
THE FRÉCHET DISTANCE REVISITED AND EXTENDED

BY

BENJAMIN ADAM RAICHEL

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Adviser:

Associate Professor Sariel Har-Peled



ii

Abstract

Given two simplicial complexes, and start and end vertices in each complex, we show how to

compute curves (in each complex) between these vertices, such that the Fréchet distance between

these curves is minimized. As a polygonal curve is a complex, this generalizes the regular notion of

Fréchet distance between curves. We also generalize the algorithm to handle an input of k simplicial

complexes.

Using this new algorithm we can solve a slew of new problems, from computing a median curve

for a given collection of curves, to various motion planning problems. Additionally, we show that

for the median curve problem, when the k input curves are c-packed, one can (1 + ε)-approximate

the median curve in near linear time, for fixed k and ε.
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Chapter 1

Introduction

The Fréchet distance provides a way to measure the similarity between curves. Unlike the Hausdorff

distance, which treats the curves as sets, the Fréchet distance takes into account the structure of the

curves, by requiring continuous reparameterizations of the curves. Informally, the Fréchet distance

between two curves, π and σ, is the minimum length leash needed to walk a dog when the person

walks along π and the dog walks along σ.

In this thesis, we are interested in extending this concept to facilitate solving more general

motion planning problems.

Previous Work. The Fréchet distance and its variants have been used to measure similarity be-

tween curves in applications such as dynamic time-warping [KP99], speech recognition [KHM+98],

signature and handwriting recognition [MP99, SKB07], matching of time series in databases [KKS05],

as well as geographic applications, such as map-matching of vehicle tracking data [BPSW05,

WSP06], and moving objects analysis [BBG08a, BBG+08b].

Alt and Godau [AG95] showed how to compute the Fréchet distance between two polygonal

curves in Rd, of total complexity n, in O(n2 log n) time. It is an open problem to find a sub-

quadratic algorithm for computing the Fréchet distance for two curves. The decision problem (i.e.,

deciding whether the Fréchet distance is smaller than a given value) has a lower bound of Ω(n log n)

[BBK+07]. Driemel et al. [DHW10] provided a (1 + ε)-approximation for polygonal curves, that

works in O(N(ε, π, σ)+N(1, π, σ) log n) time, where N(ε, π, σ) is the relative free space complexity

of two curves under simplification. In particular, their algorithm runs in O(cn/ε+ cn log n) time

for c-packed curves.

The notion of the Fréchet distance can also be generalized to encompass distances between

surfaces. Unfortunately, for general surfaces the decision problem is NP-hard [God99]. In fact,

whether the Fréchet distance for general surfaces is computable is still an open problem. Recently

Alt and Buchin [AB10] showed that the problem is semi-computable between surfaces, and poly-

nomial time computable for the weak Fréchet distance. The problem is hard even if the surfaces

are well-behaved terrains, see Buchin et al. [BBS10].

Moving away from Fréchet distances between surfaces, Alt et al. [AERW03] presented an

O(n2 log2 n) time algorithm to compute the Fréchet distance between two graphs. Specifically,

they require that one of the two graphs has to be entirely traversed and in the other graph we seek

the path that minimizes the Fréchet distance to the path of this traversal.
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Complexes. The notion of a complex (which is an abstract simplicial complex together with its

realization), defined formally in Section 2.2, is a generalization of polygonal curves, triangulations,

meshes, straight line graphs, etc. In particular, our algorithm uses complexes as inputs and as such

would apply for all these different inputs in a verbatim fashion.

Our Contribution. Given two complexes and start and end points in each one of them, we

present a general algorithm that computes the two curves in these complexes that are closest

to each other, under the Fréchet distance, and connect the corresponding start and end points.

The expected running time of this new algorithm is O
(
n2
)
. Our algorithm can be interpreted as

an extension of the algorithm of Alt and Godau [AG95] for computing the weak Fréchet distance

between polygonal curves. Our main contribution is the usage of the product complex instead of the

parametric space – this enables us to easily encode the, potentially very complicated, connectivity

information of the two input complexes in a simple way.

As concrete applications of our algorithm consider the following variants, all of them immedi-

ately solvable by our algorithm:

(A) Fréchet for paths with thickness. Imagine the classical setting of the Fréchet distance

where a person walks a dog, but both the dog and the person might walk on paths that have

non-zero width. That is, the input is two simple polygons (i.e., “thickened” paths) and one

needs to compute the two paths of minimum Fréchet distance between them that lie inside

their respective polygons.

(B) In a similar vane, consider a wiring problem: You are given a three dimensional model (of say a

car or an airplane) specified by its mesh, and you are given a rough suggested path connecting

two points in the mesh. Our algorithm can compute the optimal wiring path inside the model

that is closest, under the Fréchet distance, to the suggested rough path.

Interestingly, this approach also extends to inputs of more than two complexes, and also to

arbitrary convex functions between these different complexes. Specifically, consider a situation

where the input includes k complexes C1, . . . , Ck. The reader might think about the complex Ci
as the domain of the ith agent. Given a location in each of these complexes of their respective

agent (i.e., a point pi inside the complex Ci and the simplex ∆i ⊆ Ci that contains it) consider a

scoring function f(p1, . . . , pk) that assigns a cost to the configuration (p1, . . . , pk). Furthermore,

assume that this scoring function is convex on the domain ∆1×∆2×· · ·×∆k, and this holds for any

combination of such simplices. Now, given that the agents want to move from some starting vertices

v1, . . . , vk to ending vertices v′1, . . . , v
′
k, the new algorithm can compute the synced motion of these

k agents from the starting configuration to the ending configuration, such that the maximum cost

of any configuration used throughout the motion is minimized.

The reader might consider these settings a bit abstract, so here are a few examples of problems

that can be solved using this framework:
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(P1) Median curve. Given a set of k curves in IRd, find a new curve that minimizes the maximum

Fréchet distance between this new curve and each of the input curves. Namely, this computes

a median curve for a given collection of curves.

(P2) One can compute the optimal way to walk k agents on k curves/complexes such that the

maximum distance between any pair of agents, at any point in time, is minimized.

(P3) Compute the optimal way for the k agents to walk on the k curves/complexes, such that the

maximum average distance between any pair of agents is minimized (the average is over all

pairs).

(P4) Walk a pack of dogs while minimizing a weighted sum of the leash lengths (i.e. maybe some

dogs need to be kept close since they like to chase squirrels).

(P5) Motion minimizing the perimeter of the convex hull. Given k curves/complexes that k agents

have to move on (in the plane), compute a motion from the start points to the end points,

such that the maximum perimeter of the convex hull is minimized throughout the motion.

