Name:
Chem 3321, some practice questions for test \#2

I want complete, detailed answers to the questions. Show all your work to get full credit.

DATA:
I'm including the
$\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ $1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \mathrm{bar}=760$ torr
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$ concept questions and the hames help.
$1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
Avogadro's constant $=\mathrm{N}_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\pi=3.14159$
$1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J}$ (electron volt to joule conversion)
mass conversion from amu to $\mathrm{kg}: 1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{amu}$
$C_{P}-C_{V}=n R$ for any ideal gas

$$
\begin{aligned}
& \ln \left[\frac{P_{2}}{P_{1}}\right]=\frac{-\Delta H}{R} \cdot\left(\frac{1}{T_{2}}-\frac{1}{T_{2}}\right) \begin{array}{l}
\text { *remember when to use, with } \\
\text { Clausius - Clapesrion } E_{q} .
\end{array} \\
& \Delta V=\left(n_{1} \bar{v}_{1}+n_{2} \bar{v}_{2}\right)-\left(n_{1} v_{1}^{*}-n_{2} v_{2}^{*}\right) \\
& \text { Dissociating } \\
& P L \gtrless P+L \\
& \text { haoult's Law } \\
& P_{A}=X_{A} P_{A}{ }^{*} \\
& K_{P}=\frac{[P][L]}{[P L]}
\end{aligned}
$$

Dalton's Law

$$
P_{\text {tot }}=P_{A}+P_{B}
$$

$\Delta G^{\circ}=-R T \ln K$

Problem 1
From the following data, determine the total volume change for dissolving glycine in 1 kg water to 1 molal concentration. Note: $1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=55.51 \mathrm{~mol}$. Note: 1 molal concentration means that 1 mol of glycine is dissolved in 1 kg of water.

| glycine concentration glycine water
 molality $\bar{V}, \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ $\bar{V}, \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
 before 0 - 18.07
 after 1 44.88 18.05
 befoul pure glycine 46.71 -
 b er |
| :--- | :---: | :---: |

$$
A V^{2}=\left(n_{1} \bar{v}_{1}=n_{2} \bar{v}_{2}\right)-\left(n_{1} v_{1}^{*}+n_{2} v_{2}^{v}\right)
$$

$$
\left[\begin{array}{cc}
n_{1} \bar{v}_{1} \\
55.51 \mathrm{~mol}(18.05)+ & n_{2} \bar{v}_{2} \\
1(44.88)
\end{array}\right]-\left[\begin{array}{cc}
n_{1} & v_{1}{ }^{*}{ }^{1} n_{2} v_{2}^{*} \\
55.51(18.07)+1(46.71)
\end{array}\right]
$$

$$
\text { answer: }-2.94 \mathrm{~cm}^{3}
$$

Problem 2 Gie the HW
The molar enthalpy of vaporization of water is $40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at its normal boiling point T_{1}
373.15 K of $100^{\circ} \mathrm{C}$. Determine the vapor pressure of water at $110^{\circ} \mathrm{C} . \quad 383.15 \mathrm{~K}=\bar{T}_{2}$

$$
\ln \left[\frac{p_{2}}{P_{1}}\right]=-\frac{\Delta H}{R} \cdot\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \begin{aligned}
& \text { Clausius-Clapespion } E_{q} . \\
& \text { write on notecard }
\end{aligned}
$$

write on notecard
convert from KJ Ho J to make life easier \downarrow

$$
\begin{aligned}
& \ln \left[\frac{p_{2}}{1 \mathrm{~atm}}\right]=\frac{-40650 \mathrm{~J} / \mathrm{mol}}{8.3145}\left(\frac{1}{383.15}-\frac{1}{373.15 \mathrm{k}}\right) \\
& \ln \left[\frac{p_{z}}{1 \mathrm{atam}}\right]=.3419 \\
& \frac{p_{z}}{1 \mathrm{a}+\mathrm{m}}=e^{.3419}
\end{aligned}
$$

answer

$$
P_{2}=1.408 \mathrm{~atm}
$$

Problem 3
So, mole fraction of methanol $=0.6$
 The mole fraction of acetone in the liquid phase is 0.400 . Determine mole fraction of acetone in the vapor phase. For these two components, $\mathrm{P}_{A}^{*}=105 \mathrm{kPa}$ and $\mathrm{P}_{M}^{*}=73.5 \mathrm{kPa}$.

