$$
\text { WW \# } 8
$$

Chem 3321 homework \#8 out of 50 marks - due April 17, 2023
Problem 1, 10 marks
A gaseous compound is placed in a rigid container of volume 10.0 L at temperature 300.0 K and at pressure 1.0 atm . The container is placed in an evacuated chamber and a small hole of area $2.65 \mathrm{~mm}^{2}$ is made in one of the container walls. It takes 1.00 minutes for the gas pressure in the container to fall to half of its original value. Determine the molar mass of the gas.


$$
\begin{gathered}
V=10 \mathrm{~L} \\
T=300 \mathrm{~K} \\
a=2.65 \mathrm{~mm}^{2}
\end{gathered}
$$

$$
\ln \left(\frac{P}{P_{0}}\right)=\frac{-a \gamma_{\text {mean }} \cdot t}{4 V_{V_{\text {volume }}} \text { speed }\langle v\rangle} \text { and } V_{\text {mean }}:\left(\sqrt{\frac{2 \pi v}{2 \pi m}}=\sqrt{\frac{8 R T}{\pi m}}=4 \sqrt{\frac{R T}{2 \pi M}}\right.
$$

convert to m
so, $\ln \left(\frac{.5}{1}\right)=\frac{-2.65 \mathrm{~mm}^{2} \cdot V_{\operatorname{mean}}(60 \mathrm{~s})}{4\left(10 \times 10^{-3} \mathrm{~m}\right)}$ Solve for $V_{\text {mean }}$
then plug value into $V_{\text {mean }}=4 \sqrt{\frac{R T}{2 \pi M}}$ and solve for $M$ (which is molar mass

## Problem 2, 10 marks

100.0 g of liquid copper (molar mass $63.546 \mathrm{~g} / \mathrm{mol}$; melting point 1358 K ; density 8.02 $\mathrm{g} / \mathrm{mL}$ ) is placed in a rigid container of volume 10.0 L at temperature 1508 K . The container is placed in an evacuated chamber and a small hole of area $3.23 \mathrm{~mm}^{2}$ is made in the upper container wall. After 2.00 hours, the mass of copper in the container has decreased by 0.0168 g . Assuming the mass loss is due to effusion, calculate the vapor pressure of liquid copper at 1508 K .
Hint: because the liquid constantly evaporates, the pressure inside the container is constant.

$m=100 \mathrm{~g}$
$M=63.5469 / \mathrm{mol}$
$T_{m}=1358 \mathrm{~K}$
$D^{m}=8.029 / \mathrm{mL}$
$\begin{aligned} & V_{c}=10 \mathrm{~L} \\ & T_{c}=1508 \mathrm{~K}\end{aligned} \quad \frac{\mathrm{Na}}{\mathrm{M}} \cdot \frac{d \mathrm{~m}}{d t}=\frac{\mathrm{Pa}_{a}}{\sqrt{2 \pi m K_{B} T}}$
$a=3.23 \mathrm{~mm}^{2}$ (convert to m${ }^{2}$ )
$\Delta P_{c}=\theta$

$$
\begin{aligned}
& P=\frac{N_{a}}{M}\left(\sqrt{2 \pi m L_{B} T}\right) \frac{d m}{d t} \\
&\left.=\frac{N_{a}}{M} \sqrt{2 \pi\left(\frac{M}{N_{a}}\right)\left(\frac{R}{N_{P}}\right)(T)}\right) \frac{d m}{d t} \\
&=\left(\frac{N_{a}}{M}\right)\left(\frac{1}{N_{A}}\right) \sqrt{2 \pi M R T} \frac{d m}{d t} \\
& P= \frac{\sqrt{2 \pi M R T}}{a M} \cdot \frac{d m}{d t}>0.0168 g \\
& \text { plug in is solve }
\end{aligned}
$$

Problem 3, 10 marks
A space vehicle of internal volume $3.0 \mathrm{~m}^{3}$ and internal temperature 298 K is struck by a meteor and a hole of radius 0.1 mm is formed.
(a) If the oxygen pressure within the vehicle is initially 100 kPa , how long will it take to fall to 20 kPa ? $V_{\mathrm{O}_{2}}$
(b) Repeat the calculation using nitrogen as the gas.