The expected running time of all these algorithms for k input complexes of total complexity n

is O
(
nk
)
. The new algorithm/framework is quite general and should be applicable, in a plug and

play fashion, to many other problems.

As a side problem, we also consider the problem when the input is two DAG complexes, which

are directed acyclic straight line graphs embedded in IRd. By considering the product space of two

such complexes (instead of the parametric space) we show that the decision problem can be solved

in O
(
n2
)

time. We then present a simple randomized technique to solve the general problem in

O(n2 log n) time. In particular, this provides an alternative algorithm that computes the (strong)

Fréchet distance between two polygonal curves without using parametric search. Specifically, this

algorithm is considerably simpler than the algorithm of Alt and Godau [AG95], while matching its

running time. Previous efforts to avoid the parametric search by using randomization resulted in

algorithms that are slower by a logarithmic factor [vOV04, CW09]. This new algorithm uses ideas

applied for the problem of slope selection [Mat91] to the computation of the Fréchet distance. See

Theorem 6.3.2 for details.

Organization. In Chapter 2, we define the Fréchet distance and complexes formally, as well

as introduce the key concept of the freely space. Chapter 3 outlines the main algorithm of the

paper, where it is shown that by applying the convexity property of the freely space, our problem

can be converted into the problem of computing minimum spanning trees. We also generalize the

algorithm to handle k input complexes, as well as arbitrary convex functions. In Chapter 4 we

outline some applications of the main algorithm. In Chapter 5 we show that when the k input

curves are c-packed, one can solve the median curve problem without the exponential dependence

on k that the general algorithm has. In Chapter 6, we present an algorithm for computing the

monotone Fréchet distance between two curves or between two DAG complexes.
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Chapter 2

Preliminaries

2.1 Curves and the Fréchet Distance

Let π ⊆ Rd be a curve; that is, a continuous mapping from [0, 1] to Rd. In the following, we will

identify π with its range π([0, 1]) ⊆ Rd if it is clear from the context.

A reparameterization is a continuous one-to-one function f : [0, 1]→ [0, 1], such that f(0) = 0

and f(1) = 1. Given two reparameterizations f and g for two curves π and σ, respectively, define

their width as

widthf,g(π, σ) = max
s∈[0,1]

‖π(f(s))− σ(g(s))‖ .

This can be interpreted as the maximum length of a leash one needs to walk a dog, where the dog

walks along π according to f , while the handler walks along σ according to g. In this analogy, the

Fréchet distance is the shortest possible leash admitting such a walk. Formally, given two curves π

and σ in Rd, the monotone Fréchet distance between them is

dF(π, σ) = min
f :[0,1]→[0,1]
g:[0,1]→[0,1]

widthf,g(π, σ) ,

where f and g are orientation-preserving reparameterizations of the curves π and σ, respectively.

In some cases, we will be interested in the weak Fréchet distance , where the reparameterizations

are required to be continuous but not necessarily bijections (i.e., one is allowed to walk backwards

on their respective curve).

2.2 Complexes

An n-dimensional simplex is the convex hull of n+1 affinely independent vertices. We call the

convex hull of any m+1 vertex subset of the vertices of a simplex, an m-dimensional subcell (or

face) of that simplex (note that a subcell is in fact an m-dimensional simplex). A proper subcell is

one such that m < n.

An abstract simplicial complex C1 = (P,F), is a set system. The elements of P are points

and the elements of F are subsets of P called simplices. An abstract simplicial complex is down-

ward closed; that is for any Ψ ∈ F, and Υ ⊆ Ψ, it holds that Υ ∈ F. For our purposes, the
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ground set P will always be a subset of Rd. We also use the natural realization of the abstract

simplicial complex (P,F), by mapping any simplex Ψ ∈ F to rel(Ψ) = CH(Ψ), where CH(Ψ) de-

notes the convex hull of Ψ. Throughout our discussion we assume that for any Ψ ∈ F, we have

|Ψ| = dim(CH(Ψ)) + 1 (i.e. Ψ is affinely independent). We also require that our realization is

locally consistent; that is ∀Ψ,Υ ∈ F, if Ψ ∩Υ 6= ∅ then rel(Ψ) ∩ rel(Υ) = rel(Ψ ∩Υ).

Note, that the geometric realization of such an abstract simplicial complex does not induce a

simplicial complex. For example, such an abstract simplicial complex might define a self intersecting

polygonal curve, where two disjoint simplices Ψ and Υ have that rel(Ψ) and rel(Υ) intersect in their

interior. In the following, we will refer to an abstract simplicial complex together with its realization

as a complex .

For a complex, C1, we will refer to any simplex in C1 as a cell of C1. The dimension of a complex

is the maximum dimension of any of its cells. We say Ψ ∈ C1 is a maximal cell of C1 if there is no

Υ ∈ C1 such that Ψ ⊂ Υ (note that a maximum cell is one such that dim(Ψ) = dim(C1)).

A pair of simplices Ψ,Υ are adjacent if Ψ ⊆ Υ or Υ ⊆ Ψ. A simplicial path in a complex

is a function f : [0, 1] → F, such that: (A) For any ∆ ∈ F, we have that f−1(∆) is a finite union

of open intervals and points. (B) If f(·) has only two distinct values (say ∆ and Ψ) on an interval

[x, y] ⊆ [0, 1], then the simplices ∆ and Ψ are adjacent.

A curve π ⊆ Rd parameterized over [0, 1] is a realization of a simplicial path f , if for any t ∈ [0, 1]

we have that π(t) ∈ rel(f(t)) and f(t) is the simplex of lowest dimension of F that contains π(t)

(hence not all simplicial paths have realizations). In our applications, a maximal interval (x, y)

such that f is constant corresponds to a straight segment of π. In particular, when dealing with a

curve π ⊆ Rd, we will assume that its associated simplicial path is also known.

In the following we will abuse notation and refer to Ψ as a shorthand for rel(Ψ). In particular,

for a point p ∈ Rd, we will say that p is in the simplex Ψ if p ∈ rel(Ψ).

