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Abstract

We revisit the classical problem of computing the contour tree of a scalar field f : M — R,
where M is a triangulations of a ball in R¢. The contour tree is a fundamental topological
structure that tracks the evolution of level sets of f and has numerous applications in data
analysis and visualization.

All existing algorithms begin with a global sort of at least all critical values of f, which
can require (roughly) Q(nlogn) time, where n is the number of vertices of the mesh. Existing
lower bounds show that there are pathological instances where this sort is required. We present
the first algorithm whose time complexity depends on the contour tree structure, and avoids
the global sort for non-pathological inputs. (We assume that the Morse degree of the function
f at any point is at most 3.) If C' denotes the set of critical points in M, the running time
is roughly O(N + >, .- logt,), where £, is the depth of v in the contour tree and N is the
total complexity of M. This matches all existing upper bounds, but is a significant asymptotic
improvement when the contour tree is short and fat. Specifically, our approach ensures that
any comparison made is between nodes that are either adjacent in M or in the same descending
path in the contour tree, allowing us to argue strong optimality properties of our algorithm.

Our algorithm requires several novel ideas: partitioning M in well-behaved portions, a local
growing procedure to iteratively build contour trees, and the use of heavy path decompositions
for the time complexity analysis.

*Erratum in Appendix §B.
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1 Introduction

Geometric data is often represented as a function f : R? — R. Typically, a finite representation is
given by considering f to be piecewise linear over some triangulated mesh (i.e. simplicial complex)
M in R Contour trees are a topological structure used to represent and visualize the function f.
It is convenient to think of f as a simplicial complex sitting in R4, with the last coordinate (i.e.
height) given by f. Imagine sweeping the hyperplane 24,1 = h with h going from +oo to —oo.
At every instance, the intersection of this plane with f gives a set of connected components, the
contours at height h. As the sweeping proceeds various events occur: new contours are created
or destroyed, contours merge into each other or split into new components. The contour tree is a
concise representation of these events [vKvOB197, CSA03].

If f is smooth, all points where the gradient of f is zero are critical points. These points are
the “events” where the contour topology changes. The contour tree tracks a specific subset of
events, called “joins” and “splits”. We provide formal definitions later. An edge of the contour
tree connects two such critical points if one event immediately “follows” the other as the sweep
plane makes its pass. Figure 1 and Figure 2 show examples of simplicial complexes, with heights
and their contour trees. Think of the contour tree edges as pointing downwards. Leaves are either
maxima or minima, and internal nodes are either “joins” or “splits”.

Consider f : M — R, where M is the triangulation of a d-dimensional ball with n vertices, N
faces in total, and ¢ < n critical points. (We assume that f : M — R is a linear interpolant over
distinct valued vertices, with Morse degree at most 3, see Definition 2.3. The degree assumption can
be achieved via vertex unfolding, as discussed later, and is standard in this literature [vKvOB*97].)
A fundamental result in this area is the algorithm of Carr, Snoeyink, and Axen to compute contour
trees, which runs in O(nlogn+ Na(N)) time [CSA03] (where «(-) denotes the inverse Ackermann
function). In practical applications, N is typically ©(n) (certainly true for d = 2). The most
expensive operation is an initial sort of all the vertex heights. Chiang et al. build on this approach
to get a faster algorithm that only sorts the critical vertices, yielding a running time of O(tlogt +
N) [CLLRO5]. Common applications for contour trees involve turbulent combustion or noisy data,
where the number of critical points is likely to be (n). There is a worst-case lower bound of
Q(tlogt) by Chiang et al. [CLLRO05], based on a construction of Bajaj et al. [BKOT98].

All previous algorithms begin by sorting (at least) the critical points. Can we beat this sorting
bound for certain instances, and can we characterize which inputs are hard? Intuitively, points that
are incomparable in the contour tree do not need to be compared. Look at Figure 1 to see such an
example. All previous algorithms waste time sorting all the maxima. Also consider the surface of
Figure 2. The final contour tree is basically two binary trees joined at their roots, and we do not
need the entire sorted order of critical points to construct the contour tree.
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Figure 1: Two surfaces with different orderings of the maxima, but the same contour tree.

Our main result gives an affirmative answer. Remember that we can consider the contour tree



o N
P -

Figure 2: On left, a surface with a balanced contour tree, but whose join and split trees have long
tails. On right (from left to right), the contour, join and split trees.

as directed from top to bottom. For any node v in the tree, let ¢, denote the length of the longest
directed path passing through v.

Theorem 1.1. Consider a simplicial complex f : M — R, where M is a triangulation of a d-
dimensional ball. Let N be the number of facets in M. Let the Morse degree of f at any point be
at most 3. Denote the contour tree by T with vertex set (the critical points) C(T'). There exists
an algorithm to compute T in O(EUGC(T) log ¢, + ta(t) + N) time. Moreover, this algorithm only
compares function values at pairs of vertices that are ancestor-descendant in T or adjacent in M.

Essentially, the “run time per critical point” is determined by the height /depth of the point in
the contour tree. This bound immediately yields a run time of O(tlog D + ta(t) + N), where D is
the directed diameter of the contour tree. This is a significant asymptotic improvement for short
and fat contour trees. For example, if the tree is balanced, then we get a bound of O(tloglogt).
Even if T contains a long path of length O(t¢/logt), but is otherwise short, we get the improved
bound of O(tloglogt).

1.1 A refined bound with optimality properties
Theorem 1.1 is a direct corollary of a stronger but more cumbersome theorem.

Definition 1.2. For a contour tree T', a leaf path is any path in T containing a leaf, which is also
monotonic in the height values of its vertices. Then a path decomposition, P(T'), is a partition of
the vertices of T into a set of vertex disjoint leaf paths.

Theorem 1.3. (Consider the input setting of Theorem 1.1.) There is a deterministic algorithm
to compute the contour tree, T, whose running time is O(3_,cp(r) [p|log [p| + ta(t) + N), where
P(T) is a specific path decomposition (constructed implicitly by the algorithm). The number of
comparisons made is O(Zpep(T) Ip|log |p| + N). In particular, comparisons are only made between
pairs of vertices that are ancestor-descendant in T or adjacent in M.

Note that Theorem 1.1 is a direct corollary of this statement. For any v, £, is at least the length
of the path in P(7T) that contains v. This bound is strictly stronger, since for any balanced contour
tree, the run time bound of Theorem 1.3 is O(ta(t) + N), and O(N) comparisons are made. (Since
for a balanced tree, one can show 3 p(p [p|log |p| = O(t).)

The bound of Theorem 1.3 may seem artificial, since it actually depends on the P(T') that is
implicitly constructed by the algorithm. Nonetheless, we prove that the algorithm of Theorem 1.3
has strong optimality properties. For convenience, fix some value ¢ = Q(N), and consider the set
of terrains (d = 2) with ¢ critical points. The bound of Theorem 1.3 takes values ranging from ¢
to ctlogt, for some constant c. Consider some 7y € [t,tlogt], and consider the set of terrains where
the algorithm makes ay comparisons, for any constant a. Then any algorithm must make roughly
~ comparisons in the worst-case over this set. (Further details are in §9.)



Theorem 1.4. There exists some absolute constant o such that the following holds. For sufficiently
large t and any v € [t,tlogt], consider the set ¥ of terrains with t critical points such that the
number of comparisons made by the algorithm of Theorem 1.3 on these terrains is in [y, ay]. Any
algebraic decision tree that correctly computes the contour tree on all of F has a worst case running
time of Q(7v).

1.2 Previous work

Contour trees were first used to study terrain maps by Boyell and Ruston, and Freeman and
Morse [BR63, FM67]. Contour trees have been applied in analysis of fluid mixing, combustion
simulations, and studying chemical systems [LBM™06, BWP*T10, BWH"11, BWT"11, MGB*11].
Carr’s thesis [Car04] gives various applications of contour trees for data visualization and is an
excellent reference for contour tree definitions and algorithms.

The first formal result was an O(N log N) time algorithm for functions over 2D meshes and an
O(N?) algorithm for higher dimensions, by van Kreveld et al. [vKvOBT97]. Tarasov and Vyalyi
[TV98] improved the running time to O(N log N) for the 3D case. The influential paper of Carr
et al. [CSA03] improved the running time for all dimensions to O(nlogn + Na(N)). Pascucci and
Cole-McLaughlin [PCMO02] provided an O(n + tlogn) time algorithm for 3-dimensional structured
meshes. Chiang et al. [CLLRO5] provide an unconditional O(N + tlogt) algorithm.

Contour trees are a special case of Reeb graphs, a general topological representation for real-
valued functions on any manifold. Algorithms for computing Reeb graphs is an active topic of
research [SK91, CMEH 103, PSBM07, DN09, HWW10, Par12], where two results explicitly reduce
to computing contour trees [TGSP09, DN13].

2 Contour tree basics

We detail the basic definitions about contour trees, following the terminology of Chapter 6 of Carr’s
thesis [Car04]. All our assumptions and definitions are standard for results in this area, though
there is some variability in notation. The input is a continuous piecewise-linear function f : M — R,
where M is a fully triangulated simplicial complex of a topological ball in R, except for specially
designated boundary facets. We assume that all pairs of vertices from M have distinct function
values, except for pairs from the same boundary facet, and that f is only explicitly defined on the
vertices, and all other values are obtained by linear interpolation.

We assume that the boundary values satisfy a special property. This is mainly for convenience
in presentation.

Definition 2.1. The function f is boundary critical if the following holds. Consider a boundary
facet F. All vertices of F' have the same function value. Furthermore, all neighbors of vertices in
F, which are not also in F itself, either have all function values strictly greater than or all function
values strictly less than the function value at F.

Boundary facets allow us to capture the resulting surface pieces after our algorithm makes a
horizontal cut. The above definition is convenient, as any point within a given facet has a well-
defined height, including the boundary facets.

We think of the dimension d, as constant, and assume that M is represented in a data structure
that allows constant-time access to neighboring simplices in M (e.g. incidence graphs [Ede87]).
(This is analogous to a doubly connected edge list, but for higher dimensions.) Observe that
f:M — R can be thought of as a d-dimensional simplicial complex living in R4*! where f(z) is



the “height” of a point x € M, which is encoded in the representation of M. Specifically, rather
than writing our input as (M, f), we abuse notation and typically just write M to denote the lifted
complex.

Definition 2.2. The level set at value h is the set {x € M|f(x) = h}. A contour is a connected
component of a level set. An h-contour is a contour where f-values are h.

Note that a contour that does not contain a boundary is itself a simplicial complex of one
dimension lower, and is represented (in our algorithms) as such. We let § and ¢ denote infinitesimals.
Let B.(z) denote a ball of radius € around z, and let f|B.(x) be the restriction of f to B.(x). The
following definition of a critical point is not standard, but is convenient for our presentation.

Definition 2.3. The Morse up-degree of = is the number of (f(x) + 8)-contours of f|B:(x) as
d,e — 07. The Morse down-degree is the number of (f(x) — 0)-contours of f|B:(z) as §,e — 0T.

A regular point has both Morse up-degree and down-degree 1. A maximum has Morse up-degree
0, while ¢ minimum has Morse down-degree 0. A Morse Join has Morse up-degree strictly greater
than 1, while a Morse Split has Morse down-degree strictly greater than 1. Non-reqular points are
called critical.

The set of critical points is denoted by V(f). Because f is piecewise-linear, all critical points
are vertices in M. A value h is called critical, if f(v) = h, for some v € V(f). A contour is called
critical, if it contains a critical point, and it is called regular otherwise.

The critical points are where certain topological properties of level sets change. By assuming
that our simplicial complex is boundary critical, the vertices on a given boundary are either col-
lectively all maxima or all minima. We abuse notation and refer to this entire set of vertices as a
maximum or minimum.

Definition 2.4. Two reqular contours 1) and v’ are equivalent if there exists an f-monotone path
p connecting a point in 1 to v’, such that no x € p belongs to a critical contour.

This equivalence relation gives a set of contour classes. Every such class maps to intervals of
the form (f(z;), f(x;)), where x;, x; are critical points. Such a class is said to be created at x; and
destroyed at x;.

Definition 2.5. The contour tree is the graph on vertexr set ¥V = V(f), where edges are formed
as follows. For every contour class that is created at v; and destroyed vj, there is an edge (v, v;).
(Conventionally, edges are directed from higher to lower function value.)