$$
\forall_{N_{2}}
$$

a)

$$
\begin{aligned}
& v_{\text {mean }}=\sqrt{\frac{8 R T}{\pi M}} \text { and } \ln \left(\frac{P_{(r)}}{P_{0}}\right)=\frac{-a V_{\text {mean }} t}{4 V} \\
& t=\frac{-4 V}{9} \sqrt{\frac{\pi M}{8 R T}} \ln \left(\frac{P_{(t)}}{P_{0}}\right)
\end{aligned}
$$

plug in? solve
b)

$$
\begin{aligned}
& t=\frac{-4 V}{9} \sqrt{\frac{\pi M}{8 R T}} \ln \left(\frac{P_{(t)}}{P_{0}}\right) \\
& M_{N_{2}}=28.02 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{mul}^{-1}
\end{aligned}
$$

Problem 4, 10 marks
On average what is the time between collisions of a xenon atom at 300 K and (a) one torr pressure; (b) one bar pressure.

TABLE 27.3

Collision diameters, $d(\mathrm{pm})$ and collision cross sections $\sigma\left(\mathrm{nm}^{2}\right)$ for various molecules.

| Gas | $d / \mathrm{pm}$ | $\sigma / \mathrm{nm}^{2}$ |
| :---: | :---: | :--- |
| He | 210 | 0.140 |
| Ar | 370 | 0.430 |
| Xe | 490 | 0.750 |
| $\mathrm{H}_{2}$ | 270 | 0.230 |
| $\mathrm{~N}_{2}$ | 380 | 0.450 |
| $\mathrm{O}_{2}$ | 360 | 0.410 |
| $\mathrm{Cl}_{2}$ | 540 | 0.920 |
| $\mathrm{CH}_{4}$ | 410 | 0.530 |
| $\mathrm{C}_{2} \mathrm{H}_{4}$ | 430 | 0.580 |

$$
\begin{aligned}
& Z=\sqrt{2} \sigma \rho V_{\text {mean }} \quad \text { and } \quad V_{\text {mean }}=\sqrt{\frac{8 R T}{\pi M}} \\
& \quad \rho=\frac{N}{V}=\frac{P N_{A}}{R T}=\frac{P}{K_{B} T} \\
& P V=n R T \\
& P V=\left(\frac{N}{N_{a}}\right) R T \\
& \text { SO, } Z=\sqrt{2} \sigma_{x_{e}}=\frac{P}{K_{B} T} \sqrt{\frac{8 R T}{\pi M}} \text { in } P_{a} \\
& Z=\left(\frac{\sigma_{x_{e}}}{K_{B} T}\right)\left(\sqrt{\frac{\mid 6 R T}{\pi M}}\right) P \text { and } t=\frac{1}{Z}
\end{aligned}
$$

plug in and solve for a) and b)

Problem 5, 10 marks
Calculate the diffusion constant of argon $\left(\sigma=0.43 \mathrm{~nm}^{2}\right.$ from Table 27.3) at $25^{\circ} \mathrm{C}$ and (a) 100 kPa ; (b) at 1.00 Pa .
(c) If a pressure gradient of $0.10 \mathrm{~atm} / \mathrm{cm}$ is established in a pipe, what is the flow of the gas due to diffusion (use the diffusion constant from part a)?

$$
\begin{aligned}
& D=\frac{\lambda \sqrt{\text { mean }}^{2} \quad V_{\text {mean }}=\sqrt{\frac{8 R T}{\pi M}}}{\lambda=\frac{1}{\sqrt{2} \sigma \rho}=\frac{K_{B} T}{\sqrt{2} \sigma P}} \text { so, } D=\left(\frac{K_{B} T}{\sqrt{2} \sigma_{A r} p}\right) \sqrt{\frac{8 R T}{\pi M}}\left(\frac{1}{2}\right)
\end{aligned}
$$

a) $100 \mathrm{kPa}=10^{5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}^{2}$ Plug in: Solve
b) plug in? solve
c)

$$
\begin{aligned}
& J_{z}=-D \frac{d \rho}{d z} \quad \text { and } \rho=\frac{N}{V}=\frac{P}{K_{B} T} \\
& \text { so } J_{z}=\frac{-D}{K_{B} T} \frac{d P}{d z} \text { and } \frac{d P}{d z}=0.1 \mathrm{a}+\mathrm{m} / \mathrm{cm}
\end{aligned}
$$

plus in $D$ from part $a$ and solve

$$
K_{R}=1.38 \times 10^{-23} \mathrm{~m}^{2}
$$