2.3 Product Spaces

Let C1 = (P1,F1) and C2 = (P2,F2) be two simplicial complexes in Rd. Consider the product

space C1 × C2. Intuitively, we view the product space as a subset of the space R2d, where the

first d coordinates are from C1 and the remaining d coordinates are from C2. With this view,

C1 × C2 is similar to a simplicial complex although the cells will be convex polyhedra instead of

just simplices (in the literature this is known as a CW-complex ). We define a cell (Ψ,Υ) of

C1 × C2 to be the product of any cell Ψ from C1 with any cell Υ from C2. Its realization is the set

rel(Ψ,Υ) = rel(Ψ)× rel(Υ). In the CW-complex C1×C2, two cells (Ψ,Υ) and (Ψ′,Υ′) are adjacent

if Ψ is adjacent to Ψ′ in C1 and Υ = Υ′, or Ψ = Ψ′ and Υ is adjacent to Υ′ in C2. Also, note that

C1 × C2 is connected since, by assumption, the complexes C1 and C2 are connected.

Let π and σ be curves with reparameterizations f and g, respectively. Let cellπ(·) and cellσ(·)
be the simplicial paths associated with f and g, respectively. Since the Cartesian product of two

continuous functions is continuous, we have that h(t) = (π(f(t)), σ(g(t))) defines a curve τ = ∪th(t)
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in C1 × C2, which we call the product curve of π(f) and σ(g). The curve τ has a corresponding

product cell path which is the function cellπ,σ(t) =(cellπ(t) , cellσ(t)). (For the sake of simplicity of

exposition, we are assuming here that cellπ(t) and cellσ(t) do not change their value simultaneously

at the same time t.)

For two complexes C1 and C2 in Rd, and a parameter δ ≥ 0, consider a cell (∆1,∆2) in C1 × C2.

For a point p =(p1, p2) ∈(∆1,∆2), its elevation is the quantity elev(p) = elev(p1, p2) = ‖p1 − p2‖.
The feasible region in the cell ∆1 ×∆2 is the set

F≤δ(∆1,∆2) =

(x, y) ∈ R2d

∣∣∣∣∣∣∣
x ∈ rel(∆1) ⊆ Rd

y ∈ rel(∆2) ⊆ Rd

elev(p1, p2) ≤ δ

 ;

The feasible region for C1×C2 (which we will refer to as the freely space1) is the set F≤δ(C1, C2) =

∪∆1∈C1,∆2∈C2F≤δ(∆1,∆2).

Observation 2.3.1 Let π and σ be paths in C1 and C2, respectively, and let f and g be reparam-

eterizations of π and σ respectively, that realize the value δ of the Fréchet distance. The product

curve, τ , is contained in F≤δ(C1, C2). Indeed, for any t ∈ [0, 1], we have elev(π(f(t)), σ(g(t))) ≤ δ,

since f and g realize the Fréchet distance between π and σ.

Observation 2.3.2 Consider a curve σ in C1 × C2, such that for any point p ∈ σ we have that

elev(p) ≤ δ. Then, the projection of this curve into the corresponding curves in C1 and C2 results

in two curves σ1 and σ2 such that dF(σ1, σ2) ≤ δ.
Formally, for t ∈ [0, 1], let σ(t) = (σ1(t), σ2(t)) ∈ C1 × C2 be a parameterization of σ, and

let cellσ(t) = (cellσ1(t) , cellσ2(t)) be its associated product cell path, such that for any t we have

σ(t) ∈ rel(cellσ(t)). Clearly, σ1(t) and σ2(t) are parameterized curves in the complexes C1 and C2,

respectively. Furthermore, for any t ∈ [0, 1], we have that ‖σ1(t)− σ2(t)‖ = elev(σ(t)) ≤ δ. As

such, dF(σ1, σ2) ≤ δ.

1An homage to free space.
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Chapter 3

Computing Optimal Fréchet Paths in
Complexes

We are given as input two complexes, C1 and C2, along with corresponding start and end vertices

s1, t1 and s2, t2. We wish to compute the paths π and σ in C1 and C2, respectively, that minimize

the Fréchet distance over all paths that start and end at the respective start and end vertices.

3.1 Proof of Convexity

To this end, we need the following result which is standard by now, which we prove for the sake of

completeness.

Lemma 3.1.1 Let F≤δ = F≤δ(C1, C2) be the freely space of the complexes C1 and C2, both contained

in IRd. Then F≤δ(Ψ,Υ) = F≤δ ∩(rel(Ψ)× rel(Υ)) is a convex set, for any cell (Ψ,Υ) of C1 × C2.

Putting it differently, the elevation function elev(·) is convex over rel(Ψ)× rel(Υ), for any cell

(Ψ,Υ) of C1 × C2.

Proof : Let Ψ and Υ be simplices in C1 and C2, respectively, and let F = F≤δ(Ψ,Υ). By the

definition of freely space, we know that F is just the sublevel set (i.e. the level set and everything

less than that level) of the function h : IRd × IRd → IR, where h(u, v) = ‖u− v‖, when applied to

Ψ × Υ. It is known that the sublevel set of a convex function with a convex domain, is convex.

Hence all we need to show is that h is convex (note that the domain is convex since Ψ and Υ are

convex).

So let u, u′ ∈ Ψ and v, v′ ∈ Υ. We show that (t)h(u, v)+(1−t)h(u′v′) ≥ h
(
t(u, v) + (1− t)(u′, v′)

)
,

for t ∈ [0, 1]. Equivalently, we show that the function ĥ(t) = h
(
t(u, v) + (1− t)(u′, v′)

)
is convex on

the interval [0, 1], i.e. ĥ(t) ≤ (1− t)ĥ(0) + (t)ĥ(1) (actually we need to prove such an inequality for

all choices of u, u′ ∈ Ψ and v, v′ ∈ Υ, which we will indeed prove since they were chosen arbitrarily).

Expanding out this function we get,

ĥ(t) = h
(
t(u, v) + (1− t)(u′, v′)

)
= h

(
u′ + t(u− u′), v′ + t(v − v′)

)
=
∥∥u′ + t(u− u′)− v′ − t(v − v′)

∥∥ =
∥∥(u′ − v′) + t(u+ v′ − u′ − v)

∥∥ .
Hence ĥ(t) is just the equation for the distance between a point on a linearly parameterized line

and the origin. We have by Lemma 3.1.2 that this function is convex and so we are done.
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Lemma 3.1.2 The function representing the distance between a point on a linearly parameterized

line l(t) and the origin, is a convex function. Specifically, let a and b be vectors in IRd, then the

function f(t) = ‖a+ tb‖, is convex.

Proof : We know that f(t) is of the form,

f(t) =

√∑
i

(ai + tbi)2 =
√
αt2 + βt+ γ,

where α, β, and γ are some constants such that αt2 + βt+ γ is non-negative. By the helper lemma

below, however, we know such a function is convex.