We denote the contour tree of M by C(M). The corresponding node and edge sets are denoted
as V(-) and £(-). It is not immediately obvious that this graph is a tree, but alternative definitions
of the contour tree in [CSA03] imply this is a tree. Since this tree has height values associated with
the vertices, we can talk about up-degrees and down-degrees in C(M).

We assume that the Morse up (or down) degree of any point in M is at most 2, and that the total
Morse degree is at most 3. This immediately implies analogous bounds on the up and down-degrees
in C(M). This is standard in the literature among others, though it can be challenging to enforce
in practice. Theoretically, a manifold with points of higher Morse degree can be converted to one
with the degree condition through a process of vertexr unfolding (refer to Section 6.3 in [EH10]).
This effectively converts a multi-saddle to a set of ordinary saddles. For 2D manifolds, this con-
version does not increase the surface complexity. In higher dimensions, the unfolding can increase
complexity if M has vertices of non-constant degree.



2.1 Some remarks

1) Note that if one intersects M with a given ball B, then a single contour in M might be split
into more than one contour in the intersection. In particular, two (f(z) + d)-contours of f|p_(,),
given by Definition 2.3, might actually be the same contour in M. Alternatively, one can define the
up-degree (as opposed to Morse up-degree) as the number of (f(x) + d)-contours (in the full M)
that intersect B.(x), a potentially smaller number. This up-degree is exactly the up-degree of x in
C(M). (Analogously, for down-degree.) When the Morse up-degree is 2 but the up-degree is 1, the
topology of the level set changes but not by the number of connected components changing. When
d = 2, this distinction is not necessary, since any point with Morse degree strictly greater than 1
will have degree strictly greater than 1 in C(M).

2) As Carr points out in Chapter 6 of his thesis, the term contour tree can be used for a family of
related structures. Every regular vertex in M is associated with an edge in C(M), and sometimes
the vertex is explicitly placed in C(M) (by subdividing the respective edge). This is referred to as
augmenting the contour tree, and it is common to augment C(M) with all vertices. Alternatively,
one can smooth out all vertices of up-degree and down-degree 1 to get the unaugmented contour
tree. (For d = 2, there are no such vertices in C(M).) The contour tree of Definition 2.5 is the
typical definition in all results on output-sensitive contour trees. Theorem 1.3 is applicable for any
augmentation of C(M) with a predefined set of vertices, though we will not delve into these aspects
in this paper.

3 A tour of the new contour tree algorithm

We provide a high-level description of the main ideas of subsequent sections.

Do not globally sort: The starting point for this work is Figure 1. We have two terrains with
exactly the same contour tree, but different orderings of (heights of) the critical points. Turning it
around, we cannot deduce the full height ordering of critical points from the contour tree, and so
sorting all critical points is computationally unnecessary. In Figure 2, the contour tree consists of
two balanced binary trees, one of the joins, another of the splits. Again, it is not necessary to know
the relative ordering between the mounds on the left (or among the depressions on the right) to
compute the contour tree. Yet some ordering information is necessary: on the left, the little valleys
are higher than the big central valley, and this is reflected in the contour tree. Leaf paths in the
contour tree have points in sorted order, but incomparable points in the tree are unconstrained.
How do we sort exactly what is required, without knowing the contour tree in advance?

Join and split trees: The standard contour tree algorithm of Carr, Snoeyink, and Axen [CSA03],
builds two different trees, called the join and split trees, and then merges them together to get the
contour tree. Consider sweeping down the hyperplane x4,1 = h and taking the superlevel sets.
These are the connected components of the portion of M above height h. For a terrain, the
superlevel sets are a collection of “mounds”. As we sweep downwards, these mounds keep joining
each other, until finally, we end up with all of Ml. The join tree, J (M), tracks exactly these events.
Formally, let M} denote the simplicial complex induced on the subset of vertices higher than v.
Refer to Figure 2 for the join tree of a terrain. Note that nothing happens at splits, but these are
still put as vertices in the join tree. The split tree is obtained by simply inverting this procedure,
sweeping upwards and tracking sublevel sets.



A major insight of [CSA03] is an ingeniously simple linear time procedure to construct the
contour tree from the join and split trees. So the bottleneck is computing these trees. Observe
in Figure 2 that the split vertices form a long path in the join tree (and vice versa). Therefore,
constructing these trees forces a global sort of the splits, an unnecessary computation for the
contour tree. Unfortunately, in general (i.e. unlike Figure 2) the heights of joins and splits may
be interleaved in a complex manner, and hence the final merging of [CSA03] to get the contour
tree requires having the split vertices in the join tree. Without this, it is not clear how to get a
consistent view of both joins and splits, required for the contour tree.

Our aim is to break M into smaller pieces, where this unnecessary computation can be avoided.

Cutting M into extremum dominant pieces: We define a simplicial complex endowed with a
height to be extremum dominant if there exists only a single minimum, or only a single maximum.
(When formally defined in §6, extremum dominant complexes will allow additional trivial minima
or maxima which are a small complication resulting from the following cutting procedure.) We
first cut M into disjoint extremum dominant pieces in linear time. Take an arbitrary maximum x
and imagine torrential rain at the maximum. The water flows down, wetting any point that has a
non-ascending path from x. We end up with two portions, the wet part of Ml and the dry part. This
is similar to watershed algorithms used for image segmentation [RMO00]. The wet part is obviously
connected and can be shown to be extremum dominant. We can cut along the interface of the wet
and dry, remove the wet part, and recurse on the dry parts. This is carefully done to ensure that
the total complexity of the pieces is linear (see §6 for details).

We now have carved M up into a collection of extremum dominant pieces. In §5 we prove a
simple contour surgery theorem allowing us to build the contour tree of M from the contour trees
of these various pieces. Specifically, we argue our cutting in M was done in such a way that each
cut corresponds to cutting only a single edge in the contour tree. Informally this means gluing M
back together along these cuts corresponds to gluing the contour tree together.

Ultimately, the reason for cutting M into extremum dominant pieces is that such pieces have
simpler contour tree structure. Specifically, using ideas from [CSA03], in §7 we prove that the
contour tree of an extremum dominant complex is (basically) just the join tree. Thus there is no
longer a disconnect between the amount of sorting required for the contour tree versus the join
tree, and so the problem of computing contour trees efficiently reduces to that for join trees.

Join trees from painted mountaintops: Our main result is a faster algorithm for join trees.
The key idea is paint spilling. Start with each maximum having a large can of paint, with distinct
colors for each maximum. In arbitrary order, spill paint from each maximum, wait till it flows
down, then spill from the next, etc. Paint is viscous, and only flows down edges. It does not paint
the interior of faces with dimension strictly larger than 1. Furthermore, paints do not mix, so each
edge receives a unique color, decided by the first paint to reach it. Note that the raining procedure,
used above to carve the input into extremum dominant pieces, cannot be used here as it wets
interiors of higher dimensional faces and so raining from each maximum may significantly increase
the input complexity (see Figure 4). On the other hand, the interface between two different colors
is mot a contour, and so the join trees of each color class cannot just be simply glued together.
Our algorithm incrementally builds J (M) from the leaves (maxima) to the root (dominant
minimum), by repeatedly merging colors and components together. We say that vertex v is touched
by color ¢, if there is a c-colored edge with lower endpoint v. Let us focus on the initial painting,
where the colors have 1-1 correspondence with the maxima. Refer to the left part of Figure 3.
Consider two sibling leaves £1, {5 and their common parent v. The leaves are maxima, and v is a



join that “merges” 1, 2. In that case, there are “mounds” corresponding to #; and /5 that merge at
a valley v. Suppose this was the entire input, and ¢; was colored blue and ¢5 was colored red. Both
mounds are colored completely blue or red, while v is touched by both colors. So this indicates
that v joins the blue maximum and red maximum in J(M).

This is precisely how we hope to exploit the information in the painting. We prove later that
when some join v has exactly two colors among all incident edges with v as the lower endpoint, the
corresponding maxima (of those colors) are exactly the children of v in J(M). To proceed further,
we “merge” the colors red and blue into a new color, purple. In other words, we replace all red
and blue edges by purple edges. This indicates that the red and blue maxima have been handled.
Imagine flattening the red and blue mounds until reaching v, so that the former join v is now a new
maximum, from which purple paint is poured. In terms of J (M), this is equivalent to removing
leaves ¢; and f2, and making v a new leaf. Alternatively, (M) has been constructed up to v, and
it remains to determine v’s parent. The merging of the colors is not explicitly performed as that
would be too expensive; instead we maintain a union-find data structure for that. So the red and
blue mounds are not actually recolored purple, and instead say red now points to blue in the union
find data structure.

Of course, things are more complicated when there are other mounds. There may be a yellow
mound, corresponding to f3 that joins with the blue mound higher up at some vertex u (see the
right part of Figure 3). In J(M), ¢; and /3 are sibling leaves, and /3 is a sibling of some ancestor
of these leaves. So we cannot merge red and blue, until yellow and blue merge. Naturally, we use
priority queues to handle this. We know » must also be touched by blue, so all critical vertices
touched by blue are put in a priority queue keyed by height, and vertices are handled in that order.

Figure 3: On the left, red and blue merge to make purple, followed by the contour tree with initial
colors. On the right, additional maxima and the resulting contour tree.

What happens when finally blue and red join at v? We merge the two colors, but now have blue
and red queues of critical vertices, which also need to be merged to get a consistent painting. This
necessitates using a priority queue with efficient merges. Specifically, we use binomial heaps [Vui78],
as they provide logarithmic time merges and deletes (though other similar heaps work). We stress
that the feasibility of the entire approach hinges on the use of such an efficient heap structure.

In this discussion, we ignored an annoying problem. Vertices may actually be touched by
numerous colors, not just one or two as assumed above. A simple solution would be to insert
vertices into heaps corresponding to all colors touching it. But there could be super-constant
numbers of copies of a vertex, and handling all these copies would lead to extra overhead. We show
that it suffices to simply put each vertex v into at most two heaps, one for each “side” of a possible
join. We are guaranteed that when v needs to be processed, all edges incident from above have at
most 2 colors, because of all the color merges that previously occurred.

Running time intuition: All non-heap operations can be easily bounded by O(ta(t)+ N). One
can argue any heap always contains a subset of a single leaf to root path. Bounding each heap by



the size of this path suffices to prove the bound of Theorem 1.1, stated for join trees. However,
this may grossly overestimate heap sizes, as each vertex on a path can have at most two colors
(the ones getting merged). Thus as we get closer to the root the competition for which two colors
a vertex gets assigned to grows, since the number of descendant leaf colors grows. This means for
some vertices the size of the heap will be significantly smaller during an associated heap operation.

The intuition is that the paint spilling from the maxima in the simplicial complex, corresponds
to paint spilling from the leaves in the join tree, which decomposes the join tree into a set of colored
paths. Unfortunately, the situation is more complex since while a given color class is confined to a
single leaf to root path, it may not appear contiguously on this path, as the right part of Figure 3
shows. Specifically, in this figure the far left saddle (labeled 7) is hit by blue paint. However, there
is another saddle on the far right (labeled j) which is not hit by blue paint. Since this far right
saddle is slightly higher than the far left one, the merge event involving the component containing
the blue mound (and also the yellow and red mounds) and corresponding to the far right saddle will
occur before the one corresponding to the far left saddle. Hence, the vertices initially touched by
blue are not contiguous in the join tree. This non-contiguous complication along with the fact that
heap sizes keep changing as color classes merge, causes the analysis to be technically challenging.
We employ a variant of heavy path decompositions, first used by Sleator and Tarjan for analyzing
link/cut trees [ST83]. The final analysis charges expensive heap operations to long paths in the
decomposition, resulting in the bound stated in Theorem 1.3.

4 Painting to compute join trees

We now present the main algorithmic contribution, which is a new algorithm for computing join
trees of any triangulated simplicial complex M. In subsequent sections we then show how to reduce
computing the contour tree to computing the join tree by using contour surgery.

We now formally define the join and split trees as given by [CSA03]. Conventionally, all edges
are directed from higher to lower function value. In the following, for vertex v, we use M to denote
the simplicial complex obtained by only keeping vertices u such that f(u) > f(v). Analogously,
define M. Note that M, may contain numerous connected components.

Definition 4.1. The join tree J(M) of M is built on vertex set V(M). The directed edge (u,v) is
present when u is the smallest valued vertex in a connected component of Ml and v is adjacent to a
vertex in this component (in M). The split tree S(M) is obtained by looking at Ml (or alternatively,
by taking the join tree of the inversion of M).

