Name:

Chem 3321 test \#1 practice solutions

I want complete, detailed answers to the questions. Show all your work to get full credit.

Problem 1

At atmospheric pressure, liquid water and ice exist in equilibrium at $0^{\circ} \mathrm{C}$. At this temperature, $\Delta H_{\text {fusion }}=6.00 \mathrm{~kJ} / \mathrm{mol}$. (Fusion is the phase transition from solid to liquid.) Also at this temperature, the heat capacity of ice is $38.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and the heat capacity of water is $76.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
a) Calculate the molar entropy of fusion of $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$.

Solution:

$$
\begin{equation*}
\Delta S_{\text {fusion }}=\frac{\Delta H_{\text {fusion }}}{T_{\text {fusion }}}=\frac{6}{273}=22 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
$$

b) At $-10{ }^{\circ} \mathrm{C}$, calculate the molar entropy of freezing (opposite of fusion) of $\mathrm{H}_{2} \mathrm{O}$. In other words, calculate the molar entropy change when supercooled water undergoes a phase transition to ice. Assume that the heat capacities of each phase are constant in the $-10{ }^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$ temperature range.

Solution:
It helps to sketch out the thermodynamic cycle that is being used here. We have

$$
\begin{gather*}
\Delta S=\int_{263}^{273} C_{P}^{\text {iiquid }} \frac{d T}{T}-22+\int_{273}^{263} C_{P}^{\text {solid }} \frac{d T}{T} \tag{2}\\
=\left(C_{P}^{\text {iqquid }}-C_{P}^{\text {solid }}\right) \ln (273 / 263)-22=1.42-22=-20.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \tag{3}
\end{gather*}
$$

6. Assume an insulated container is divided into half where one mole of neon is on one side of a partition and one mole of helium is on the other side. Both sides of the container are at 1 atm and 273 K . At some point the partition is removed and the gases mix. Assuming no heat is exchanged with the surroundings, find $\Delta S_{N e}, \Delta S_{H e}$ and the total entropy change for the system and the surroundings. (b) Comment from your result whether the process is spontaneous or not.
(10)

$$
\frac{\bar{S}_{\operatorname{mix}}}{R}=-x_{N e} \ln x_{N e}-x_{H e} \ln x_{H e}
$$

where $x=$ able fraction $=1 / 2$ fo reach one.

$$
\Longrightarrow \frac{\Delta \bar{S}_{\operatorname{mix}}}{R}=\ln 2=0.693
$$

Multiplying by R and by 2 molder, we get

$$
\text { (5) } \Delta S_{\text {mix }}^{\sigma}=2 \Delta S_{N e}=2 \Delta S_{H e}=11.52 \mathrm{JK}^{-1}
$$

$q=0 \Longrightarrow \Delta S_{\text {sure }}=0$
$\Delta S_{T \text { TOT }}=11.52 \mathrm{JK}^{-1} \Longrightarrow$ Spontaneous.

Problem 3

One mole of a monoatomic ideal gas initially at $\mathrm{T}=400 \mathrm{~K}$ and $\mathrm{V}=30.0 \mathrm{~L}$ has its pressure doubled through an isothermal process in which $w=3.00 \mathrm{~kJ}$ of work is performed on the gas.
a) Calculate $\Delta \mathrm{S}=\Delta \mathrm{S}_{\text {system }}$.

Solution: This is an isothermal process. There are two approaches (that give the same answer)
(i)

$$
\begin{equation*}
S=(3 / 2) R \ln T+R \ln V \Rightarrow \Delta S=R \ln (15 / 30)=-R \ln 2=-5.76 \mathrm{JK}^{-1} \tag{6}
\end{equation*}
$$

(ii) choose an isothermal reversible path:

$$
\begin{equation*}
q_{\mathrm{rev}}=-w=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V} \tag{7}
\end{equation*}
$$

Then $\Delta S=q_{\text {rev }} / T$
b) Calculate $\Delta \mathrm{S}_{\text {surroundings }}$.
isothermal so $q+w=0$, thus

$$
\begin{equation*}
\Delta S_{\text {surr }}=\frac{-q_{\mathrm{sys}}}{T}=\frac{3 \mathrm{~kJ}}{400 \mathrm{~K}}=7.5 \mathrm{JK}^{-1} \tag{8}
\end{equation*}
$$

c) Is this process spontaneous or non-spontaneous? Support your answer with an explanation and/or calculations.

$$
\begin{equation*}
\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=\Delta S_{\text {universe }}>0 \tag{9}
\end{equation*}
$$

Therefore spontaneous since the universe is isolated.
(Note: if you have read Chapter 22, ΔG is not useful here because the pressure is changing.)

Problem 4

1.50 mol of an ideal gas at 450 K is expanded from an an initial pressure of 5.00 bar to a final pressure of 1.00 bar. $\bar{C}_{P}=5 / 2 \mathrm{R}$. The expansion is isothermal and reversible. Calculate q and w.

Solution:
Isothermal, Reversible

$$
\begin{aligned}
& \Delta U=\delta w+\delta q \\
& \Delta U=0 \longrightarrow \therefore \delta w=-\delta q \\
& \quad-q=w=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)
\end{aligned}
$$

Under constant T,

$$
\begin{aligned}
& \frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}} \\
& -q=w=-n R T \ln \left(\frac{P_{1}}{P_{2}}\right) \\
& -q=w=-1.5 \mathrm{~mol} \times 8.3145 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \times 450 \mathrm{~K} \times \ln \left(\frac{5.00 \mathrm{bar}}{1.00 \mathrm{bar}}\right)
\end{aligned}
$$

$-q=w=-9.03 \mathrm{~kJ}$