Raoult's Law

$$
\begin{aligned}
& P_{A}=X_{A} P_{A}^{*}=0.4 \times 105 \mathrm{KPa}=42 \mathrm{KPa} \\
& P_{B}=X_{B} P_{B}^{*}=0.6 \times 73.5 \mathrm{KPa}=44.1 \mathrm{KPa}
\end{aligned}
$$

Dalton's Law

$$
\begin{aligned}
& P_{\text {tot }}=P_{A}+P_{B}=42 \mathrm{KPa}+44.1 \mathrm{KPa}=86.1 \mathrm{kPa} \text { aw } \\
& \text { La }
\end{aligned}
$$

So, mole fraction is

$$
y_{A}=\frac{P_{A}}{P_{\text {total }}}=\frac{42 k P_{a}}{86.1 K P_{a}}=
$$

answer

$$
y_{a}=0.4878
$$

* unities

Problem 4
$\mathrm{N}_{2} \mathrm{O}_{3}$ dissociates according to the equilibrium

$$
\begin{equation*}
\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

At 298 K and 1 bar pressure, the degree of dissociation is 3.5×10^{-3}, where the degree of dissociation is defined as the ratio
moles of NO_{2} or NO
moles of the reactant before any dissociation occurs
Calculate ΔG° for this reaction.
First, create I. C.E table:

$$
\frac{P_{N O}}{P_{\text {total }}}=\frac{x}{n_{0}+x} \frac{P_{N_{2}}}{P_{\text {total }}}=\frac{x}{n_{0}+x} \quad \frac{P_{N_{2} O_{3}}}{P_{\text {total }}}=\frac{n_{0}-x}{n_{0}+x}
$$

Dissociating
$P L \rightleftharpoons P+L$

$$
\begin{aligned}
K_{P} & =\frac{[P][L]}{[P L]}=\frac{\left(\frac{x}{n_{0}+x}\right) \cdot\left(\frac{x}{n_{0}+x}\right)}{\left(\frac{n_{0}-x}{n_{0}+x}\right)}=\left(\frac{x^{2}}{\left(n_{0}-x\right)\left(n_{0}+x\right)}\right)\left(\frac{1}{n_{0}}\right)^{2} \\
& =\frac{\left(x^{2}\right)\left(1 / n_{0}\right)^{2}}{\left(n_{0}-x\right)\left(n_{0}+x\right)\left(1 / n_{0}\right)^{2}}=\frac{\left(x / n_{0}\right)^{2}}{\left(1-x / n_{0}\right)\left(1+x / n_{0}\right)}=\frac{y^{2}}{(1-y)(1+y)}
\end{aligned}
$$

Then, plug 3.5×10^{-3} for y

$$
\frac{\left(3.5 \times 10^{-3}\right)^{2}}{\left(1-3.5 \times 10^{-3}\right)\left(1+3.5 \times 10^{-3}\right)}=1.225 \times 10^{-5}
$$

then, plug into:

$$
\Delta a^{\circ}=-R T \ln K
$$

answer:

$$
\Delta G^{\circ}=28.02 \mathrm{~kJ}(\mathrm{~mol}
$$

$$
\Delta G=\Delta H_{m}\left(1-\frac{T_{m}}{\underline{T_{m}}}\right)+\Delta \underline{C_{p}}\left\{\left(T-T_{m}\right)-T m\left(\frac{T_{m}}{T_{m}}\right)\right\}
$$

* expected to derive this formula. Expect on test

Problem 5
a) Prove that (where K is the equilibrium constant)

$$
\begin{equation*}
\ln K=-\frac{\Delta H^{\circ}}{R T}+\frac{\Delta S^{\circ}}{R} \tag{3}
\end{equation*}
$$

b) Compute ΔH° and ΔS° for the reaction $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
given the following data: K at $\mathrm{T}=273 \mathrm{~K}$ is 72.9 and K at $\mathrm{T}=325 \mathrm{~K}$ is 1.30 .
a) This is the van't Hoff eq: $\frac{\Delta G}{-R T}=\frac{-R T \ln k}{-R T}$
use:

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S \quad \ln K=\frac{\Delta G}{-R T}=\ln K=\frac{\Delta H-T \Delta S}{-R T} \\
& \Delta G^{\circ}=-R T \ln K
\end{aligned}
$$

b) Look at Probum 3 in HW 6. Hoff eq is identical to

$$
\begin{array}{ll}
k_{1}=72.9 & k_{2}=1.30 \\
T_{1}=273 & T_{2}=325
\end{array}
$$

Clausius - Clapersion

$$
\begin{aligned}
\ln \left(\frac{1.30}{72.9}\right) & =\frac{-\Delta H}{8.314}\left(\frac{1}{325}-\frac{1}{273}\right) \quad \ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
-4.0267 & =\frac{-\Delta H}{8.312}(-0.000586) \quad \Delta H=-57.1 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
\text { Then, } & \ln k=\frac{\Delta H}{R T}-\frac{\Delta S}{R} \\
\Delta S & =\left(\frac{\Delta H}{R T}-\ln K\right) \cdot R \quad \Delta S=-174 \mathrm{~J} / \mathrm{mol} \\
\Delta S & =\left(\frac{-57.11 \mathrm{~J} / \mathrm{mol}}{R \cdot 273}-\ln 72.9\right) \cdot R
\end{aligned}
$$

