Name:
Chem 3321 test \#1 practice questions

I want complete, detailed answers to the questions. Show all your work to get full credit.

DATA:

$$
\begin{aligned}
& \mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& 1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \text { bar }=760 \text { torr } \\
& 1 \mathrm{~mL}=1 \mathrm{~cm}^{3} \\
& 1 \mathrm{~Pa}=1 \mathrm{~N} \mathrm{~m}^{-2} \\
& 0^{\circ} \mathrm{C}=273 \mathrm{~K}
\end{aligned}
$$

Avogadro's constant $=\mathrm{N}_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\pi=3.14159$
$1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J}$ (electron volt to joule conversion)
mass conversion from amu to $\mathrm{kg}: 1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{amu}$

$$
\Delta u=D ; \delta w=-\delta q \text { when } \Delta T=\theta
$$

$$
-q=w=-n R T \ln \left(\frac{v_{2}}{v_{1}}\right)
$$

$$
\text { at } \Delta T=\varnothing, \frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}}
$$

$$
\begin{aligned}
& C_{P}-C_{V}=n R \text { for any ideal gas } \\
& \overline{c_{v}}=\frac{3}{2} h \text { for monoatomic } \\
& P V=n k T \\
& \overline{C_{V}} \frac{5}{2} R \text { for diatomic } \quad q: m C_{p} A T \\
& w=-P_{\text {ex }} \Delta V \quad \Delta V=w+q \\
& \Delta S_{\text {fusion }}=\frac{\Delta H_{\text {fusion }}}{T_{\text {fusion }}} \\
& \Delta S=\int C_{p} \frac{d T}{T} \\
& S=\frac{3}{2} h M T+R m V_{\text {or }} \Delta S=\frac{3}{2} n h \Delta T+n R M n \Delta V \\
& \frac{\Delta S_{\text {mix }}}{h}=-X_{\text {nc }} \ln n_{n c} X-X_{n c} \ln X_{\text {he }} \\
& \Delta S=\frac{q_{r e v}}{T} \text { and } q_{\text {rev }}^{\text {when } \Delta T=D}=-\omega=n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}
\end{aligned}
$$

or notecard.
Problem 1
At atmospheric pressure, liquid water and ice exist in equilibrium at $0{ }^{\circ} \mathrm{C}$. At this demperature, $\Delta H_{\text {fusion }}=6.00 \mathrm{~kJ} / \mathrm{mol}$. (Fusion is the phase transition from solid to liquid.) Also at this temperature, the heat capacity of ice is $38.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and the heat capacity of water is $76.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
a) Calculate the molar entropy of fusion of $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. 273 K
b) 263 K
b) At $-10^{\circ} \mathrm{C}$, calculate the molar entropy of freezing (opposite of fusion) of $\mathrm{H}_{2} \mathrm{O}$. In other words, calculate the molar entropy change when supercooled water undergoes a phase transition to ice. Assume that the heat capacities of each phase are constant in the $-10^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ temperature range.

$$
\text { a) } \Delta S_{\text {fusion }}=\frac{\Delta H_{\text {fusion }}}{T_{\text {fusion }}}=\frac{6.00 \mathrm{~kJ} / \mathrm{mol}^{-1}}{273 \mathrm{~K}}=22 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}
$$

$$
=\left(\frac{263}{273}\right)=
$$

Problem 2
An insulated container is divided in half with one mole of neon on one side of a partition and one mole of helium on the other side. Both sides of the container are at 1 atm and 273 K . At some point the partition is removed and the gases mix.
a) Find $\Delta \mathrm{S}_{\mathrm{Ne}}$ and $\Delta \mathrm{S}_{\mathrm{He}}$ and the total entropy change for the system and the surroundings.
b) Comment from your result whether the process is spontaneous or not.

a) $\frac{\Delta S_{m x}}{R}=-x_{\text {Ne }} \ln x_{\text {Ne }}-x_{\text {te }} \ln x_{\text {te }}=\ln 2=0.693$

$$
x=\text { mole fraction }=1 / 2 \text { for each one }
$$

Multiply by R and by 2 moles, we get

$$
\Delta S_{\operatorname{mix}}=2 \Delta S_{\mathrm{Ne}}=2 \Delta S_{\mathrm{He}}=11.52 \mathrm{~J} / \mathrm{K}
$$

Since this is adiabatic, $q=0$ so ΔS sur w: \varnothing
b) The total entropy is positive, so it's Spontaneous

Problem 3
One mole of a monoatomic ideal gas initially at $\mathrm{T}=400 \mathrm{~K}$ and $\mathrm{V}=30.0 \mathrm{~L}$ has its pressure doubled through an isothermal process in which $w=3.00 \mathrm{~kJ}$ of work is performed on the gas.
a) Calculate $\Delta \mathrm{S}=\Delta \mathrm{S}_{\text {system }}$.
b) Calculate $\Delta \mathrm{S}_{\text {surroundings }}$.
c) Is this process spontaneous or non-spontaneous? Support your answer with an explanation and/or calculations. $\frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}}$
P is double A, V is halved
a) Since isothermal, $T T=\theta$

1) $\Delta S=\frac{3}{2} n h \Delta T+R \ln \Delta V \Rightarrow h \ln \left(\frac{15}{30}\right)=-5.76 \frac{7}{k}$

$$
\Delta S=R m \Delta V
$$

or

$$
\text { 2) } \Delta S=\frac{q_{r e v}}{T} \text { and } q_{r e v}=-w=n R T \int_{v_{1}}^{v_{2}} \frac{d V}{V}
$$

b)
$q+\omega=\varnothing b c$ isothermal

$$
\Delta S_{\text {surr }}=\frac{-q_{\text {suss }}}{T}=\frac{w}{T}=\frac{3 k J}{400 \mathrm{k}}=7-5 \mathrm{~J} / \mathrm{k}
$$

c) $\Delta S_{\text {universe }}$ is positive, so spontaneous universe is isolated.

$$
\Delta S_{\text {suss }}+\Delta S_{\text {surf }}=\Delta S_{\text {nurieise }}>D
$$

Problem 4
1.50 mol of an ideal gas at 450 K is expanded from an an initial pressure of 5.00 bar to a final pressure of 1.00 bar. $\bar{C}_{P}=5 / 2 \mathrm{R}$. The expansion is isothermal and reversible. Calculate q and w.

$$
\stackrel{\downarrow}{\Delta T=\theta}
$$

$$
\begin{aligned}
\Delta U & =\delta w+\delta q \\
\Delta u & =\varnothing ; \delta w=-\delta q \\
-q & =w=-n R T \ln \left(\frac{v_{2}}{v_{1}}\right) \\
\text { at } \Delta T & =\varnothing, \frac{v_{2}}{V_{1}}=\frac{P_{1}}{P_{2}} \\
-q & =w=-n R T \ln \left(\frac{p_{1}}{P_{2}}\right) \\
-q & =w=-1.5 \operatorname{mol} \cdot 8.3145 \frac{J}{m o l \cdot k} \cdot 450 \mathrm{k} \cdot \ln \left(\frac{5 \mathrm{bar}}{1 \mathrm{lar}}\right) \\
-q & =w=-9.03 \mathrm{LJ}
\end{aligned}
$$