Some basic facts about these trees. All outdegrees in J (M) are at most 1, all indegree 2 vertices
are joins, all leaves are maxima, and the global minimum is the root. All indegrees in S(M) are at
most 1, all outdegree 2 vertices are splits, all leaves are minima, and the global maximum is the
root. As these trees are rooted, we can use ancestor-descendant terminology. Specifically, for two
adjacent vertices u and v, u is the parent of v if u is closer to the root (i.e. each node can have at
most one parent, but can have two children).

4.1 Painting

The central tool is a notion of painting M. Initially associate a color with each maximum. Imagine
there being a large can of paint of a distinct color at each maximum z. We will spill different paint
from each maximum and watch it flow down. So paint only flows down edges, and it does not color
the interior of higher dimensional faces. Furthermore, paints do not mix, so every edge of M gets



a unique color. This process (and indeed the entire algorithm) works purely on the 1-skeleton of
M, which is just a graph.

Definition 4.2. Let the 1-skeleton of M have edge set E and maxima X. A painting of M is a
map x : X UE — [|X|], where x(z) is referred to as the color of z, with the following property.
Consider an edge e. There exists a descending path from some mazximum x to e consisting of edges
i E, such that all edges along this path have the same color as x.

An initial painting also requires that the restriction x : X — [|X|] is a bijection.

Definition 4.3. Fiz a painting x and vertex v.

e For each mazimal connected component Y of M}, the set of all edges connecting v to'Y is
called an up-star. (Note v has at most two up-stars, as Morse up-degree is at most 2 by assumption.)

e A wertex v is touched by color ¢ if v is incident to a c-colored edge with v at the lower
endpoint. For v, col(v) is the set of colors that touch v.

e A color ¢ € col(v) fully touches v if all edges in an up-star are colored c.

o For any mazimum x € X, we say that x is both touched and fully touched by x(x).

4.2 The algorithm

We first give an informal, idealized description of the algorithm. That is, in the actual algorithm
the details differ slightly and additional data structures are used to improve the running time.

1. Construct a painting of Ml by a descending BFS from each maximum. This partitions the
edges into colored sets, and assigns each vertex to the color classes of the edges that touch it.
2. For each color, construct a (binomial) max-heap of the critical points touched by that color,
indexed by the heights of the critical points.
3. Initialize the join tree to consist of a set of isolated vertices, one for each color class.
(We now iteratively fill in the rest of the join tree from the leaves towards the root.)
4. Repeat until all heaps are empty:
(a) Find a critical point w that is at the top of all heaps containing w.
(b) Add w to the join tree by connecting it to the lowest vertex of each component of the
join tree that contains a maximum whose color matches one of the heaps containing w.
(¢) Delete w from all these heaps, and merge them.

This motivates the definition of ripe vertices.

Definition 4.4. A vertex v is ripe if: for all ¢ € col(v), if v is in the heap of c then it is the highest
vertex in that heap (using notation from §4.2.1, if v € T'(rep(c)), then it is highest in T(rep(c))).

To efficiently implement the above, we need a number of data structures. Namely, binomial
heaps for efficient merges, union-find to avoid explicit recoloring, and a stack to hold unripe (though
ripening) vertices, which is used to effectively amortize the cost of the otherwise expensive operation
of finding ripe vertices. Note we also later show it suffices to assign each vertex to only a single
color from each adjacent up-star, rather than the colors of all the edges which touch it.

4.2.1 The data structures

The binomial heaps T'(c): For each color ¢, T'(c) is a subset of vertices touched by ¢, This is
stored as a binomial maz-heap keyed by vertex heights. Abusing notation, T'(c) refers both to the
set and the data structure used to store it.



The union-find data structure on colors: We will repeatedly perform unions of classes of
colors, and this will be maintained as a standard union-find data structure. For any color ¢, rep(c)
denotes the representative of its class.

Color list col(v): For each vertex v, we maintain col(v) as a simple list. In addition, we will
maintain another (sub)list of colors L such that Ve € L, v is not the highest vertex in T'(rep(c)).
Note that given ¢ € col(v) and rep(c), this property can be checked in constant time. If ¢ is ever
removed from this sublist, it can never enter it again.

For notational convenience, we will not explicitly maintain this sublist. We simply assume that,
in constant time, one can determine (if it exists) an arbitrary color ¢ € col(v) such that v is not
the highest vertex in T'(rep(c)).

The stack K: This consists of non-extremal critical points, with monotonically increasing heights
as we go from the base to the head.

Attachment vertex att(c): For each color ¢, we maintain a critical point att(c) of this color.
We will maintain the guarantee that the portion of the join tree above (and including) att(c) has
already been constructed.

4.2.2 The formal algorithm

We now give a detailed description of the main algorithm. The primary challenge is to use the data
structures to rapidly find ripe vertices. A simple example of the algorithm execution is given in §A.
init(M)

1. Construct an initial painting of M using a descending BFS from maxima that does

not explore previously colored edges.

2. Determine all critical points in M. For each v, look at (f(v)=+d)-contours in f|g_(,
to determine the up and down degrees.

3. Mark each critical v as unprocessed.

4. For each critical v and each up-star, pick an arbitrary color ¢ touching v. Insert v
into T'(c).

5. Initialize rep(c) = ¢ and set att(c) to be the unique maximum colored c.

6. Initialize K to be an empty stack.

build(M)
1. Run init(M).
2. While there are unprocessed critical points:
(a) Run update(K). Pop K to get h.
(b) Let cur(h) = {rep(c)|c € col(h)}.
(c) For all ¢ € cur(h):
i. Add edge (att(c'),h) to J(M).
ii. Delete h from T'(c).
(d) Merge heaps {T'(c')|¢' € cur(h)}.
(e) Take union of cur(h) and denote resulting representative color by ¢.
(f) Set att(c) = h and mark h as processed.
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update(K)
1. If K is empty, push arbitrary unprocessed critical point v.
2. Let h be the head of K.
3. While h is not ripe:
(a) Find ¢ € col(h) such that h is not the highest in T'(rep(c)).
(b) Push the highest of T'(rep(c)) onto K, and update head h.

A few simple facts:

e At all times, the colors form a valid painting.

e Each vertex is present in at most 2 heaps. This is because the Morse up-degree of every point
is at most 2. After processing, it is removed from all heaps.

e After v is processed, all edges incident to v from above have the same (representative) color.

e Vertices on the stack are in increasing height order.

Observation 4.5. Each unprocessed vertex is always in exactly one queue of the colors in each
of its up-stars. Specifically, for a given up-star of a vertex v, init(M) puts v into the queue of
exactly one of the colors of the up-star, say c. As time goes on this queue may merge with other
queues, but while v remains unprocessed, it is only ever (and always) in the queue of rep(c), since
v is never added to a new queue and is not removed until it is processed. In particular, finding the
queues of a vertex in update(K') requires at most two union find operations (assuming each vertex
records its two colors from init(M)).

4.3 Proving correctness

Our main workhorse is the following lemma. The current color of an edge, e, refers to the value of
rep(x(e)), where x(e) is the color of e from the initial painting.

Lemma 4.6. Suppose vertex v is connected to a component P of MI7 by an edge e which is currently
colored c. At all times: either all edges in P are currently colored ¢, or there exists a critical vertex
w € P currently fully touched by ¢ and currently touched by another color.

Proof. Since e has current color ¢, there must exist vertices in P currently touched by c. Consider
the highest vertex w in IP that is currently touched by ¢ and some other color. If no such vertex
exists, this means all edges incident to a vertex currently touched by c are currently colored c. By
walking through P, we deduce that all edges are currently colored c.

So assume w exists. Take the (f(w) 4 d)-contour ¢ that intersects B.(w) and intersects some
currently c-colored edge incident to w. Note that all edges intersecting ¢ are also currently colored
¢, since w is the highest vertex to be currently touched by ¢ and some other color. (Take the path
of currently c-colored edges from the maximum to w. For any point on this path, the contour
passing through this point must be currently colored c.) Hence, ¢ currently fully touches w. But w
is currently touched by another color, and the corresponding edge cannot intersect ¢. So w must
have up-degree 2 and is critical. O

Corollary 4.7. Each time update(K) is called, it terminates with a ripe vertex on top of the stack.

Proof. update(K) is only called if there are unprocessed vertices remaining, and so by the time we
reach step 3 in update(K), the stack has some unprocessed vertex h on it. If & is ripe, then we are
done, so suppose otherwise.

Let P be one of the components of M}J{. By construction, h was put in the heap of some initially
adjacent color c. Therefore, h must be in the current heap of rep(c) (see Observation 4.5). Now by
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Lemma 4.6, either all edges in P are colored rep(c) or there is some vertex w fully touched by rep(c)
and touched by some other color. The former case implies that if there are any unprocessed vertices
in P then they are all in T'(rep(c)), implying that h is not the highest vertex and a new higher up
unprocessed vertex will be put on the stack for the next iteration of the while loop. Otherwise,
all the vertices in P have been processed. However, it cannot be the case that all vertices in all
components of MZ have already been processed, since this would imply that h was ripe, and so one
can apply the same argument to the other non-fully processed component.

Now consider the latter case, where we have a non-monochromatic vertex w. In this case w
cannot have been processed (since after being processed it is touched only by one color), and so it
must be in T'(rep(c)) since it must be in some heap of a color in each up-star (and one up-star is
entirely colored rep(c)). As w lies above h in M, this implies h is not on the top of this heap. [

Claim 4.8. Consider a ripe vertex v and take the up-star connecting to some component of M.
All edges in this component and the up-star have the same current color.

Proof. Let ¢ be the color of some edge in this up-star. By ripeness, v is the highest in T'(rep(c)).
Denote the component of Ml by P. By Lemma 4.6, either all edges in IP are colored rep(c) or there
exists critical vertex w € P fully touched by rep(c) and touched by another color. In the latter
case, w has not been processed, so w € T'(rep(c)) (contradiction to ripeness). Therefore, all edges
in IP are colored rep(c). O

Claim 4.9. The partial output on the processed vertices is exactly the restriction of J(M) to these
vertices.

Proof. More generally, we prove the following: all outputs on processed vertices are edges of J (M)
and for any representative color ¢, att(c) is the lowest processed vertex of that representative color.
We prove this by induction on the processing order. The base case is trivially true, as initially the
processed vertices and attachments of the color classes are the set of maxima. For the induction
step, consider the situation when v is being processed.

Since v is being processed, we know by Corollary 4.7 that it is ripe. Take any up-star of v, and
the corresponding component P of M that it connects to. By Claim 4.8, all edges in P and the
up-star have the same current color, say c. If some critical vertex in IP is not processed, it must be in
T'(c), which violates the ripeness of v. Thus, all critical vertices in P have been processed, and so by
the induction hypothesis, the restriction of 7 (M) to P has been correctly computed. Additionally,
since all critical vertices in P have been processed, they all have the same representative color ¢ of
the lowest critical vertex in P. Thus by the strengthened induction hypothesis, this lowest critical
vertex is att(c).

If there is another component of M, the same argument implies the lowest critical vertex
in this component is att(¢’) (where ¢ is the current color of edges in the respective component).
Now by the definition of 7 (M), the critical vertex v connects to the lowest critical vertex in each
component of M}, and so by the above v should connect to att(c) and att(c’), which is precisely
what v is connected to by build(M). Moreover, build merges the representative colors ¢ and ¢/
and correctly sets v to be the attachment, as v is the lowest processed vertex of this merged color
(as by induction att(c) and att(c’) were the lowest vertices before merging colors). O

Theorem 4.10. Given an input complex M, build(M) terminates and outputs J(M).

Proof. First observe that each vertex can be processed at most once by build(M). By Corollary 4.7,
we know that as long as there is an unprocessed vertex, update(K’) will be called and will terminate
with a ripe vertex which is ready to be processed. Therefore, eventually all vertices will be processed,
and so by Claim 4.9 the algorithm will terminate having computed 7 (M). O
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4.4 Running time

We now bound the running time of the algorithm of §4.2. In subsequent sections, through a
sophisticated charging argument, this bound is then related to matching upper and lower bounds
in terms of path decompositions. Therefore, it will be useful to set up some terminology that can
be used consistently in both places. Specifically, the path decomposition bounds will be purely
combinatorial statements on colored rooted trees, and so the terminology is of this form.