Lemma 3.1.3 Consider the quadratic function αt2 + βt+ γ, where α, β and γ are some constants

such that the function is non-negative. Then, the function f(t) =
√
αt2 + βt+ γ is convex.

Proof : Since αt2 + βt + γ ≥ 0 for all t, it must be that α > 0, and the corresponding quadratic

formula either has no roots, or a single root, which implies that β2 − 4αγ ≤ 0. Now,

f ′(t) =
2αt+ β

2
√
αt2 + βt+ γ

=
h(t)

f(t)
,

for h(t) = αt+ β/2. Similarly,

f ′′(t) =
f(t)h′(t)− f ′(t)h(t)

(f(t))2
=
αf(t)− (h(t))2/f(t)

(f(t))2
=

(f(t))2 − (h(t))2/α

(f(t))3/α
.

Now, since f(t) is always non-negative, we have that

sign
(
f ′′(t)

)
= sign

(
(f(t))2 − (h(t))2/α

)
= sign

(
αt2 + βt+ γ − αt2 − βt− β2/4α

)
= sign

(
γ − β2/4α

)
= sign

(
4αγ − β2

)
≥ 0,

since α > 0 and β2 − 4αγ ≤ 0.

3.2 Algorithm

We construct a graph G = (V,E), called the cell graph of C1 × C2. Specifically, each cell (∆1,∆2)

of C1 × C2 corresponds to a vertex v(∆1,∆2) ∈ V , and for every pair v(∆1,∆2), v(∆′
1,∆

′
2) ∈ V we

create an edge iff (∆1,∆2) and (∆′1,∆
′
2) are adjacent in C1 × C2. For ∆1 ∈ C1 and ∆2 ∈ C2,

the elevation of their corresponding vertex v = v(∆1,∆2) ∈ V is elev(v) = d(∆1,∆2), where

d(∆1,∆2) = minp∈rel(∆1),q∈rel(∆2) elev(p, q) = minp∈rel(∆1),q∈rel(∆2) ‖p− q‖ is the distance between

these simplices. The point realizing this minimum is the realization of the vertex v, and is denoted

by rel(v).
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A path connecting two vertices u and v of G is a uv path . The cell graph is clearly connected

since C1 × C2 is connected. As such, for any pair of vertices u, v ∈ V (G) there exists a uv path in

G. The elevation of a path ρ, denoted by elev(ρ), is the maximum elevation of any vertex in ρ.

The lowest uv path in G is the uv path with minimum elevation.

We compute the lowest st path in G (where s = (s1, s2) and t = (t1, t2)), in order to determine

the desired curves with minimum Fréchet distance. To this end, we set the elevation of any edge

uv ∈ E(G) to be elev(uv) = max(elev(u) , elev(v)), and we compute the MST (minimum spanning

tree) T of G under this weight function. Then, we compute the unique path between s and t in T , and

let ρ = v1 . . . vm be the resulting path. We return the polygonal path rel
(
v1
)

rel
(
v2
)
· · · rel(vm) ⊆

C1 × C2 as the desired curve (which by Observation 2.3.2 encodes the two desired curves and their

reparameterizations).

3.3 Analysis

3.3.1 Correctness

The following easy lemma shows that the MST indeed contains our desired path.

Lemma 3.3.1 Let G be a graph with non-negative weights on its edges. For any two vertices

u, v ∈ V (G), for the unique path τ between u and v in the MST, we have that elev(τ) ≤ elev(σ),

where σ is any uv path in G, and elev(τ) is the maximum weight edge along the path τ .

Proof : Consider a uv path σ in G. If σ is contained in the MST then we are done. Otherwise, let e

be any edge of σ that is not contained in the MST. Introducing the edge e into the MST creates a

cycle, where all the other edges on the cycle are lighter than e (otherwise, e must be in the MST).

As such, we can replace e in σ by the portion of this cycle connecting its endpoints. This new

path σ′ has one less edge outside the MST, and it holds that elev(σ′) ≤ elev(σ). Continuing in this

fashion, we end up with a path τ ′ in the MST between u and v such that elev(τ ′) ≤ elev(σ). Since

the path in the MST between u and v is unique, the claim now follows.

As the following lemmas show, the cell graph captures the relevant information for our problem.

Lemma 3.3.2 Let C1 and C2 be two complexes, and let s1 and t1 be vertices of C1 and let s2 and

t2 be vertices of C2. Then, if there exists an s1t1 path π, in C1, and an s2t2 path σ, in C2, such that

dF(π, σ) = δ then there exists a v(s1,s2)v(t1,t2) path, ρ, in G(C1, C2) such that elev(ρ) ≤ δ.

Proof : Let f and g be the reparameterizations of π and σ, respectively, that achieve the value δ

for the Fréchet distance. By Observation 2.3.1 the product curve τ =
⋃
t

(
π(f(t)), σ(g(t))

)
, defines

a path in C1 × C2 from (s1, s2) to (t1, t2) that is contained in the freely space F≤δ(C1, C2). Let

cellπ,σ(t) be the product cell path in C1 × C2 that corresponds to τ(t). Naturally, the value of

cellπ,σ(t) corresponds to a vertex in G, and let v(t) denote this vertex. It is easy to verify that the
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sequence of different vertices visited by v(t), as t increases from 0 to 1, is a valid path in G. Indeed,

a product cell path defines a sequence of adjacent cells of C1 × C2 as t increases from 0 to 1, which

corresponds to a path ρ = v1, . . . , vm in G.

Observe, that for any t ∈ [0, 1], we have that

elev(v(t)) = elev
(
vcellπ,σ(t)

)
= min

p∈cellπ(t),
q∈cellσ(t)

‖p− q‖ ≤ ‖π(f(t))− σ(g(t))‖ ≤ δ.

As such, elev(ρ) = maxi elev
(
vi
)

= maxt elev(v(t)) ≤ δ.

Lemma 3.3.3 Let C1 and C2 be two complexes, and let s1 and t1 be vertices of C1 and let s2 and

t2 be vertices of C2. Then, if there exists a v(s1,s2)v(t1,t2) path ρ in G(C1, C2) such that elev(ρ) = δ

then there exists an s1t1 path, π, in C1 and an s2t2 path, σ, in C2, such that dF(π, σ) = δ.

Proof : Let ρ = v1 . . . vm, where v1 = v(s1,s2) and vm = v(t1,t2). Each vertex vi in ρ corresponds to

a pair of cells ∆i = (∆i
1,∆

i
2), where ∆i

1 ∈ C1 and ∆i
2 ∈ C2. Furthermore, for every i, there exists

two points pi1 ∈ ∆i
1 and pi2 ∈ ∆i

2, such that elev
(
pi
)

=
∥∥pi1 − pi2

∥∥ = d
(
∆i

1,∆
i
2

)
, where pi =

(
pi1, p

i
2

)
.

