Name:

Chem 3321, test \#3 practice solutions

I want complete, detailed answers to the questions. Show all your work to get full credit.

DATA:
$\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=1.01 \mathrm{bar}=760$ torr
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
$1 \mathrm{~Pa}=1 \mathrm{Nm}^{-2}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
Avogadro's constant $=\mathrm{N}_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\pi=3.14159$
$1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J}$ (electron volt to joule conversion)
mass conversion from amu to $\mathrm{kg}: 1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{amu}$
$C_{P}-C_{V}=n R$ for any ideal gas

Problem 1

A solution containing 1.470 g of dichlorobenzene in 50.00 g of benzene (molar mass $78.11 \mathrm{~g} / \mathrm{mol}$) boils at $80.6^{\circ} \mathrm{C}$ at a pressure of 1.00 bar. The boiling point of pure benzene is $80.09{ }^{\circ} \mathrm{C}$, and the molar enthalpy of vaporization of pure benzene is $32.0 \mathrm{~kJ} / \mathrm{mol}$. Determine the molar mass of dichlorobenzene from these data.
1)

Boiling point elevation
$\Delta \mathrm{T}_{\text {fus }}=\mathrm{T}_{\text {vap }}^{*}-\mathrm{T}_{\text {vap }}=\left\{\frac{\mathrm{M}_{\mathrm{A}} \mathrm{R}\left(\mathrm{T}_{\text {vap }}^{*}\right)^{2}}{1000 \mathrm{gkg}^{-1} \Delta \overline{\mathrm{H}}}\right\} \mathrm{m}$
$|353.75-353.24| \mathrm{K}=\left\{\frac{78.11 \mathrm{~g} \mathrm{~mol}^{-1} * 8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} *(353.24 \mathrm{~K})^{2}}{1000 \mathrm{~g} \mathrm{~kg}^{-1} * 32.0 * 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}}\right\} \mathrm{m}$
$\mathrm{m}=0.2014 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\mathrm{m}=$ molality $=\left\{\frac{\# \text { of moles of solute }}{\mathrm{kg} \text { of solvent }}\right\}=\frac{\mathrm{n}_{\mathrm{DB}}}{\mathrm{kg} \text { of benzene }}$
$\mathrm{m}=\frac{\mathrm{n}_{\mathrm{DB}}}{50 * 10^{-3} \mathrm{~kg}}=\frac{\left(\frac{\operatorname{mass}_{\mathrm{DB}}}{\mathrm{M}_{\mathrm{DB}}}\right)}{50 * 10^{-3} \mathrm{~kg}}$
$M_{D B}=\frac{\operatorname{mass}_{\text {DB }}}{50 * 10^{-3} \mathrm{~kg} * \mathrm{~m}}$
$\mathrm{M}_{\mathrm{DB}}=\frac{1.470 \mathrm{~g}}{50 * 10^{-3} \mathrm{~kg} * 0.2014 \mathrm{~mol} \mathrm{~kg}^{-1}}$
$\underline{\underline{M_{D B}}=145.98 \mathrm{~g} / \mathrm{mol}}$

Problem 2

a) Define: diffusion

Solution: Diffusion is the net movement of molecules from a region of higher concentration to a region of lower concentration.
b) From the transport property theory we derived for gases, we obtained an estimate of the diffusion coefficient of $D=\lambda\langle v\rangle / 3$. Calculate D for perfume molecules of diameter $d=2 \mathrm{~nm}$ and molar mass $152 \mathrm{~g} / \mathrm{mol}$ in a classroom at $20^{\circ} \mathrm{C}$ and 1 atm .

Solution: Using

$$
\begin{equation*}
\langle v\rangle=v_{\text {mean }}=\left(\frac{8 k_{B} T}{\pi m}\right)^{1 / 2} \quad(m=\text { mass of one molecule }) \tag{1}
\end{equation*}
$$

and the mean free path ($\sigma=\pi d^{2}$ where d is the diameter of a molecule):

$$
\begin{equation*}
\lambda=\frac{k_{B} T}{\sqrt{2} \sigma P} \tag{2}
\end{equation*}
$$

we can put the numbers in and convert units. The answer is $1.52 \times 10^{-7} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
c) Calculate, in units of meters, how far these perfume molecules move across the room in $t=$ one hour. Use $x=(2 D t)^{1 / 2}$

Solution:
We just use the given formula to get (1 hour $=3600$ seconds) $x=0.033 \mathrm{~m}=3.3 \mathrm{~cm}$
d) In a realistic classroom, what other contributions exist to transport perfume molecules around the room?