Any tree T considered in the following will be a rooted binary tree! where the height of a vertex
is its distance from the root r (i.e. conceptually T" will be a join tree with r at the bottom). As
such, the children of a vertex v € T" are the adjacent vertices of larger height (and v is the parent
of such vertices). Then the subtree rooted at v, denoted T, consists of the graph induced on all
vertices which are descendants of v (including v itself). For two vertices v and w in T let d(v, w)
denote the length of the path between v and w. We use A(v) to denote the set of ancestors of v.

For a set of nodes U, A(U) =,y A(u).

Definition 4.11. A leaf assignment x of a tree T assigns two distinct leaves to each internal vertex
v, one from the left child and one from the right child subtree of v (naturally if v has only one child
it is assigned only one leaf).

For a vertex v € T, we use H, to denote the heap at v. Formally, H, = {ulu € A(v), x(u) N
L(T,) # 0}, where L(T,) is the set of leaves of T;,. In words, H, is the set of ancestors of v which
are colored by some leaf in T5,.

Definition 4.12. The subroutine init(M) from §4.2 naturally defines a leaf assignment to J (M)
according to the priority queue for each up-star we put a given verter in. Call this the initial
coloring of the vertices in J(M). This initial coloring also defines the H, values for all v € J(M).

The following lemma should justify these definitions.

Lemma 4.13. Let M be a simplicial complex with t critical points. For every vertex in J (M),
let H, be defined by the initial coloring of M. The total running time of build(M), including the
subroutine call to init(M) and all calls to update, is O(N +ta(t) + > ,c 7 l0g [ Hy).

Proof. First we look at the initialization procedure init(M). This procedure runs in O(N) time.
Indeed, the painting procedure consists of several BFS’s but as each vertex is only explored by one
of the BFS’s, it is linear time overall. Determining the critical points is a local computation on
the neighborhood of each vertex and so is linear (i.e. each edge is viewed at most twice). Finally,
each vertex is inserted into at most two heaps and so initializing the heaps takes linear time in the
number of vertices.

Now consider the union-find operations performed by build and update. Initially the union find
data structure has a singleton component for each leaf (and no new components are ever created),
and so each union-find operation takes O(a(t)) amortized time. For update, by Observation 4.5,
each iteration of the while loop requires a constant number of finds (and no unions). Specifically, if
a vertex is found to be ripe (and hence processed next) then these can be charged to that vertex.
If a vertex is not ripe, then these can be charged to the vertex put on the stack. As each vertex is
put on the stack or processed at most once, update performs O(t) finds overall. Finally, build(M)
performs one union and at most two finds for each vertex. Therefore the total number of union
find operations is O(t).

Note that technically the trees considered should have a leaf vertex hanging below the root in order to represent
the global minimum of the complex. This vertex is (safely) ignored to simplify presentation.
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For the remaining operations, observe that for every iteration of the loop in update, a vertex
is pushed onto the stack and each vertex can only be pushed onto the stack once (since the only
way it leaves the stack is by being processed). Therefore the total running time due to update is
linear (ignoring the find operations).

What remains is the time it takes to process a vertex v in build(M). In order to process a vertex
there are a few constant time operations, union-find operations, and queue operations. Therefore
the only thing left to bound are the queue operations. Let v be a vertex in J (M), and let ¢; and ¢y
be its children (the same argument holds if v has only one child). At the time v is processed, the
colors and queues of all vertices in a given component of M have merged together. In particular,
when v is processed we know it is ripe and so all vertices above v in each component of M have
been processed, implying these merged queues are the queues of the current colors of ¢; and co.
Again since v is ripe, it must be on the top of these queues and so the only vertices left in these
queues are those in H., and H,.

Now when v is handled, three queue operations are performed. Specifically, v is removed from
the queues of ¢; and co, and then the queues are merged together. By the above arguments the
sizes of the queues for each of these operations are |H,, |, |H,|, and |H,|, respectively. As merging
and deleting takes logarithmic time in the heap size for binomial heaps, the claim now follows. [

For any critical point v let ¢, denote the length of the longest directed path passing through v
in the join tree. As |H,| only counts vertices in a v to root path, trivially |H,| < ¢,, immediately
implying the analog of Theorem 1.1 for join trees. Note however that there is fair amount of slack
in this argument as | H,| may be significantly smaller than ¢,. This slack allows for the more refined
upper and lower bounds mentioned in §1.1. Quantifying this slack however is quite challenging,
and requires a significantly more sophisticated analysis involving path decompositions, which is the
subject of §8.

5 Divide and conquer through contour surgery

Now that we have an efficient join tree algorithm, we now describe how to reduce computing the
contour tree to computing the join tree, as discussed in §3. Specifically, in this section we first
describe our basic cutting tool, which we call contour surgery. In §6 we then describe how we use
this tool to cut the surface into so called extremum dominant pieces where computing the contour
tree reduces to computing the join tree, and this equivalence is proven in §7. The pieces we create
are technically not simplicial complexes, in that each piece may have facets that are not simplices,
that is facets of larger size than the dimension. These can easily be completed into simplicial
complexes, though as we do not need this, for ease of exposition, we do not explicitly perform this
step in our algorithm.

The cutting operation: We define a “cut” operation on f : M — R that cuts along a regular
contour to create a new simplicial complex with an added boundary. Given a contour ¢, roughly
speaking, this constructs the simplicial complex M\ ¢. We will always enforce the condition that ¢
never passes through a vertex of M. Again, we use ¢ for an infinitesimally small value. We denote
¢* (resp. ¢~) to be the contour at value f(¢) + ¢ (resp. f(¢) — €), which is at distance ¢ from ¢.

An h-contour is achieved by intersecting M with the hyperplane 4.1 = h and taking a connected
component. (Think of the d 4+ 1-dimension as height.) Given some point x on an h-contour ¢, we
can walk along M from z to determine ¢. We can “cut” along ¢ to get a new (possibly) disconnected
simplicial complex M. This is achieved by splitting every face F' that ¢ intersects into an “upper”
face and “lower” face. Algorithmically, we cut F' with ¢* and take everything above ¢ in F
to make the upper face. Analogously, we cut with ¢~ to get the lower face. The faces are then
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triangulated to ensure that they are all simplices. This creates the two new boundaries ¢ and
¢~, and we maintain the property of constant f-value at a boundary.

Note that by assumption ¢ cannot cut a boundary face, and moreover all non-boundary faces
have constant size. Therefore, this process takes time linear in |¢|, the number of faces ¢ intersects.
This new simplicial complex is denoted by cut(¢, M). We now describe a high-level approach to
construct C(M) using this cutting procedure.

surgery(M, o)

1. Let M’ = cut(M, ¢).

2. Construct C(M') and let A, B be the nodes corresponding to the new boundaries
created in M. (One is a minimum and the other is maximum.)

3. Since A, B are leaves, they each have unique neighbors A’ and B’, respectively. Insert
edge (A’, B') and delete A, B to obtain C(M).

Theorem 5.1. For any regular contour ¢, the output of surgery(M, ¢) is C(M).

To prove Theorem 5.1, we require a theorem from [Car04] (Theorems 6.6) that map paths in
C(M) to M.

Theorem 5.2. For every path P in M, there exists a path Q) in the contour tree corresponding to
the contours passing through points in P. For every path QQ in the contour tree, there exists at least
one path P in M through points present in contours involving Q.

In particular, for every monotone path P in M, there exists a monotone path ) in the contour
tree to which P maps, and vice versa.

Theorem 5.1 is a direct consequence of the following lemma.

Lemma 5.3. Consider a reqular contour ¢ contained in a contour class (of an edge of C(M)) (u,v)
and let M = cut(M, ¢). Then V(C(M')) = {¢", ¢~} UV(M) and E(C(M)) = {(u,¢"), (67, v)} U
(EM) \ (u,v)).

Proof. First observe that since ¢ is a regular contour, the vertex set in the complex M’ is the
same as the vertex set in M, except with the addition of the newly created vertices on ¢+ and ¢~.
Moreover, cut(M, ¢) does not affect the local neighborhood of any vertex in M. Therefore since a
vertex being critical is a local condition, with the exception of new boundary vertices, the critical
vertices in Ml and M are the same. Finally, the new vertices on ¢ and ¢~ collectively behave as
a minimum and maximum, respectively, and so V(C(M')) = {¢T, ¢~} U V(M).

Now consider the edge sets of the contour trees. Any contour class in M (i.e. edge in C(M’))
that does not involve ¢ or ¢~ is also a contour class in M. Furthermore, a maximal contour class
satisfying these properties is also maximal in M. So all edges of C(M') that do not involve ¢+ or
¢~ are edges of C(M). Analogously, every edge of C(M) not involving ¢ is an edge of C(M').

Consider the contour class corresponding to edge (u,v) of C(M). There is a natural ordering of
the contours by function value, ranging from f(u) to f(v). All contours in this class “above” ¢ form
a maximal contour class in M, represented by edge (u,»1). Analogously, there is another contour
class represented by edge (¢~,v). We have now accounted for all contours in C(M’), completing
the proof. O

A useful corollary of this lemma shows that a contour actually splits the simplicial complex into
two disconnected complexes.
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Theorem 5.4. cut(M, ¢) consists of two disconnected simplicial complexes, each of which is the
triangulation of a d-dimensional ball.

Proof. Denote (as in Lemma 5.3) the edge containing ¢ to be (u,v). Suppose for contradiction that
there is a path between vertices u and v in M’ = cut(M, ¢). By Theorem 5.2, there is a path in
C(M') between u and v. Since ¢T and ¢~ are leaves in C(M’), this path cannot use their incident
edges. Therefore by Lemma 5.3, all the edges of this path are in £(C(M)) \ (u,v). So we get a cycle
in C(M), a contradiction. To show that there are exactly two connected components in cut(M, ¢),
it suffices to see that C(M') has two connected components (by Lemma 5.3) and then applying
Theorem 5.2. O

6 Raining to partition M

In this section, we describe a linear time procedure that partitions M into special extremum domi-
nant simplicial complexes.

Definition 6.1. A simplicial complex with a height function is minimum dominant if there exists
a minimum x such that every non-minimal vertex in the complex has a non-ascending path to x.
Analogously define maximum dominant.

The first aspect of the partitioning is “raining”. Start at some point z € M and imagine rain at
. The water will flow downwards along non-ascending paths and “wet” all the points encountered.
Note that this procedure considers all points of the complex, not just vertices.

Definition 6.2. Fiz x € M. The set of points y € M such that there is a non-ascending path from
x to y is denoted by wet(x, M) (which in turn is represented as a simplicial complex). A point z is
at the interface of wet(x, M) if every neighborhood of z has non-trivial intersection with wet(x, M)
(i.e. the intersection is neither empty nor the entire neighborhood).

The following claim gives a description of the interface.

Claim 6.3. For any x, each non-empty component of the interface of wet(x,M) contains a join
vertex.

Proof. 1f p € wet(z,M), all the points in any contour containing p are also in wet(z,M). (Follow
the non-ascending path from x to p and then walk along the contour.) The converse is also true,
so wet(xz, M) contains entire contours.

Let £,6 be sufficiently small as usual. Fix some y at the interface. Note that y € wet(z, M).
(Otherwise, B:(y) N M is dry.) The points in B.(y) N M that lie below y have a descending path
from y and hence must be wet. There must also be a dry point in B.(y) N M that is above y, and
hence, there exists a dry, regular (f(y) + d)-contour ¢ intersecting B:(y).

Let Iy be the contour containing y. Suppose for contradiction that Vp € Iy, p has up-degree 1
(see Definition 2.3). Consider the non-ascending path from x to y and let z be the first point of Iy
encountered. There exists a wet, regular (f(y)+ d)-contour v intersecting B (z). Now, walk from z
to y along I'y. If all points w in this walk have up-degree 1, then 1) is the unique (f(y)+ J)-contour
intersecting B:(w). This would imply that ¢ = v, contradicting the fact that ¢ is wet and ¢ is
dry. O

Note that wet(xz, M) (and its interface) can be computed in time linear in the size of the wet
simplicial complex. We perform a non-ascending search from x. Any face F' of M encountered
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is partially (if not entirely) in wet(x,M). The wet portion is determined by cutting F' along the
interface. Since each component of the interface is a contour, this is equivalent to locally cutting
F by a hyperplane. All these operations can be performed to output wet(z, M) in time linear in
|wet(z, M)]|.