Observe, that for all the vertices of the polygonal path Z = p1p2 . . . pm, we have that elev
(
pi
)

=

d
(
∆i

1,∆
i
2

)
= elev

(
vi
)
≤ elev(ρ) = δ. As such, all the vertices of Z are in the freely space F≤δ.

For any i, the ith segment of Z is pipi+1. It corresponds to the edge vivi+1 in the graph

G, which connects adjacent cells in C1 × C2. In particular, it must be that either ∆i ⊆ ∆i+1 or

∆i+1 ⊆ ∆i. Assume the latter happens (the other case is handled in a symmetric fashion). We

have that pipi+1 ⊆ ∆i. Furthermore, by the convexity of the freely space inside a single cell (i.e.,

Lemma 3.1.1), we have that pipi+1 ⊆ ∆i ∩ F≤δ. We conclude that Z ⊆ F≤δ. Since the two

endpoints of Z are (s1, s2) = p1 and (t1, t2) = pm, Z corresponds to the desired paths π and σ such

that dF(π, σ) = δ.

Corollary 3.3.4 Let C1 and C2 be two complexes, and let s1 and t1 be vertices of C1 and let s2 and

t2 be vertices of C2. Moreover, let π and σ be the paths in C1 and C2, respectively, that minimize

the Fréchet distance over all pairs of s1t1 and s2t2 paths. Then we have that dF(π, σ) = δ if and

only if the lowest v(s1,s2)v(t1,t2) path, ρ, in G(C1, C2) has elev(ρ) = δ.

3.3.2 Running Time Analysis

Computing the MST takes linear time in expectation [MR95]. Since a vertex in the cell graph

represents a pair of simplices from C1 and C2, we know that |V (G)| = O(|C1||C2|). We also know

that |E(G)| = O(|V (G)|) since each cell in C1 × C2 has at most O(1) proper subcells (specifically

O
(
22d
)

= O(1)). Hence the running time of the algorithm is O
(
n2
)
, where n = max(|C1| , |C2|).

Putting everything together, we get the following result.

Theorem 3.3.5 Let C1 and C2 be two simplicial complexes, and n = max(|C1|, |C2|). Given any

pair of start and end vertices from C1 and any pair of start and end vertices from C2, we can
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compute, in expected O
(
n2
)

time, the paths π and σ in C1 and C2, respectively, that minimize the

Fréchet distance over all paths that start and end at the respective start and end vertices.

Remark 3.3.6 It is easy to verify that Theorem 3.3.5 yields a path that is locally as low as

possible. Formally, if the solution in the CW complex is a curve π, then for any subcurve σ ⊆ π,

we have the property that for any other curve τ , that has the same endpoints of σ, it holds that

elev(τ) ≥ elev(σ).

When computing the Fréchet distance for two curves for example, this property implies that

the parameterization we get is never lazy – it always tries to be as tight as possible at any given

point in time.

3.3.3 Applications

Fréchet for paths with thickness. Given two polygons (maybe with holes) in the plane and

start and end vertices in the two polygons, one can triangulate the two polygons and then feed them

into Theorem 3.3.5. This results in two paths in the two triangulations that minimize the Fréchet

distance between the paths. As a concrete application, this can be used for solving the classical

Fréchet distance problem where the input curves have thickness associated with them and one can

move in this enlarged region. Indeed, each “thickened” curve can be represented as a polygon, and

hence we can apply the above algorithm.

Wiring. The wiring problem, mentioned in the introduction, can be solved by immediate plug

and play into the above result.

Motion planning in planar environments. Consider the case where you need to plan the

motion of two entities in a two dimensional environment, where they have to stay close together

(i.e., Fréchet distance) while complying with different constraints on which part of the environment

they can travel on. As a concrete example, one entity might be a pedestrian and the other might

be a vehicle. The pedestrian can not use the road, and the vehicle can not use the sidewalk or the

parks available. Finding the best motion for the two entities is no more than solving the Fréchet

problem in this setting. Indeed, we compute a triangulation of the environment for the first entity,

and then remove all triangles and edges that can not be used by the first entity. Similarly, we

compute a triangulation for the second entity, removing the regions that are unusable for it.

Now, applying the algorithm of Theorem 3.3.5 to these two triangulations (with the desired

starting and ending points) results in the desired motion.

Naturally, the algorithm of Theorem 3.3.5 can be applied in more general settings where the

input is three dimensional, etc.
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3.4 Generalized Algorithm for k Complexes

Let us recap the algorithm from the previous section. We considered finding the path in the product

space (of two complexes) such that the maximum value of f(x, y) = ‖x− y‖ among all the points

(x, y) in the path is minimized. If we add an extra dimension for the value of f , then one can think

of f as defining a terrain. Then the problem becomes computing a path that does not traverse

high in this terrain. The Freely space was the sublevel set of f for some parameter δ. Next, we

defined the elevation of a vertex in the cell graph to be the minimum value of f for the cell that the

vertex corresponds to. By observing that f was a convex function within each cell in the product

space, we were able to argue that the value of the best path (i.e. lowest maximum value of f)

was equivalent to the elevation of a path between the corresponding vertices in an MST of the cell

graph, and thus the problem was efficiently solvable.

With this abstract description, the only property of f that we used was that it was convex

within each cell in the product space. Hence, we can conclude that the same procedure will work

for any choice of f , so long as it is convex within each cell in the product space.

We can generalize the problem even further. Earlier we considered only two complexes. How-

ever, there is no reason why we can not consider an input of k complexes, for some arbitrary integer

k. In order to handle this case we generalize all our earlier definitions for two complexes in the

following natural way.

Let C1 = (P1,F1), . . ., Ck = (Pk,Fk) be a set of k simplicial complexes in Rd. Consider the

product space C1 × · · · × Ck. Intuitively, we view the product space as a subset of the space Rkd.
We define a cell (∆1, . . . ,∆k) of C = C1 × · · · × Ck to be the product of k cells, where ∆i ∈ Ci, for

i = 1, . . . , k. Its realization is the set rel(∆1, . . . ,∆k) = rel(∆1)× . . .× rel(∆k). In C1× . . .×Ck, two

cells (∆1, . . . ,∆k) and (Ψ1, . . . ,Ψk) are adjacent if there is a j such that for all i 6= j, ∆i = Ψi

and ∆j is adjacent to Ψj in Cj .
We now are given a function f defined over IRkd that is convex for any cell rel(∆1, . . . ,∆k). As

before, we build the cell graph G of the CW complex C. Every vertex v of G corresponds to a cell

∆ of C, and its elevation is the minimum value of f in this cell.