Solution:
Air currents from the HVAC and from people walking around and breathing.

Problem 3

Use the experimental value of the coefficient of thermal conductivity of neon (molar mass $20.18 \mathrm{~g} \mathrm{~mol}^{-1}$) of $46.5 \mathrm{~mW} \mathrm{~K}^{-1} \mathrm{~m}^{-1}$ to estimate the collision cross-section of Ne atoms at 273 K.

Solution:

$$
\begin{equation*}
\kappa=\frac{3}{4} \frac{k_{B} T}{\sqrt{2} \sigma P}\left(\frac{8 k_{B} T}{\pi m}\right)^{1 / 2} k_{B} \frac{N}{V} \tag{3}
\end{equation*}
$$

Use $N / V=P /\left(k_{B} T\right)$ and solve for σ to get $\sigma=8.42 \times 10^{-20} \mathrm{~m}^{2}=8.42 \AA^{2}$

Problem 4

At 400 K , the rate, $v(t)$, of decomposition of a gaseous compound was $9.71 \mathrm{~Pa} \mathrm{~s}^{-1}$ when 10.0% had reacted and $7.67 \mathrm{Pas}^{-1}$ when 20.0% had reacted. Identify the order of the reaction.

Solution: For the reaction $A \rightarrow P$
we write \quad rate $=k[A]^{n}$
This gives
$9.71=k\left(0.9 A_{0}\right)^{n}$
$7.67=k\left(0.8 A_{0}\right)^{n}$
Dividing, we get $1.266=(1.125)^{n}$ which yields

$$
\begin{equation*}
n=\frac{\ln (1.266)}{\ln (1.125)}=2 \tag{4}
\end{equation*}
$$

Problem 5

A spherical vessel of radius 10.0 cm contains argon gas at 0.980 atm pressure and 298.15 K . Calculate the number of argon atoms striking the inner surface of the container per second. Solution:

The answer is given by $z_{\text {wall }} A$ where A is the surface area of the inner vessel surface.

$$
\begin{gather*}
z_{\text {wall }} A=\frac{P A}{\left(2 \pi m k_{B} T\right)^{1 / 2}}= \tag{5}\\
\frac{(0.98 \mathrm{~atm})\left(4 \pi(0.1 \mathrm{~m})^{2}\right)}{\left(2 \pi(39.948 \mathrm{amu})\left(1.66 \times 10^{-27} \mathrm{~kg} \mathrm{amu}^{-1}\right)\left(1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)(298.15 \mathrm{~K})\right)^{1 / 2}} \tag{6}\\
=2.973 \times 10^{21} \frac{\mathrm{~atm} \mathrm{~m}^{2}}{\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}}\left(1.01 \times 10^{5} \mathrm{~Pa} \mathrm{~atm}^{-1}\right)=3.00 \times 10^{26} \mathrm{~s}^{-1} \tag{7}
\end{gather*}
$$

Problem 6

Consider the first order reaction

$$
\begin{equation*}
\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}(g) \rightarrow \mathrm{C}_{6} \mathrm{H}_{10}(g)+\mathrm{HCl}(g) \tag{8}
\end{equation*}
$$

with rate constant $k=0.150 \mathrm{~s}^{-1}$. 2.00 moles of $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}(g)$ is placed into a 10.0 L rigid reaction vessel, and the vessel is then sealed and maintained at $T=300 \mathrm{~K}$.
a) Derive an expression for the total pressure as a function of time.
b) What is the total pressure after 6.00 s ?

Solution:
From the first order integrated rate law we know that

$$
\begin{equation*}
\left[\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}\right]_{0} e^{-k t} \quad \Rightarrow \quad P_{\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}}=P_{\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}, 0} e^{-k t} \tag{9}
\end{equation*}
$$

where $P_{\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}, 0}=4.92 \mathrm{~atm}$.
Now, $\left[\mathrm{C}_{6} \mathrm{H}_{10}\right]=[\mathrm{HCl}]=\left[\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}\right]_{0}-\left[\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}\right]$ so that

$$
\begin{equation*}
P_{\mathrm{C}_{6} \mathrm{H}_{10}}=P_{\mathrm{HCl}}=P_{\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}, 0}-P_{\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}, 0} e^{-k t} \tag{10}
\end{equation*}
$$

from which we can write

$$
\begin{equation*}
P_{\text {total }}=P_{\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}, 0}\left(2-e^{-k t}\right) \tag{11}
\end{equation*}
$$

$$
\text { At } t=6.00 \mathrm{~s} \text {, this gives } P_{\text {total }}=7.84 \mathrm{~atm}
$$