We define a simple 1ift operation on the interface components. Consider such a component ¢
containing a join vertex y. Take any dry increasing edge incident to y, and pick the point z on this
edge at height f(y)+0 (where 0 is an infinitesimal, but larger than the value £ used in the definition
of cut). Let 1ift(¢) be the unique contour through the regular point z. Note that 1ift(¢) is dry.
The following claim follows directly from Theorem 5.4.

Claim 6.4. Let ¢ be a connected component of the interface. Then cut(M,1ift(¢)) results in two
disjoint simplicial complezxes, one consisting entirely of dry points.

Proof. By Theorem 5.4, cut(M, 1ift(¢)) results in two disjoint simplicial complexes. Let N be the
complex containing the point = (the argument in wet(x, M)), and let N’ be the other complex. Any
path from z to N’ must intersect 1ift(¢), which is dry. Hence N’ is dry. O

Figure 4: On left, downward rain spilling only (each shade of gray represents a piece created by
each different spilling), producing a grid. Note we are assuming raining was done in sorted order
of the maxima (i.e. lowest to highest). On right, flipping the direction of rain spilling.

We describe the main partitioning procedure that cuts a simplicial complex N into extremum
dominant complexes, shown below as rain(z,N). It takes an additional input of a maximum z. To
initialize, we begin with N set to M and = as an arbitrary maximum. When we start, rain flows
downwards. In each recursive call, the direction of rain is switched to the opposite direction. This
is crucial to ensure linear running time, and Figure 4 shows how failing to switch directions can
lead to a blow up in complexity. The switching is easily implemented by inverting a complex N/,
achieved by negating the height values. We can now let rain flow downwards, as it usually does in
our world.

rain(z,N)
1. Determine interface of wet(x,N).
2. If the interface is empty, simply output N. Otherwise, denote the connected com-
ponents by ¢1, 2, ..., ¢, and set ¢, = 1ift(¢;).
3. Initialize N; = N.
4. For i from 1 to k:
(a) Construct cut(Nj, ¢}), consisting of dry complex L; and remainder N; ;.
(b) Let the newly created boundary of L; be B;. Invert L; so that B; is a maximum.
Recursively call rain(B;, L;).
5. Output Ngi; together with any complexes output by recursive calls.
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For convenience, denote the total output of rain(x, M) by M, My, ..., M,.
Lemma 6.5. Fach output M; is extremum dominant.

Proof. Consider a call to rain(z,N). If the interface is empty, then all of N is in wet(z,N), so N
is trivially extremum dominant. So suppose the interface is non-empty and consists of ¢1, ..., ¢k
(as denoted in the procedure). By repeated applications of Claim 6.4, Ny, contains wet(x, M).
Consider wet(z,Ngy1). The interface is exactly ¢1,...,¢r. So the only dry vertices of Ny are
those on the boundaries created by calling cut for each ¢;, but such boundaries are all maxima. [

As rain(z, M) proceeds, new faces/simplices are created because of repeated cutting. The key
to the running time of rain(z,M) is bounding the number of newly created faces, for which we
have the following lemma.

Lemma 6.6. A face ' € M is cut’ at most once during rain(z, M).

Proof. Notation here follows the pseudocode of rain. First, by Theorem 5.4, all the pieces on
which rain is invoked are disjoint. Second, all recursive calls are made on dry complexes.
Consider the first time that F' is cut, say, during the call to rain(z,N). Specifically, say this
happens when cut(N;, ¢}) is constructed. cut(N;, ¢;) will cut F' with two horizontal cutting planes,
one ¢ above ¢, and one ¢ below ¢,. This breaks F' into lower and upper portions which are then
triangulated (there is also a discarded middle portion). The lower portion, which is adjacent to
@i, gets included in Ng i, the complex containing the wet points, and hence does not participate
in any later recursive calls. The upper portion (call it U) is in L;. Note that the lower boundary
of U is in the boundary B;. Since a recursive call is made to rain(B;,L;) (and L; is inverted), U
becomes wet. Hence U, and correspondingly F', will not be subsequently cut. ]

The following are direct consequences of Lemma 6.6 and the surgery procedure.
Theorem 6.7. The total running time of rain(z,M) is O(|M]).

Proof. The only non-trivial operations performed are wet and cut. Since cut is a linear time
procedure, Lemma 6.6 implies the total time for all calls to cut is O(|M]|). As for the wet procedure,
observe that Lemma 6.6 additionally implies there are only O(|M|) new faces created by rain.
Therefore, since wet is also a linear time procedure, and no face is ever wet twice, the total time
for all calls to wet is O(|M]). O

Claim 6.8. Given C(M;),C(M2),...,C(M,), C(M) can be constructed in O(|M]) time.

Proof. Consider the tree of recursive calls in rain(z, M), with each node labeled with some M.
Walk through this tree in a leaf first ordering. Each time we visit a node we connect its contour
tree to the contour tree of its children in the tree using the surgery procedure. Each surgery call
takes constant time, and the total time is the size of the recursion tree. ]

7 Contour trees of extremum dominant complexes

The previous section allows us to restrict attention to extremum dominant complexes. We will orient
so that the extremum in question is always a minimum. We will fix such a simplicial complex M,
with the dominant minimum m*.

What we are calling a single cut is actually done with two hyperplanes.
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Recall the definitions of join and split trees from §4. The main theorem of this section asserts
that contour trees of minimum dominant complexes have a simple description in terms of J(M).
First we make the key observation that S(M) is trivial for a minimum dominant M.

Lemma 7.1. For minimum dominant M, S(M) consists of:
e A single path (in sorted order) with all vertices except non-dominant minima.
e FEach non-dominant minimum is attached to a unique split (which is adjacent to it).

Proof. 1t suffices to prove that each split v has one child that is just a leaf, which is a non-dominant
minimum. Specifically, any minimum is a leaf in S(M) and thereby attached to a split, which implies
that if we removed all non-dominant minima, we must end up with a path, as asserted above.

Consider a split v. For sufficiently small ¢,d, there are exactly two (f(v) — J)-contours ¢ and
1 intersecting B(v). Both of these are regular contours. There must be a non-ascending path
from v to the dominant minimum m*. Consider the first edge (necessarily decreasing from v) on
this path. It must intersect one of the (f(v) — d)-contours, say ¢. By Theorem 5.4, cut(M, ¢) has
two connected components, with one (call it ) having ¢~ as a boundary maximum. This complex
contains m* as the non-ascending path intersects ¢ only once. Let the other component be called
M.

Consider cut(M', ¢) with connected component N having ¢/~ as a boundary. N does not contain
m”*, so any path from the interior of N to m* must intersect the boundary ~. But the latter is a
maximum in N, so there can be no non-ascending path from the interior to m*. Since M is overall
minimum dominant, the interior of N can only contain a single vertex w, a non-dominant minimum.

The split v has two children in S(M), one in N and one in L. The child in N can only be the

non-dominant minimum w, which is a leaf. O
It is convenient to denote the non-dominant minima as mi,ms, ..., m; and the corresponding
splits (as given by the lemma above) as s, $2, . . ., S.

Using the above lemma we can now prove that computing the contour tree for a minimum
dominant complex amounts to computing its join tree. Specifically, to prove our main theorem,
we rely on the correctness of the merging procedure from [CSA03] that constructs the contour tree
from the join and split trees. It actually first constructs the augmented contour tree A(M), which
is obtained by replacing each edge in the contour tree with a path of all regular vertices (sorted by
height) whose corresponding contour belongs to the equivalence class of that edge.

Consider a tree T' with a vertex v of in and out degree at most 1. FErasing v from T is the
following operation: if v is a leaf, just delete v. Otherwise, delete v and connect its neighbors by
an edge (i.e. smooth v out). This tree is denoted by T'© v. The merging procedure of [CSA03] is
shown below as merge(J (M), S(M)). This procedure builds A(M) by iteratively adding edges that
are adjacent to leaves of either J(M) or S(M), erasing the corresponding vertex from both J (M)
and S(M), and repeating. C(M) is then produced by erasing all regular vertices in A(M). We use
the fact that this procedure correctly produces the contour tree (regardless of the order leaves are
processed), and refer the interested reader to [CSA03] for the proof of this fact, as it is not needed
for our purposes.
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merge(J (M), S(M))
1. Set 7 = J M) and S = S(M).
2. Denote v as a candidate if the sum of its indegree in J and outdegree in S is 1.
3. Add all candidates to queue.
4. While candidate queue is non-empty:
(a) Let v be head of queue. If v is leaf in J, consider its edge in J. Otherwise
consider its edge in S. In either case, denote the edge by (v, w).
(b) Insert (v,w) in A(M).
(c) Set J =J ©vand S =S S v. Enqueue any new candidates.
5. Erase all regular vertices in A(M) to get C(M).

Definition 7.2. The critical join tree Jo (M) is built on the set V' of all critical points other than
the non-dominant minima. The directed edge (u,v) is present when u is the smallest valued vertex
in V' in a connected component of Ml and v is adjacent (in M) to a vertex in this component.

Theorem 7.3. Let M have a dominant minimum. The contour tree C(M) consists of all edges
{(si,m;)} and Jo(M).

Proof. We have flexibility in choosing the order of processing in merge. We first put the non-
dominant minima mj, ..., my into the queue. As these are processed, the edges {(s;,m;)} are
inserted into A(M). Once all the m;’s are erased, S becomes a path, so all outdegrees are at most
1. Moreover the join tree is now J (M) & {m,}, and so we can now process J leaf by leaf, and
all remaining edges of J are inserted into A(M). Note that smoothing out regular points from
J (M) & {m;} yields the edges of Jo(M). Thus after smoothing out all regular points from .A(M)
we recover the edges of Jo(M). Hence the resulting contour tree contains these edges and the
{(si,m;)} as claimed. O

Remark 7.4. The above theorem, combined with the previous sections, implies that in order to get
an efficient contour tree algorithm, it suffices to have an efficient algorithm for computing Jc(M).
Note however that for minimum dominant complexes, converting between Jo and J is trivial, as
J is just Jo with each non-dominant minimum m; augmented along the edge leaving s;. (Indeed
Jo(M) was only defined to make the above theorem statement clearer.) Thus to get an efficient
contour tree algorithm it suffices to have an efficient algorithm for computing 7 (M).

7.1 Putting it all together
We now have all the pieces required to prove Theorem 1.1.

Proof of Theorem 1.1. Consider a critical point v of the initial input complex. By Theorem 5.4
this vertex appears in exactly one of the pieces output by rain. As in the Theorem 1.1 statement,
let £, denote the length of the longest directed path passing through v in the contour tree of the
input complex, and let ¢/, denote the longest directed path passing through v in the join tree of
the piece containing v. By Theorem 5.1, ignoring non-dominant extrema introduced from cutting
(whose cost can be charged to a corresponding saddle), the join tree on each piece output by rain
is isomorphic to some connected subgraph of the contour tree of the input complex, and hence
¢! < {,. Moreover, |H,| only counts vertices in a v to root path and so trivially |H,| < ¢/, implying
Theorem 1.1. O

Ultimately our goal is to prove the more refined upper and lower bounds mentioned in §1.1. To
achieve this, in the next section we give a careful analysis of how heap sizes evolve over the course
of our join tree algorithm, rather than using the blunt bound |H,| < £/, as done in the above proof.
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8 Leaf assignments and path decompositions

In this section, we set up a framework to analyze the time taken to compute a join tree J (M) (see
Definition 4.1), and consequently for contour trees by the above discussion. We adopt all notation
already defined in §4.4. From here forward we will often assume binary trees are full binary trees
(this assumption simplifies the presentation but is not necessary).

Let x be some fixed leaf assignment to a rooted binary tree T', which in turn fixes all the heaps
H,. We partition the edges of T' into a path decomposition, where each set of the partition (a path)
is a subset of edges in T" with each internal vertex of degree at most 2. This naturally gives a path
decomposition. For each internal vertex v € T, add the edge from v to argmaxy, ., {|Hy,|, |Hv,|}
where v; and v, are the children of v (if |H,,| = |H,, | then pick one arbitrarily). This is called the
mazimum path decomposition, denoted by Ppax(T).

Our main goal in this section is to prove the following theorem. We use |p| to denote the number
of vertices in a path p.

Theorem 8.1. 3° rlog|Hy| = O3 cp,.. (1) [PIlog |p]).

We conclude this section in §8.6 by showing that proving this theorem implies our main result
Theorem 1.3.