As before, we are given start vertices s1, . . . , sk and end vertices t1, . . . , tk in these k complexes.

We compute the lowest elevation path between the vertex in G corresponding to (s1, . . . , sk) and

the vertex in G corresponding to (t1, . . . , tk). Arguing as before, it is easy to show that the re-

sulting path in the graph can be realized by a path in C that yields the k desired paths and their

reparameterizations. As such, we get the following result.

Theorem 3.4.1 We are given k simplicial complexes C1, . . . , Ck, n = maxi |Ci|, start vertices s1 ∈
C1, . . . sk ∈ Ck, end vertices t1 ∈ C1, . . . , tk ∈ Ck, and a function f : rel(C) → IR that is convex for

any cell in the realization of C = C1 × · · · × Ck.

Then, one can compute, in expected O
(
nk
)

time, k curves π1, . . . , πk (and their reparameteri-

zations ψ1, . . . , ψk) connecting s1, . . . , sk to t1, . . . , tk, respectively, such that maxt f(π1(ψ1(t)), . . . ,

πk(ψk(t))) is minimized, among all such curves and reparameterizations.
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Chapter 4

Applications

4.1 Median Curve

We are given k polygonal curves π1, . . . , πk in IRd, and we would like to compute a curve σ that

minimizes the maximum Fréchet distance between σ and each one of the curves π1, . . . , πk.

For a set of points P ⊆ IRd, let rmin(P) denote the radius of the minimum enclosing ball of P.

Lemma 4.1.1 Let P(t) be a set of points in IRd moving linearly with t. Then, the function rmin(t) =

rmin(P(t)) is convex.

Proof : Fix any three times, x < y < z, where y = αx + (1 − α)z for some α ∈ (0, 1). Let pi(t)

denote the ith moving point of P(t).

Let vx (resp. vz) be the center of the minimum enclosing ball of P(x) (resp. P(z)), and let

v(y) = αvx + (1− α)vz. Observe that

rmin(y) = rmin

(
P(αx+ (1− α)z)

)
≤ max

i
‖v(αx+ (1− α)z)− pi(αx+ (1− α)z)‖

≤ max
i

(α ‖vx − pi(x)‖+ (1− α) ‖vz − pi(z)‖)

= αrmin(x) + (1− α)rmin(z) ,

since the distance between a pair of linearly moving points is convex (for example by

Lemma 3.1.2).

Using the lemma above, we get the following desired result.

Lemma 4.1.2 Given k curves π1, . . . , πk in IRd with total complexity n, one can compute, in O
(
nk
)

expected time, a curve σ that minimizes maxi d
w
F (πi, σ), where dw

F (πi, σ) is the weak Fréchet distance

between πi and σ.

Proof : A cell in the CW complex of π1 × · · · × πk is the product of k segments (or points) in

IRd. For a point p = (p1, . . . , pk) ∈ IRdk inside such a cell, consider the elevation of p to be

f(p) = rmin({p1, . . . , pk}). Lemma 4.1.1 implies that f(·) is convex inside each such cell. As such,

applying Theorem 3.4.1 to the given curves, using the function f(·), results in a parameterization
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that minimizes the maximum radius of the minimum enclosing ball throughout the motion. Since

the center of the minimum enclosing ball (for continuously moving points) changes continuously

over time, the curve formed by this center throughout the motion is a natural median curve. Let σ

denote this curve. It is easy to prove that the maximum Fréchet distance of σ to any of the curves

π1, . . . , πk is the minimum such value among all possible curves.

4.2 Walking a Pack of Dogs

So suppose you have a pitbull, a chiwawa, a corgi, and a terrier. You want to walk all the dogs

at the same time instead of walking each one individually.1 However, as before, long leashes are

expensive, so you want to minimize the maximum length leash (among all the leashes) that you

need to use.

Formally, you are given k complexes, C1, . . . , Ck, and start and end vertices si, ti ∈ Ci, for

i = 1, . . . , k. The first complex corresponds to the person leading the dogs, and the complexes

C2, . . . , Ck corresponds to the k − 1 given dogs. You wish to find the set of paths, π1, . . . , πk, and

corresponding reparameterizations, ψ1, ψ2, . . . , ψk, such that,

max
t∈[0,1]

max
i>1
‖π1(ψ1(t))− πi(ψi(t))‖ = max

t∈[0,1]
f(π1(ψ1(t)), . . . , πk(ψk(t))),

is minimized, where f(p1, . . . , pk) = maxi ‖p1 − pi‖.

Lemma 4.2.1 Given k polygonal curves π1, . . . , πk of total complexity n, one can compute non-

monotone reparameterizations of these curves such that maxt maxi ‖π1(ψ1(t))− πi(ψi(t))‖ is min-

imized. The expected running time of the algorithm is O
(
nk
)
.

This works verbatim for complexes, and in this case the algorithm also computes the paths inside

the complexes realizing the Fréchet distance.

Proof : We need to prove that the function f(p1, . . . , pk) = maxi ‖p1 − pi‖ is convex within each

cell in order to apply Theorem 3.4.1.

So, consider a cell ∆ = (∆1, . . . ,∆k) ∈ C = C1 × · · · × Ck. Its realized cell rel(∆) = rel(∆1) ×
· · ·× rel(∆k) is a convex set. In particular, consider the functions of the form fi(p1, pi) = ‖p1 − pi‖,
defined over rel(∆1) × rel(∆i), for 2 ≤ i ≤ k. Each of these functions are convex by Lemma 3.1.1

on the domain rel(∆1) × rel(∆i). In particular, setting gi(p1, . . . , pk) = fi(p1, pi), for i = 1, . . . , k,

results in k convex functions over rel(∆).

Clearly, f(p1, . . . , pk) = maxi gi(p1, . . . , pk), which is convex as the maximum of a set of convex

functions is a convex function. As such, plugging this into Theorem 3.4.1 implies the result.

1Since clearly you are a person that is very concerned with efficiency.
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4.3 More General Settings

From the previous example, consider the person and the dogs at any given time as vertices in space.

The leashes are thus edges connecting the vertices. Hence in the above example the topology of the

graph is that of star graphs (i.e. the person is at the center and the dogs are the ends of the star).

