 1.00 atm it was found that $x_A = 0.400$ and $y_A = 0.516$. Calculate the activities and activity coefficients for both components in this solution using the Raoult's law basis. The vapor pressure of the pure components at this temperature are: $P_A^* = 786$ torr and $P_E^* = 551$ torr. (x_A is the mole fraction in the liquid and y_A the mole fraction in the vapor.)

PTOT = latin
convert since everything

is in Torr so,

PTOT = 760 Torr

(14) Activity Coefficient - measure of how much a solution differs from

(a) Activity - measure of "essective concentration" of a species in mixture

Ya=aA/XA QA-PA/PA* Pa=yaPTOT

Pa = (0.516)(760) = answer

then plug answer into:

an = PAIPA* = answer

a= PE / PE = answer (where PE = 1 - PA)

then, y = a / X = answer

and $y_F = \alpha_E / X_E = answer (where <math>X_E = [-X_A]$

you should have 4 answers, the activity and activity coefficient for both Ethanol and acetone

Problem 2, 10 marks

Praoult's Law = 7 = X = 7

Henry's Law = PA = KAXA Dalton's Law = Ptotal = PATPB

The total vapor pressure of a 4 mol % solution of NH₃ in water is 50.00 mm Hg at 20 °C; the vapor pressure of pure water is 17.00 mm Hg at this temperature. Apply Henry's and Raoult's laws to calculate the two partial pressures and the total vapor pressure of a 5 mol % solution.

Dalton's

solve for KH

$$X_{NH_3} = \frac{5}{100} = 0.05$$

 $X_{H_20} = 100 - 0.05 = 0.95$

$$X_{H_{20}} = 100 - 0.05 = 0.95$$

you should have 3 answers at the end.

Problem 3, 10 marks

The average human with a body weight of 70. kg has a blood volume of 5.00 L. The Henry's law constant for the solubility of N_2 in H_2O is 9.04×10^4 bar at 298 K. Assume that this is also the value of the Henry's law constant for blood and that the density of blood is 1.00 kg L^{-1} .

(a) Calculate the number of moles of nitrogen absorbed in this amount of blood in air of composition 80.% N₂ at sea level, where the pressure is 1 bar, and at a pressure of 50. bar.

$X_{N_2} = \frac{N_{N_2}}{N_{N_2} + N_{H_2O}} \text{and} P_{N_2} = X_{N_2} V_H$		$\chi_{N_2} = \frac{80}{100} = 0.80$
S0, P n.	$n_{H_{20}} = (5 \times 10^{3})$ (18.029/mol)	$P_{N_2} = X_{N_2} P_{N_2}^*$ $P_{N_2} = (0.80)(1 \text{ bar})$
P _{Nz} - n _{Nz} V H N _{Nz} + n _{Hz} 0	n ₄₂₀ = 277 mol	PN2 = 0.80 bar
then 7 $N_z = P_{N_z} N_{H_z} 0$	and KH = 9.04 × 104 bar	
KH-PN2 (at Ibar)		
Plug in ! solve. What about at 50 bar? multiply by 50		

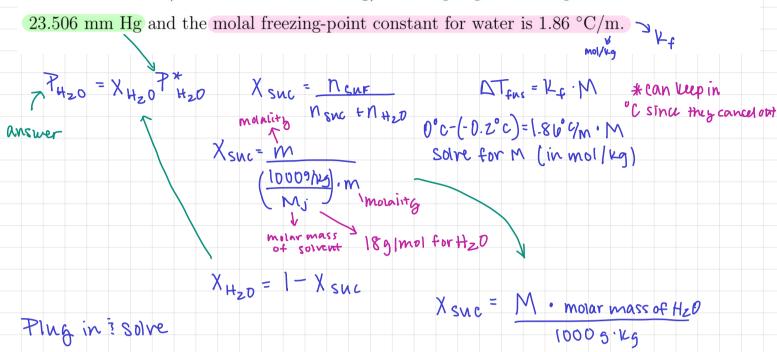
(b) Assume that a diver accustomed to breathing compressed air at a pressure of 50. bar is suddenly brought to sea level. What volume of N₂ gas is released as bubbles in the diver's bloodstream? (The volume of N₂ you calculate is far more that is needed to cause the formation of arterial blocks due to gas-bubble embolisms.)

$$\Delta n = n_{N2}^{506ar} - n_{N2}^{16ar} = answer$$
 $V = nRT$

and Solve.

Problem 4, 10 marks

The partial molar volumes of water and ethanol in a solution with $x_{\rm H_2O} = 0.45$ at 25°C are 17.0 and 57.5 cm³mol⁻¹ respectively. Calculate the volume change upon mixed sufficient ethanol with 3.75 mol of water to give this concentration. The densities of water and ethanol are 0.997 and 0.7893 g cm⁻³ respectively at this temperature.


$$X_{H_{2}0} = 0.45$$
 $V_{H_{2}0} = 17 \text{ cm}^{3}/\text{mol}$ $V_{E} = 57.5 \text{ cm}^{3}/\text{mol}$ $T = 298$
 $V = \frac{M}{b}$
 $V_{H_{2}0} = \frac{18.029 \text{ Imol}}{0.9979 \text{ low}} = \frac{M_{8} \text{me}}{0.9979 \text{ low}}$
 $V_{E} = \frac{16.079 \text{ Imol}}{0.78939 \text{ low}} = \frac{0.45 = 3.75 \text{ mol}}{3.75 \text{ mol} \cdot \text{n}_{E}}$

Solve for n_{E}

then, $\Delta V = V_{2} - V_{1}$ and $V = V_{1}$
 $\Delta V = (n_{H_{2}0})(V_{H_{2}0} - V_{H_{2}0}^{*}) + (n_{E})(V_{E} - V_{E}^{*})$

Problem 5, 10 marks

A solution of sucrose in water freezes at -0.200 °C. Calculate the vapor pressure of this solution at 25 °C (accurate to 0.001 mm Hg). The vapor pressure of pure water at 25 °C is

Problem 6, 10 marks

Calculate the osmotic pressure of a 2 molal aqueous solution of sucrose at room temperature assuming ideal (Raoult's Law) behavior. Compare to the value of $\pi = 58.0$ atm which accounts for non-ideal behavior.

$$N = CPT \text{ where } C = M \cdot P_{H_2O} \Rightarrow R \text{ assume density of dilute solution is the density of pure water.} (0.99751m) \\ C = M \cdot P_{H_2O} \\ C = 2mol/kg \cdot P_{H_2O} \\ 1000 \cdot SH_2O \\ 1mL = answer in mol/L \\ Hen plug into $N = CPT \Rightarrow (KELVIN)$ to get N_{inend} comparison: $N_{inend} = N_{inend} = N_{inend}$ answers expected!$$

Problem 7, 10 marks

0.31

2.20 g of a polymer is dissolved in enough water to make 300 mL of solution. The osmotic pressure is found to be 7.45 torr at 20 °C. Determine the molar mass of the polymer.

V 293K

M=CRT

plusin

C=N = answer

RT

*h=62.36L·Torr K·mol

If you don't use this I I will come out wrong. * uhless you convert

Then,

(molar mass) = (mass) = answer in 3/mol