8.1 Tall and short paths

The paths in Ppax(T) naturally define a tree® of their own. Specifically, in the original tree T
contract each path down to its root. Call the resulting tree the shrub of T corresponding to the
path decomposition Ppax(7). Abusing notation, we simply use Ppax(7") to denote the shrub. As a
result, we use terms like ‘parent’, ‘child’, ‘sibling’, etc. for paths as well. The shrub gives a handle
on the heaps of a path. We use b(p) to denote the base of the path, which is the vertex in p closest
to root of T'. We use £(p) to denote the leaf in p. We use H), to denote Hy,).

We wish to prove ) plog|Hy| = O3 ,cp, . Ipllog|p|). The simplest approach is to prove
VP € Prax;, D _yepl0g|Hy| = O(|p[log |p). This is unfortunately not true, which is why we divide
paths into two categories.

Definition 8.2. For p € Puax(T), p is short if |p| < /|Hp|/100, and tall otherwise.
The following lemma demonstrates that tall paths can “pay” for themselves.

Lemma 8.3. Ifpistall, 3, log|Hy| = O(|p|log|p|). Ifp is short, 3, log |Hy| = O(|Hp|log |Hp|).

vEP

Proof. Yor v € p, |Hy| < |Hy| + |p| (as v is a descendant of b(p) along p). Hence, >, . log|H,| <

> vep 108(|[Hp| + [p]) = Ip|log(|Hp| + [pl). If p is a tall path, then |p|log(|Hp| + |p|) = O(|p|log |p])-
If p is short, then |p|log(|Hp| + [p|) = O(|p|log |H,|). For short paths, [p| = O(|H,|). O

There are some short paths that we can also “pay” for. Consider any short path p in the shrub.
We will refer to the tall support chain of p as the tall ancestors of p in the shrub which have a path
to p which does not use any short path (i.e. it is a chain of tall paths adjacent to p).

Definition 8.4. A short path p is supported if at least |H,|/100 vertices v in H, lie in paths in
the tall support chain of p.

3 The term ’tree’ is the most natural term to use here, but the reader should be careful not to confuse this tree
on paths from 7" with the tree T itself.
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Let £ be the set of short paths, £’ be the set of supported short paths, and H be the set of tall
paths given by Ppax(T') (notation which will be used for the remainder of this section).

Claim 8.5. Y, |Hy|log |Hy| = O(X ep Yoe, log |Hol).

Proof. Pick p € L'. As we traverse the tall support chain of p, there are at least |H,|/100 vertices of
H, that lie in these paths. These are encountered in a fixed order. Let H,, be the first |H,|/200 of
these vertices. When v € H}, is encountered, there are | H,|/200 vertices of H), not yet encountered.
Hence, |H,| > |Hp|/200. Hence, |Hp|log|H,| = O(ZUEH;, log |Hy|). Since all the vertices lie in

tall paths, we can write this as O(quﬂ R g l0g |Hy|). Summing over all p, the expression is
p

quﬂ Zpecf ZUEH;ﬂq log [Hy|.

Consider any v € Hy,. Let S be the set of paths p € £’ such that v € HJ. We now show [S] <2
(i.e. it contains at most one path other than p). First observe that any two paths in S must be
unrelated (i.e. S is an anti-chain), since paths which have an ancestor-descendant relationship have
disjoint tall support chains. However, any vertex v receives exactly one color from each of its two
subtrees (in T'), and therefore |S| < 2 since any two paths which share descendant leaves in T (i.e.
their heaps are tracking the same color) must have an ancestor-descendant relationship.

In other words, any log|H,| appears at most twice in the above triple summation. Hence, we

can bound it by O(3_ <3 > e, 108 [Hol). O

Corollary 8.6. 3 > c,log|Hy| = O cp. . Ipllogpl)

Proof. By applying Lemma 8.3, Claim 8.5, and then Lemma 8.3 again, we have the following.

> > log|Hy =0 | D [Hyllog|Hy| | =0 [ > > log|H,[ | =0 | > [p|log|p|

peEL! vEP peL’ pEH vEP PE Prmax

8.2 Unsupported shrubs

So far we know that tall paths and supported short paths can be “paid for.” We will also be able
to pay for unsupported paths, though doing so is much trickier.

Recall that £ denotes the set of short paths, £’ the set of supported short paths, and #H the
set of tall paths given by Ppax(T). We now describe a partitioning of the unsupported paths into
a forest of shrubs. Consider p € £\ £/, and traverse the chain of ancestors from p. Eventually,
we must reach another short path ¢. (If not, we have reached the root r of Pyax(T"). Hence, p is
supported.) Insert an edge from p to ¢, so ¢ is the parent of p. This construction leads to the shrub
forest of L\ L', denoted F, where all the roots are supported short paths, and the remaining nodes
are the unsupported short paths.

Let U be a shrub in F. For any node g in the shrub U, let T'SC(q) denote the set of all
vertices of T' from all paths in the tall support chain of q. For ¢ in U we then define the loss to
be A(q) = T'SC(q) N Hy. Intuitively, if ¢ is a child node of a parent node p in U, then A(c) are the
vertices “lost” from the heap of ¢ to its tall support chain, by the time one reaches p.

The following is a key property of unsupported paths which we will use multiple times. It is
worth noting that the proof of this lemma is where the construction of Py.x(7") enters the picture.

Lemma 8.7. Let U denote a connected component of F, and let q be the child of some node p in
U. Then |Hy| > 3|Hy|.
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Proof. Let h(q) denote the tall path that is a child of p in Ppax(7'), and an ancestor of ¢. If no such
tall path exists, then by construction p is the parent of ¢ in Pyax(7'), and the following argument
will go through by setting h(q) = q.

The chain of ancestors from ¢ to h(q) consists only of tall paths. Since ¢ is unsupported, these
paths contain at most |H,|/100 vertices of H,. Thus, [Hypq)| > 99[H,[/100.

Consider the base of h(q), which is a node w in T. Let v denote the sibling of w in 7. Their
parent is called u. Note that both v and v are nodes in the path p. Now, the decomposition
Pnax(T') put u and v in the same path p. This implies |H,| > |Hy|. Since |Hy| > |Hy| + |Hw| — 2,
|Hy,| > 2|Hy| — 2. Let b be the base of p. We have |Hp| = |Hy| > |Hy| — [p| > 2|Hw| — |p| — 2. Since
p is a short path, |p| < \/|Hp|/100. Applying this bound, we get |Hp| > (2 — 0)|H,| (for a small
constant § > 0). Since w is the base of h(q), Hy = Hpq). We apply the bound [H},g)| > 99| H,4[/100
to get |Hp| > 197|H,4|/100, implying the lemma. O

Corollary 8.8. Let U denote a connected component of F. Let p and d be any two nodes in U
such that d is a descendant of p, and p is not the root of U. Then for any w € d and v € \(p),
[Hu| = O(|Hy|)-

Proof. By the previous lemma, |H,| = O(|Hp|). Note that there are at most |H,|/100 nodes in
A(p), since these are all in the tall support chain of p (which is unsupported). Thus, for any
v € X(p), |Hy| > 99|H,|/100, completing the proof. O

To handle the unsupported paths, for every shrub U in F we first prune away what we call
buffered sub-shrubs. In the following subsection, we show how to charge away the cost of these
sub-shrubs to their tall support chains. In §8.4 we then show how to pay for the remaining pruned
shrubs, which is the most difficult part of the argument. Afterwards in §8.5, it is then a straight-
forward task to put everything together to prove Theorem 8.1.

8.3 Pruning away buffered sub-shrubs

Ultimately our goal in this subsection is to prune away subtrees from U/ which can be paid for by
charging to their tall support chains (similarly to supported short paths). The remaining portion of
the shrub will then be handled in a later subsection. We now formally define this pruning process,
which is quite intuitive if one thinks of U/ as an actual physical shrub.

Definition 8.9. Let U denote a shrub in F. A pruning U’ of U is any subgraph defined by some
number of rounds of the following iterative process. Initially set U' = U. In each iteration select
some subtree U] rooted at a node r € U' and setU' =U"\ {U.}.

The above definition does not specify which subtrees are pruned, which we now formally define.

Definition 8.10. Let U’ be a pruning of a shrub of U of F. Then a rooted subtree B of U’ is
called a buffered sub-shrub, if it does not contain the root of U' (i.e. it is a proper subtree), and
the following conditions hold:

L 3 e M0 > 155 X pes P
2. No rooted subtree of B satisfies the above inequality (other than B itself).

The following is quite straightforward. By pruning from the leaves towards the root, we can
remove all buffered sub-shrubs from a given U.
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Lemma 8.11. Any shrub U can be partitioned into {U', By, Ba,...B,} where each B; is buffered.
Furthermore, no subtree of U is buffered.

Proof. Take any reverse topological order of the nodes in U (so descendants occur before ancestors).
Initialize U" to U. We process the nodes in order. For node p, let L{I’, denote the rooted subtree of
p in U'. We simply check if quu{] IA(q)| > qu”é lq|/100. If so, we prune off U}, unless p is the
root. (Note that U’ is redefined to be the remainder.)

At the end of this process, we have the desired decomposition. Since we process in reverse
topological order, the minimality condition of Definition 8.10 automatically holds. Thus, each
pruned sub-shrub is buffered and the remaining /' has the desired property. O

We prove an important lemma. The cost of heap operations corresponding to a buffered sub-
shrub can be charged to tall support chains.

Lemma 8.12. Let B be a buffered sub-shrub. Then } 5> ,c, 108 [Huw| = O e pen(p) 108 [Ho|)

Proof. The proof is done by a charging argument. For every p € B and v € A(p), we create 100
tokens. Each of these tokens is labeled log | H, |, and this is called the “value” of the token. Observe
that the sum of token values is, up to a constant factor, the bound we wish to show. The set of
tokens created for all v € A(p) is denoted T),.

There is a grand total of 100 > 5 [A(p)| tokens, which (by the buffered property of B) is strictly
more than ZpGB |p|. We will place all these tokens on the nodes in B, using the following process.
We reverse topologically sort (descendants before ancestors) the nodes in B. For each p in order, we
will place tokens in T}, on the nodes of the subtree B,. Take an arbitrary token in T},, and find the
smallest (in the ordering) descendant g of p that currently has strictly less than |g| tokens. Place
the token on ¢, and repeat. This is repeated until all descendants g have |q| tokens, or all tokens
in T}, are used up. When a node ¢ has |g| tokens, we use “q is full”.

Now for a useful claim. For non-root p, all tokens of T}, are used up. Suppose not. Consider
the first such p in the ordering, and look at the situation when we finish processing 7,,. Every
descendant ¢ of p must be full. Furthermore, all the tokens on ¢ € B, must have come from some
Ty, where p’ € By. Thus, 3° cp lal < |Uyep, Tyl = 1003 ¢ [A(p)]. This violates the second
condition of buffered shrubs.

Let r be the root of B. We argue that T, is not used up. Suppose the contrary, so T, is used
up. By the previous paragraph, all tokens are used up. But this implies that ZpGB D] > |Upen Tyl
=1003_ 5 |A(p)|, violating the buffered condition.

Since T). is not used up, it must mean that all p’s are full, as r is the root and so 7, tokens
can be placed on any path which is not full. Consider any p, and let K, be the set of tokens
placed at p. Each token is labeled log|H,|, for some v € A(p), where p is an ancestor of p or
p itself (as descendants do not place tokens on ancestors). By Corollary 8.8, for every w € p,
log [Hy| = O(log |Hy|). Because p is full, there are exactly [p| tokens on p. Thus, 3, log|Hy|
is O(V,), where V,, is the sum of token values in K,. Thus summing over all p in B completes the

proof. Specifically, 3 cp > e, 108 [Hul = O ,e5 Vo) = O pep Xoverp) 108 [ Hol) O

For any fixed vertex v on a tall path, there are at most two unsupported short paths such that v
is contained in A(-). Specifically, v is assigned exactly two colors, one from each of its child subtrees
in T. Pick one of these two colors, which corresponds to some leaf in 7. Any two unsupported
short paths which are tracking the color of this leaf, must be ancestor-descendant in Py, ax, however
such paths have disjoint tall support chains, and hence only one such path can count v in A(+).
(Note this is the same argument as in Claim 8.5.) Thus by summing over all tall support chains
we have the following.

peEB
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Corollary 8.13. Let B = {Bi,...,By} be any collection of disjoint buffered sub-shrubs from F.
Th/en} Zf:]_ ZPEBi ZUEp log |HU| = O(ZpE’H ZUEp log ‘HUD

8.4 Paying for pruned shrubs: the root is everything

We focus attention on the remaining shrub left by Lemma 8.11: this is a shrub I/ such that no
subtree of U is buffered. Refer to such a shrub as buffer-pruned.
The goal of this section is to prove the following lemma.