The “weight” of each edge in the graph is the value of a convex function between the respective

pair of vertices at a given instance of time (i.e. the distance of the person to a specific dog at a

specific time). The general function we were trying to minimize was the maximum value over the

functions between each pair of vertices. We were able to conclude that the overall function was

convex because the maximum value of a set of convex functions, is a convex function.

Let the above described graph be called a dependency graph . In general we can consider any

topology for the dependency graph. More formally, between every pair of complexes we define a

convex function (note that the zero function is convex, and so we can ignore certain pairs if we

like). For our global function we can then take any function of these functions, which preserves

convexity. For example, taking the maximum, the sum, or (positively) weighted sum of convex

functions is again a convex function. Therefore, all of the applications (P1)–(P4) mentioned in the

introduction are solvable immediately within this framework.

4.3.1 Minimizing Perimeter of Motion

We are given k complexes C1, . . . , Ck all with realizations in the plane. As before, we are given k

starting vertices s1, . . . , sk and k ending vertices t1, . . . , tk, in these k complexes, respectively. We

are interested in computing the k polygonal paths (and their reparameterizations) connecting these

endpoints, such that the maximum perimeter is minimized. As before, to use the framework, we

need to show that the perimeter function is convex inside a cell of the resulting CW complex. So,

consider two points p = (p1, . . . , pk) and q = (q1, . . . , qk). We need to show that the perimeter

function

perim(t) = perim(tp + (1− t)q) = perimeter
(
CH
({
tp1 + (1− t)q1, . . . , tpk + (1− t)qk

}))
is convex. This fact, which we state below as a lemma, is proved in [AC10] using the Cauchy-Crofton

inequality.

Lemma 4.3.1 ([AC10]) The perimeter of a set of linearly moving points in the plane is a convex

function.

This implies that the perimeter function is convex inside each cell of C = C1 × · · · × Ck, and

hence the framework applies. We thus get the following result.

Lemma 4.3.2 Given k complexes C1, . . . , Ck all with realizations in the plane, k starting vertices

s1, . . . , sk and k ending vertices t1, . . . , tk, in these k complexes, respectively, then one can compute
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paths in these complexes, and their corresponding reparameterizations, such that the maximum

perimeter of the moving points during this motion is minimized over all such motions. The expected

running time of the algorithm is O(nk).

The running time stated above is under the assumption that computing the minimum perimeter

for k points whose locations are restricted by a cell of the CW complex, can be done in constant

time. This constant would depend on k, naturally.
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Chapter 5

Computing the Median Curve for
c-packed Curves

Driemel et al. [DHW10] introduced a realistic class of curves, called c-packed curves. We now show

that when the k input curves are c-packed, one can compute a (1+ε)-approximation to the median

curve in Õ(n log n) time, where Õ() is used to emphasize that the constant depends on ε and c,

and exponentially on k and d (see Lemma 5.3.1 and Lemma 5.3.2 for details). This is a significant

improvement over the algorithm for the general case, presented in Section 4.1, where the running

time is O(nk).

In this section, when we refer to the free space, it is meant with respect to the median curve

distance function. In particular, for k curves π1, . . . , πk let dmed(π1, . . . , πk) denote the maximum

distance of the median curve to the πi’s, for the optimum reparameterizations.

5.1 Preliminaries

5.1.1 Definitions and Lemmas

We first cover the definitions and lemmas from [DHW10] that are relevant to our problem.

Definition 5.1.1 For a parameter c > 0, a curve π in IRd is c-packed if for any point q in IRd and

any radius r > 0, the total length of the portions of π inside the ball b(q, r) is at most cr.

Algorithm 5.1.2 Given a polygonal curve π = q1q2q3 . . . qk and a parameter µ > 0, consider

the following simplification algorithm: First mark the initial vertex q1 and set it as the current

vertex. Now scan the polygonal curve from the current vertex until it reaches the first vertex qi

that is in distance at least µ from the current vertex. Mark qi and set it as the current vertex.

Repeat this until reaching the final vertex of the curve, and also mark this final vertex. Consider

the curve that connects only the marked vertices, in their order along π. We refer to the resulting

curve π′ = simpl(π, µ) as being the µ-simplification of π. Note, that this simplification can be

computed in linear time.

We need the following useful facts about µ-simplifications from [DHW10].

Lemma 5.1.3 (i) For any curve π in IRd, and µ > 0, we have that dF
(
π, simpl(π, µ)

)
≤ µ.

(ii) Let π be a c-packed curve in IRd, let µ > 0 be a parameter, and let π′ = simpl(π, µ) be the

simplified curve. Then, π′ is a 6c-packed curve.
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Observation 5.1.4 Let π and σ be two given curves, and let π′ and σ′ be their µ simplified curves,

for some value µ. By Lemma 5.1.3, dF(π, π′) ≤ µ and dF(σ, σ′) ≤ µ. Hence we have reparameteri-

zations f and g such that ‖π(f(t))− π′(t)‖ ≤ µ and ‖σ(g(t))− σ′(t)‖ ≤ µ for all t ∈ [0, 1] (without

loss of generality we can assume these reparameterizations are bijective). Let dw
F (π′, σ′) = δ. Then

we have that dw
F (π, σ) ≤ δ + 2µ, since we can just map each pair (x, y) ∈ (π′, σ′) that is seen

in the optimal (not necessarily injective) reparameterizations of π′ and σ′, to the corresponding

pair in (π, σ) determined by f and g. In particular, this implies that for curves π1, . . . , πk with

corresponding µ simplifications π′1, . . . , π
′
k, we have that dmed(π1, . . . , πk) ≤ dmed(π

′
1, . . . , π

′
k) + 2µ.

Let π1, . . . , πk be k given curves. The complexity of the reachable free space for these curves,

for a distance δ, denoted by N≤δ(π1, . . . , πk), is the total number of cells in the CW-complex with

non-empty intersection with F≤δ(π1, . . . , πk) such that there exists a path with elevation ≤ δ from

the start vertex to that cell.

Definition 5.1.5 For k curves π1, . . . , πk, let

N(ε, π1, . . . , πk) = max
δ≥0

N≤δ
(
simpl(π1, εδ) , . . . , simpl(πk, εδ)

)
be the maximum complexity of the reachable free space for the simplified curves. We refer to

N(ε, π1, . . . , πk) as the ε-relative free space complexity of π1, . . . , πk.

5.1.2 Subroutines

We now list the relevant subroutines from [DHW10], which carry over directly for our problem.

