Name:

Chem 3321 test #1 practice questions

I want complete, detailed answers to the questions. Show all your work to get full credit.

DATA:
R = 0.082 L atm mol⁻¹ K⁻¹ = 8.314 J mol⁻¹ K⁻¹
1 atm = 1.01 × 10⁵ Pa = 1.01 bar = 760 torr
1 mL = 1 cm³
1 Pa = 1 N m⁻²
0 °C = 273 K
Avogadro's constant = N_A = 6.022 × 10²³ mol⁻¹

$$\pi$$
 = 3.14159
1 eV = 1.6022×10⁻¹⁹ J (electron volt to joule conversion)
mass conversion from amu to kg: 1.66 × 10⁻²⁷ kg/amu
 $C_P - C_V = nR$ for any ideal gas
 $C_V = \frac{3}{2} R$ For mono atomic $PV = nRT$
 $C_V = \frac{3}{2} R$ For mono atomic $PV = nRT$
 $C_V = \frac{3}{2} R$ For mono atomic $Q = m C_P RT$
 $W = -P_{e,x+} RV$ $DM = W + Q$
 $\Delta S = \int C_P \frac{dT}{T}$
 $S : = \frac{3}{2} R InT + R Im V \text{ or } \Delta S = \frac{3}{2} nR AT + nR Im AV$
 $AS mix = -X_{ac} M_{bx} - X_{ac} M_{cx}$
 $AS = \frac{Q_{TEV}}{T}$ and $Q_{TEV} = -W = RRT \int_{V_1}^{V_2} \frac{dV}{V}$

At atmospheric pressure, liquid water and ice exist in equilibrium at 0 °C. At this temperature, $\Delta H_{\text{fusion}} = 6.00 \text{ kJ/mol.}$ (Fusion is the phase transition from solid to liquid.) Also at this temperature, the heat capacity of ice is 38.0 J K⁻¹ mol⁻¹ and the heat capacity of water is 76.0 J K⁻¹ mol⁻¹.

* Don't forget your <u>calculator</u>. or notecard.

a) Calculate the molar entropy of fusion of H_2O at $0 \circ C$. 273K

b) At -10 °C, calculate the molar entropy of freezing (opposite of fusion) of H₂O. In other words, calculate the molar entropy change when supercooled water undergoes a phase transition to ice. Assume that the heat capacities of each phase are constant in the -10 °C to 0 °C temperature range.

$$AS_{Fusion} = \frac{\Delta H_{Fusion}}{T_{fusion}} = \frac{(0.00 \text{ kJ/mol}^2)}{273 \text{ k}} = 22 \text{ J} \cdot \text{ k}^{-1} \cdot \text{mol}^{-1}$$

b)
$$\Delta S = \int_{2\sqrt{3}}^{273} \frac{dT}{T} - 2Z J \cdot k^{-1} \cdot mol^{-1} + \int_{2\sqrt{3}}^{203} \frac{dI}{T}$$

$$= C_{Rin} \int_{243}^{273} dT - 2Z \frac{J}{U mol} + C_{PLS} \int_{273}^{203} dT - 2Z \frac{J}{U} dT + C_{PLS} \int_{273}^{203} dT - 2Z \frac{J}{U} + C_{PL} \int_{273}^{203} dT - 2Z \frac{J}{U} + C$$

An insulated container is divided in half with one mole of neon on one side of a partition and one mole of helium on the other side. Both sides of the container are at 1 atm and 273 K. At some point the partition is removed and the gases mix.

a) Find ΔS_{Ne} and ΔS_{He} and the total entropy change for the system and the surroundings.

b) Comment from your result whether the process is spontaneous or not.

Pressure is changing

One mole of a monoatomic ideal gas initially at T = 400 K and V = 30.0 L has its pressure doubled through an isothermal process in which w = 3.00 kJ of work is performed on the gas.

a) Calculate $\Delta S = \Delta S_{system}$.

b) Calculate $\Delta S_{surroundings}$.

c) Is this process spontaneous or non-spontaneous? Support your answer with an explanation and/or calculations. \vee_2 \uparrow .

a) Since is othermal,
$$\int_{V_1}^{V_2} = \frac{1}{P_2}$$

1) $\Delta S = \frac{3}{2} n \Delta \Delta T + R \ln \Delta V \Rightarrow R \ln \left(\frac{15}{30}\right) = -5.76 \frac{1}{V_1}$
 $\Delta S = R \ln \Delta V$
or
 $Z)_{\Delta S} = \frac{9}{T} \text{ and } 9 \text{ rev} = -W = NRT \int_{V_1}^{V_2} \frac{dV}{V}$

b)
$$q + w = 0$$
 be isothermal
 $\Delta S_{surr} = -\frac{q_{sus}}{T} = \frac{w}{T} = \frac{3kT}{400k} = 7.5 T/k$

C) ASuniverse is positive, so spontaneous Universe is isolated. ASsys+ASsur=ASuniverse 20

1.50 mol of an ideal gas at 450 K is expanded from an an initial pressure of 5.00 bar to a final pressure of 1.00 bar. $\bar{C_P} = 5/2$ R. The expansion is isothermal and reversible. Calculate q and w. \checkmark $\Delta \tau = \emptyset$

$$A N = S W + S q$$

$$A N = S W + S q$$

$$-q = W = -n P_{T} W \left(\frac{N_{z}}{V_{1}} \right)$$

$$a + A T = D_{1} \frac{V_{z}}{V_{1}} = \frac{P_{1}}{P_{z}}$$

$$-q = W = -n P_{T} T W \left(\frac{P_{1}}{P_{z}} \right)$$

$$-q = W = -1.5 mol \cdot 8.3145 \frac{J}{Mol \cdot V} \cdot 460 k \cdot W \left(\frac{5 low}{1 low} \right)$$

$$-q = W = -9.03 k J$$