Lemma 8.14. Let U’ denote a buffer-pruned sub-shrub of a shrub in F and let r be the root of U'.
(i) For any v € p such that p € U, |Hy| = O(|H:|). (i) >_, e Pl = O(|Hy|).

Lemma 8.14 asserts the root r in U’ pretty much encompasses all sizes and heaps in U’. Observe
that part (i) of Lemma 8.14 is immediate, as it follows directly from Lemma 8.7. Proving part (ii)
requires much more work.

We need the following technical claim. Let N(U’) denote the set of nodes in U’.

Claim 8.15. There exists a function o : N(U') — R with the following properties. (We use
to denote the function value.) Let Ap =3y ag. Then, Ay — 33 la| < [Hy| < Ap.
P P

Proof. We define « inductively, from leaves upwards. For a leaf ¢ in U’, set ay = |Hy|. Consider an
internal node p with children g1, g2, ..., qr. The heap H,, is formed by the union of the H,, heaps,
after deleting certain vertices from them, and potentially adding some new vertices. The vertices
in p and those in the A(g;) are deleted. Define oy, to be the number of new vertices added to H,,.

Thus, we have |Hp| = Y., [Hg, | + oy —# vertices deleted from H,,’s. The number of vertices
deleted is at most 2(|p| + >, |[A(¢:)|). There is a factor 2 because each vertex appears in at most
2 heaps. -

It is evident that |H,| < quu;? ag = Ap. Note that [Hp| > Ap,—2 quu;,,q;ép |A(q)] —2 qu% lq].
Crucially, since U’ is buffer-pruned, quu,’,,q;ép IA(g)] < quu;,,q;ép lg|/100 < quuz,) lg|/100. This
completes the proof. ]

We have the main charging claim. This assumes that A, is increasing exponentially as we go
up the tree. That property is proven later by induction, using the following claim for sub-shrubs.

Claim 8.16. Fix any path p € U'\ r. Suppose for any q,q' € U, where q is a parent of ¢ in U,),
Aq > (5/4)Ay. Then ZqEUL lg| < A,/20.

Proof. Since ¢ is an unsupported short path, |g| < +/]Hy[/100 < /]4,4]/99. We prove that
> ger V1 Aql/99 < Ap/20 by a charge redistribution scheme. Assume that each ¢ € U, starts
P

with \//Tq /99 units of charge. We redistribute this charge over all nodes in L{é, and then calculate
the total charge. For ¢ € Z/II’), spread its charge to all nodes in Z/{; proportional to « values. In other
words, give (1/A4/99) - (aq /A,) units of charge to each ¢' € U],

After the redistribution, let us compute the charge deposited at q. Every ancestor in L{}Q, denoted
ag, a1, as, ... ,a, contributes to the charge at g. The charge is expressed in the following equation.
We use the assumption that A, > (5/4)A,, , and hence A,, > (5/4)'A,, > (5/4)%, as ag is an
unsupported short path and hence 4,, > 1.

(@q/99) Y 1/3/Aa; < (0q/99) Y (4/5)"% < g /20

aj aj

The total charge is D o, cqt/20 = A, /20. O
P
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Claim 8.17. Fiz any path p € U' \ r. Let q be any path in U, then for any child path ¢ of q it
holds that Ay > (5/4)A

Proof. We prove this by induction over the depth of q. When ¢ is a leaf, this is vacuously true.
Consider some internal node ¢, with children ¢, ¢5,...,q,. Applying the induction hypothesis
to the subshrubs rooted at ¢}, we can invoke Claim 8.16 on each subshrub Z/l’ Thus, for all 7,

quu’ ] < Ay/20. By Claim 8.15, [Hy| > 174, /20 and Aq > [Hy|. By Lemma 8.7, |Hy| >
(3/ 2)|H /|- We combine these bounds to complete the proof. O

The proof of Lemma 8.14 just combines all these claims, and essentially repeats the argument
in the previous claim. We apply Claim 8.17 and Claim 8.16 to every child of the root r. Denot-
ing the children as ¢, ¢o, ..., we get that Zpeu' Ip| < Ag,/20. Summing this over the children,

> peut pr 1Pl < Ap/20. By Claim 8.15, |H,| > 17A +/20 — 3|r|. Since r represented a short path,
we have the bound |r| < /|H,|/100. Thus, |H,| = Q(A,). We combine these bounds to show that
Zpeu’ |p| = O(|H7"D

8.5 Proving Theorem 8.1

We split the summation into tall, supported short, and unsupported short paths.
> D loglHul = > > loglHu+ ) > log|Hu + 3 > log|H,
PE Pmax(T) vEP peEL\L' vEP peL! vEp pEH vep

By Corollary 8.6 and Lemma 8.3, the second and last term can be bounded by O(3_ ¢ p, . (1 [P[log [p]).
The following claim applies the results of the previous two subsections to give the same bound on
the first term, thus completing the proof of Theorem 8.1.

Claim 8.18. Zpeﬁ\c' Zvep log |H,| = O(Zpepmax Ip|log |p])-
Proof. Apply Lemma 8.11 to U to get the family of buffered sub-shrubs B(i) and buffer-pruned

u'.
> SloglH < XYl = 3 Y SloslH+ Y Y S o,
PEL\L' vEP UeF peld vep UeF pel’ vep UEF BeB(U) peB vep
=D > D log|H|+O | > > log|H,|
UeF peld’ vep pEH vEP
=" > Y log|HJ+O0 [ D Iplloglp| |,
UEF peU’ vEp PE Pmax

where the last two lines follow from Corollary 8.13 and Lemma 8.3, respectively.
So what remains is to bound the first term. By Lemma 8.14, |H,| = O(|H,|), where r is the root

of U’, and furthermore, Y- v [p| = O(|H,|). Wehave 3> . >, log |Hy| = O((log |H|) > 0 IP]) =
O(|Hy|log |H,|). Note that the roots in the shrub forest are supported short paths, and hence when
we sum this over all / in the shrub forest we get,

> O (IH,@yllog | Hyn ) = > O(|Hyllog|Hy) =0 [ > Iplloglp] | ,
UeF pEﬁ’ perax

where the last equality follows by Claim 8.5 (via the same argument as in Corollary 8.6). O
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8.6 Owur main result

We now show that Theorem 8.1 allows us to upper bound the running time for our join tree and
contour tree algorithms in terms of path decompositions.

Theorem 8.19. Let f: M — R be the linear interpolant over distinct valued vertices, where the
Morse degree of any point is at most 3. There is an algorithm to compute the join tree whose
running time is O3 cp, (7 [P|log|pl +ta(t) + N).

Proof. By Theorem 4.10 we know that build(M) correctly outputs J (M), and by Lemma 4.13 we
know this takes O(}_,c 7 log [Ho| + te(t) + N) time, where the H, values are determined as in
Definition 4.12. Therefore by Theorem 8.1, build(M) takes O(3 cp, . (7 [p[log|p| + ta(t) + N)
time to correctly compute J(M). O

This result for join trees easily implies our main result, Theorem 1.3, which we now restate and
prove.

Theorem 8.20. Let f : M — R be the linear interpolant over distinct valued vertices, where the
Morse degree of any point is at most 3. There is an algorithm to compute C whose running time is
O(Xpep(c) Ipl1og |p| +ta(t)+N), where P(C) is a specific path decomposition (constructed implicitly
by the algorithm).

Proof. First, lets review the various pieces of our algorithm. On a given input simplicial complex, we
first break it into extremum dominant pieces using rain(M) (and in O(|M|) time by Theorem 6.7).
Specifically, Lemma 6.5 proves that the output of rain(M) is a set of extremum dominant pieces,
My, ..., My, and Claim 6.8 shows that given the contour trees, C(My),...,C(My), the full contour
tree, C(M), can be constructed (in O(|M]|) time).

Now one of the key observations was that for extremum dominant complexes, computing the
contour tree is roughly the same as computing the join tree. Specifically, Theorem 7.3 implies
that given Jo(M;) , we can obtain C(M;) by simply sticking on the non-dominant minima at their
respective splits (which can easily be done in linear time). Remark 7.4 implies that Jco(M;) is
trivially obtained from the J (M), and by the above theorem we know 7 (M) can be computed in
O pePoar (7)) [PIL0g IP| + ticr(ti) + N;) (where t; and N; are the number of critical points and
faces when restricted to M).

At this point we can now see what the path decomposition referenced in theorem statement
should be. It is just the union of all the maximum path decompositions across the extremum
dominant pieces, Ppax(C(M)) = Uf”zleaX(j (M)). Since all procedures besides computing the
join trees take linear time in the size of the input complex, we can therefore compute the contour
tree in time

k
O|N+Y Y Iplloglpl | +tia(t) +N; | =0 Y Iplloglpl | +ta(t) + N
i=1 \pePrax(T (M) PE Prnax(C(MD)

O]

9 Lower bound by path decomposition

We first prove a lower bound for join trees, and then generalize to contour trees. Note that the
form of the theorem statements in this section differ from Theorem 1.4, as they are stated directly
in terms of path decompositions. Theorem 1.4 is an immediate corollary of the final theorem of
this section, Theorem 9.7.
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9.1 Join trees

We focus on terrains, so d = 2. Consider any path decomposition P of a valid join tree (i.e. any
rooted binary tree). When we say “compute the join tree”, we require the join tree to be labeled
with the corresponding vertices of the terrain.

Figure 5: Left: angled view of a tent / Right: a parent and child tent put together

Lemma 9.1. Fiz any path decomposition P. There is a family of terrains, Fp, all with the same
triangulation, such that |Fp| =1L, cp(|pi| —1)!, and no two terrains in Fp define the same labeled
join tree.

Proof. We describe the basic building block of these terrains, which corresponds to a fixed path
p € P. Informally, a tent is an upside down cone with m triangular faces (see Figure 5). Construct
a slightly tilted cycle of length m with the two antipodal points at heights 1 and 0. These are
called the anchor and trap of the tent, respectively. The remaining m — 2 vertices are evenly spread
around the cycle and heights decrease monotonically when going from the anchor to the trap. Next,
create an apex vertex at some appropriately large height, and add an edge to each vertex in the
cycle. Note that in order to obtain a terrain, a cycle here means the vertices lie on a circle but are
connected with straight line segments rather than by the curved edges of the circle.

Now we describe how to attach two different tents. In this process, we glue the base of a
scaled down “child” tent on to a triangular cone face of the larger “parent” tent (see Figure 5).
Specifically, the anchor of the child tent is attached directly to a face of the parent tent at some
height h. The remainder of the base of the child cone is then extended down (at a slight angle)
until it hits the face of the parent. Note that this gluing process introduces some non-triangular
faces, and so these must be triangulated in order to maintain a proper triangulated terrain.

The full terrain is obtained by repeatedly gluing tents. For each path p; € P, we create a tent
of size |p;| + 1. The two faces adjacent to the anchor are always empty, and the remaining faces
are for gluing on other tents. (Note that tents have size |p;| + 1 since |p;| — 1 faces represent the
joins of p;, the apex represents the leaf, and we need two empty faces next to the anchor.) Now we
glue together tents of different paths in the same way the paths are connected in the shrub Ps (see
§8.1). Specially, for two paths p,q € P where p is the parent of ¢ in Ps, we glue ¢ onto a face of
the tent for p as described above. (Naturally for this construction to work, tents for a given path
will be scaled down relative to the size of the tent of their parent). By varying the heights of the
gluing, we get the family of terrains.

Observe now that the only saddle points in this construction are the anchor points. Moreover,
the only maxima are the apexes of the tents. We create a global boundary minimum by setting the
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vertices at the base of the tent representing the root of Ps all to the same height (and there are
no other minima). Therefore, the saddles on a given tent will appear contiguously on a root to leaf
path in the join tree of the terrain, where the leaf corresponds to the maximum of the tent (since
all these saddles have a direct line of sight to this apex). In particular, this implies that, regardless
of the heights assigned to the anchors, the join tree has a path decomposition whose corresponding
shrub is equivalent to Ps.

There is a valid instance of this described construction for any relative ordering of the heights
of the saddles on a given tent. In particular, there are (|p;| —1)! possible orderings of the heights of
the saddles on the tent for p;, and hence II,,,c p(|p;| — 1)! possible terrains we can build. Each one of
these functions will result in a different (labeled) join tree. All saddles on a given tent will appear
in sorted order in the join tree. So, any permutation of the heights on a given tent corresponds to
a permutation of the vertices along a path in P. O

Lemma 9.2. For all M € Fp, the total number of heap operations performed by build(M) is
O(>_,cp Ip|log p]).

Proof. The primary “non-determinism” of the algorithm is the initial painting constructed by
init(M). We show that regardless of how paint spilling is done, the number of heap operations is
bounded as above.

Consider an arbitrary order of the initial paint spilling over the surface. Consider any join on
a face of some tent, which is the anchor point of some connecting child tent. The join has two
up-stars, each of which has exactly one edge. Each edge connects to a maximum and must be
colored by that maximum. Hence, the two colors touching this join (according to Definition 4.12)
are the colors of the apexes of the child and parent tent.

Take any join v, with two children w; and ws. Suppose wi and v belong to the same path in
the decomposition. The key is that any color from a maximum in the subtree at ws cannot touch
any ancestor of v. This subtree is exactly the join tree of the child tent attached at v. The base
of this tent is completely contained in a face of the parent tent. So all colors from the child “drain
off” to the base of the parent, and do not touch any joins on the parent tent.

Hence, |H,| is at most the size of the path in P containing v. By Lemma 4.13, the total number
of heap operations is at most ), log|H,|, completing the proof.

O

The following is the equivalent of Theorem 1.4 for join trees, and immediately follows from
the previous lemmas. Note that the phrasing of the two theorems differ, but can be connected by
observing that for any value of v from Theorem 1.4, there is a path decomposition P of some tree

T such that v = @(Zpep Ip|log |p]).

Theorem 9.3. Consider a rooted tree T and an arbitrary path decomposition P of T. There is a
family Fp of terrains such that any algebraic decision tree computing the join tree* (on Fp) requires
QO cp Ipllog|p|) time. Furthermore, our algorithm makes O(3_ ¢ p |p|log|p|) comparisons on all
these instances.

Proof. The proof is a basic entropy argument. Any algebraic decision tree that is correct on all of
F p must distinguish all inputs in this family. By Stirling’s approximation, the depth of this tree is
Q(_,,cp Pillog|pi]). Lemma 9.2 completes the proof. O

4Note that for the referenced family of terrains, the join tree and contour tree are equivalent
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9.2 Contour trees

We first generalize previous terms to the case of contour trees. In this section 7" will denote an
arbitrary contour tree with every internal vertex of degree 3.

For simplicity we now restrict our attention to path decompositions consistent with the raining
procedure described in §6 (more general decompositions can work, but it is not needed for our
purposes).

Definition 9.4. A path decomposition, P(T'), is called rain consistent if its paths can be obtained
as follows. Perform an downward BFS from an arbitrary mazximum v in T, and mark all vertices
encountered. Now recursively run a directional BFS from all vertices adjacent to the current marked
set. Specifically, for each BFS run, make it an downward BFS if it is at an odd height in the
recursion tree and upward otherwise.

This procedure partitions the vertex set into disjoint rooted subtrees of T, based on which BFS
marked a vertex. For each such subtree, now take any partition of the vertices into leaf paths.’®

The following is analogous to Lemma 9.1, and in particular uses it as a subroutine.

Lemma 9.5. Let P be any rain consistent path decomposition of some contour tree. There is a
family of terrains, F p, all with the same triangulation, such that the size of Fp is Iy cp(|pi| —1)!,
and no two terrains in Fp define the same contour tree.

Proof. As P is rain consistent, the paths can be partitioned into sets Pi,..., Py, where P; is the
set of all paths with vertices from a given BFS, as described in Definition 9.4. Specifically, let T;
be the subtree of T' corresponding to P; and let r; be the root vertex of this subtree. Note that the
P; sets naturally define a tree where P; is the parent of P; if r; (i.e. the root of T;) is adjacent to a
vertex in Pj.

As the set P; is a path decomposition of a rooted binary tree T;, the terrain construction of
Lemma 9.1 for P; is well defined. Actually the only difference is that here the rooted tree is not
a full binary tree, and so some of the (non-achor adjacent) faces of the constructed tents will be
blank. Specifically, these blank faces correspond to the adjacent children of P;, and they tell us
how to connect the terrains of the different P;’s.

So for each P; construct a terrain as described in Lemma 9.1. Now each T} is (roughly speaking)
a join or a split tree, depending on whether the BFS which produced it was an upward or downward
BF'S, respectively. As the construction in Lemma 9.1 was for join trees, each terrain we constructed
for a P; which came from a split tree, must be flipped upside down. Now we must described how
to glue the terrains together.

Figure 6: A child tent attached to a parent tent with opposite orientation.

®Note that the subtree of the initial vertex is rooted at a maximum. For simplicity we require that the path this
vertex belongs to also contains a minimum.
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By construction, the tents corresponding to the paths in P; are connected into a tree structure
(i.e. corresponding to the shrub of P;). Therefore the bottoms of all these tents are covered except
for the one corresponding to the path containing the root r;. If r; corresponds to the initial
maximum that the rain consistent path decomposition was defined from, then this will be flat and
corresponds to the global outer face. Otherwise, P; has some parent P; in which case we connect
the bottom of the tent for r; to a free face of a tent in the construction for P;, specifically, the face
corresponding to the vertex in 7" which r; is adjacent to. This gluing is done in the same manner as
in Lemma 9.1, attaching the anchor for the root of P; directly the corresponding face of P;, except
that now P; and P; have opposite orientations. See Figure 6.

Just as in Lemma 9.1 we now have one fixed terrain structure, such that each different relative
ordering of the heights of the join and split vertices on each tent produces a surface with a distinct
contour tree. The specific bound on the size of F p, defining these distinct contour trees, follows by
applying the bound from Lemma 9.1 to each F;. O

Lemma 9.6. For all M € Fp, the number of heap operations is ©(3_,c p |p|log [p])

Proof. This lemma follows immediately from Lemma 9.2. The heap operations can be partitioned
into the operations performed in each F;. Apply Lemma 9.2 to each of the P; separately and take
the sum. O

We now restate Theorem 1.4, which follows immediately from an entropy argument, analogous
to Theorem 9.3. Again, as discussed above for Theorem 9.3, the phrasing differs from Theorem 1.4.

Theorem 9.7. Consider any rain consistent path decomposition P. There exists a family Fp of
terrains (d = 2) with the following properties. Any contour tree algorithm makes (3 ¢ p [p|log [p)
comparisons in the worst case over ¥ p. Furthermore, for any terrain in Fp, our algorithm makes

O(>_,cp Ip|log |p|) comparisons.

Remark 9.8. Note that for the terrains described in this section, the number of critical points is
within a constant factor of the total number of vertices. In particular, for this family of terrains,
all previous algorithms required Q(nlogn) time.
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A §4.2 Algorithm Example

Here we provide a simple example of the execution of the main algorithm from §4.2. An example
input mesh is shown in Figure 7, followed by the different steps of the join construction in Figure 8,
and finally a table showing the states of the data structures and how they are modified in Figure 9.

Note that in Figure 9 a “stage” refers to any time at which one of the data structures is modified.
For simplicity, the trivial stages where the maxima are removed from their corresponding heaps are
not shown. (Alternatively the algorithm in §4.2 could be modified to exclude the maxima from the
heaps, but we wanted to keep the algorithm description simple.)

G

=
OO0
@@‘@

Figure 7: A piece of a potentially larger mesh, with maxima mj, ms, ms, saddles s1, s2, and regular
vertices r1,79,73,74. An initial painting is shown where green ‘g’ is spilled from my, then red ‘r’
from meo, and finally blue ‘b’ from ms. Arrows are directed from higher to lower function value.

ONONO®

(a) (b)

Figure 8: Snapshots of the join tree.

| Stage | att(r) | att(g) | att(d) [ T(r) [ T(g) | T(b) | K [ Current tree
Initial | mo my ms | {s2} | {s1} | {s1,s2} () Figure 8a
1 ma my ms | {sa} | {s1} | {s1,82} | (s1) Figure 8a
2 mo my ma {sa} | {s1} | {51,852} | (51,52) Figure 8a
3 NA my S2 NA | {s1} | {s1} (s1) Figure 8b
4 NA NA s1 NA | NA {} 9 Figure 8c

Figure 9: Stages of the algorithm run on the initial painting shown in Figure 7. The above table
assumes that in the stack update, s1 is the first arbitrary unprocessed critical point selected.
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B Erratum

The paper presents a new algorithm to compute contour trees, whose running time depends on
the shape of the tree, and in particular avoids the initial global sort of all the critical points. The
algorithm has two parts. The first part is a new algorithm to compute join trees, again whose
running time depends on the shape of the tree. The second part effectively reduces computing the
contour tree to join tree computations, by cutting the input simplicial complex into disjoint pieces,
where for each piece the contour tree and join tree are essentially the same. The paper claims this
later step can be performed in linear time. While the actual cutting can be performed in linear
time, it is not clear how long it takes to determine where to make the cuts. Specifically, it is not
clear how long it takes to determine the interface of the wet complex, namely the first step in the
rain procedure of section §6, and thus it is unclear whether Theorem 6.7 holds. At the most basic
level, the issue boils down to how efficiently we can determine which critical points are joins.

Before describing the potential issue, we make a few remarks. First, we stress that the new
algorithm to compute the join tree and its analysis (sections §4 and §8), which are the main
contributions of the paper, are unaffected by this issue. Moreover, the lower bound in section §9
for join trees is also unaffected. The issue is only with the attempt to extend the result to contour
trees, and here there is no issue with the correctness of the algorithm, it is only the running time
that is unclear. Let us also recall why the cutting procedure is even needed. Carr et al. [CSA03]
showed that given the join and the split trees, in linear time one can compute the contour tree.
However, as shown in Figure 2, there are inputs where roughly speaking the contour tree is more
balanced than the join or split trees, and thus requires less sorting to compute. In particular, for
inputs where the contour tree has a similar shape to the join or split tree, our running time bounds
still apply. Note that even if the shape differs, our bounds would still apply if we could efficiently
determine (or are given in advance) which critical vertices are joins.

For a maximum x € M, as defined in §6, wet(x, M) is the set of points y € M such that there is
a non-ascending path from = to y. A point z is at the interface of wet(xz, M) if every neighborhood
of z has non-trivial intersection with wet(xz, M) (i.e. the intersection is neither empty nor the entire
neighborhood). The potential running time issue is that the paper does not describe precisely how
to compute wet(z,M). The natural approach is to perform a descending BFS or DFS from =z.
Suppose we reach a critical vertex v which is a join. We wet an edge in one of its up-stars when we
reached it, and its other up-star is entirely dry since it is a join. As our procedure wets the interior
of faces, at this point we naturally wish to walk around the interface contour adjacent to this join,
and then rain down (i.e. continue the DFS) from the contour. For two distinct join vertices, with a
wet edge in one up-star, the edge sets crossed by their corresponding dry contours will be disjoint.
Thus the cost of walking along these contours for all joins can be charged to the size of the interface
which is linear in the size of wet(x, M). The issue, however, is that while we know locally whether
a given vertex v is a critical vertex, we do not know whether it is a join. So suppose v is critical
with one dry up-star, but that it is not a join. Then one can still walk around the contour from
the dry up-star and rain down. However, if we do this for all such v it may no longer be true that
the edge sets crossed by the contours are disjoint. Thus depending on the order in which vertices
are handled, this could lead to edges being traversed a super-constant number of times.

It remains an open question whether this issue can be resolved without affecting the asymptotic
running time. If for example, one knew which critical vertices were joins, then there is no issue.
Also, observe that the highest critical vertex with a dry up-star that is hit by the initial BFS/DFS
on the edges will be a join. However, repeatedly extracting and raining from the highest critical
vertex could potentially lead to sorting all the critical points. On the other hand, this sorting
could be avoided if for example we knew the locations of the wet critical vertices within the split
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tree of the current wet portion of the complex. Note that ultimately the algorithm in the paper
computes the split tree on wet(x, M). Thus conceivably one could combine the wetting procedure
with the split tree computation, alternately raining and growing the tree, without affecting the
overall asymptotic running time.

We are currently working on trying to fix the issue described above. Regardless of whether we
are able to resolve the matter or not, we plan to submit an erratum to DCG in the future.
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