Using the same procedure as in [DHW10], one can build a decider, decider(δ, ε, π1, . . . , πk)

that runs in O(N(ε, π1, . . . , πk)) time (the only difference being that in our case the BFS ignores

monotonicity). Specifically, we have the following.

Lemma 5.1.6 Let π1, . . . , πk be k polygonal curves in IRd with total complexity n, and let 1 ≥
ε > 0 and δ > 0 be two parameters. Then, there is an algorithm decider(δ, ε, π1, . . . , πk) that,

in O(N(ε, π1, . . . , πk)) time, returns one of the following outputs: (i) a (1 + ε)-approximation to

dmed(π1, . . . , πk), (ii) dmed(π1, . . . , πk) < δ, or (iii) dmed(π1, . . . , πk) > δ.

Definition 5.1.7 Given a finite set Z ⊆ IR, we say an interval [α, β] is atomic if it is a maximal

interval on the real line that does not contain any point of Z in its interior.

Algorithm 5.1.8 For a set of numbers Z, let searchEvents(Z, ε, π1, . . . , πk) denote the algorithm

that performs a binary search over the values of Z, to compute the atomic interval of Z that contains

dmed(π1, . . . , πk). This procedure would use decider (Lemma 5.1.6) to perform the decisions during

the search.
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Lemma 5.1.9 Given a set P of n points in IRd, let
(P

2

)
be the set of all pairwise distances of points

in P. Then, one can compute in O(n log n) time a set Z of O(n) numbers, such that for any y ∈
(P

2

)
,

there exist numbers x, x′ ∈ Z such that x ≤ y ≤ x′ ≤ 2x. Let approxDistances(P) denote this

algorithm.

The following subroutine, from [DHW10], will allow us to efficiently check intervals with bounded

spread for dmed(π1, . . . , πk).

Lemma 5.1.10 Given k curves π1, . . . , πk in IRd of total complexity n, a parameter 1 ≥ ε > 0, and

an interval [α, β], one can compute a (1+ε)-approximation to dmed(π1, . . . , πk) if dmed(π1, . . . , πk) ∈
[α, β], or report that dmed(π1, . . . , πk) /∈ [α, β]. The algorithm, denoted by searchInterval ([α, β], ε,

π1, . . . , πk), takes O

(
N(ε, π1, . . . , πk) log

log(β/α)

ε

)
time.

We also need the following new ingredient.

Lemma 5.1.11 Let π1, . . . , πk be k polygonal curves in IRd with total complexity n, 1 ≥ ε > 0 be a

given parameter, δ∗ = dmed(π1, . . . , πk), and N = N(ε, π1, . . . , πk). Let [α, β] be an atomic interval

that contains δ∗, and such that for any µ, µ′ ∈ [α, β], simpl(πi, µ) = simpl(πi, µ
′) for i = 1, . . . , k.

Then one can compute in O(N logN) time, a value δ such that δ∗ ∈ [δ − 2α, δ + 2α]. Let this

algorithm be denoted by solver([α, β], π1, . . . , πk)

Proof : Let µ = β. We run the algorithm of Lemma 4.1.2 on π′1 = simpl(π1, µ), . . . , π′k =

simpl(πk, µ), except with the following modifications. First, instead of using the randomized al-

gorithm for MSTs on the cell graph, we will use Prim’s algorithm, starting from the vertex that

corresponds to the starting points of the curves, where we stop when we reach the vertex that

corresponds to the ending points of the curves. Also, instead of explicitly computing the cell graph,

we only compute the relevant parts of the cell graph on the fly as they are needed for Prim’s algo-

rithm. Note that if δ is the elevation of the shortest path in the MST from s to t, then Prim’s is

guaranteed to stay within N≤δ(π
′
1, . . . , π

′
k) until reaching t.

This modified version of the algorithm computes a curve σ that minimizes maxi d
w
F (π′i, σ), in

O(N logN) time, since we are running Prim’s on an effective graph of size N (and where E(G) =

O(V (G))). Observe that since the µ simplification is constant on the interval [α, β], δ is the same

value that would be returned had we set µ = δ∗. Also, again since the µ simplification is constant

on this interval, by Observation 5.1.4 and considering µ = α, we know that δ∗ ∈ [δ−2α, δ+2α].

5.2 Algorithm

Given k curves, π1, . . . , πk, Figure 5.1 shows the algorithm to efficiently compute a 1+ε approxima-

tion to dmed(π1, . . . , πk). Note that the algorithm depicted in Figure 5.1 performs numerous calls

to decider, with an approximation parameter ε > 0. If any of these calls discovers the approxi-

mate distance, then the algorithm immediately stops and returns the approximation. As such, at
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aprxMedian(ε, π1, . . . ,πk)
(A) P = V (π1) ∪ · · · ∪ V (πk)
(B) Z ← approxDistances(P) (Lemma 5.1.9).
(C) [α, β]← searchEvents(Z, ε, π1, . . . , πk) (Algorithm 5.1.8).
(D) Call searchInterval([α, 8α], ε, π1, . . . , πk) (Lemma 5.1.10).
(E) Call searchInterval([β/2, β], ε, π1, . . . , πk).
(F) δ ← solver([2α, β/2], π1, . . . , πk) (Lemma 5.1.11).
(G) Return the value returned by searchInterval([δ/2, 3δ/2], ε, π1, . . . , πk).

Figure 5.1: The basic approximation algorithm.

any point in the execution of the algorithm, the assumption is that all previous calls to decider

returned a direction where the optimal distance must lie.

5.3 Correctness and Running Time

5.3.1 Correctness

In order to apply Lemma 5.1.11 we first need to find an atomic interval (or subinterval), [α, β], that

contains δ∗ = dmed(π1, . . . , πk), such that none of the µ simplifications of any of the k curves change

for any choice of µ ∈ [α, β]. Note that by the way in which µ simplified curves are constructed,

Algorithm 5.1.2, if we consider increasing the value of µ from 0 to ∞, the only events at which any

of the µ simplifications of any of the curves change, are when µ is equal to one of the distances

between a pair of vertices on one of the curves. Hence if Y denotes the set of all pairwise distances

between vertices in P (step (A) in the algorithm) then in order to apply Lemma 5.1.11 we want

the atomic interval with respect to Y that contains δ∗. Since it is costly to compute Y explicitly,

we instead compute an O(n) sized set Z (step (B)), such that each value in Y is 2-approximated

by some value in Z. Step (C) performs a binary search over Z, using decider, in order to find an

atomic interval [α, β] containing δ∗. Since each value in Y is 2-approximated by some value in Z, we

know that the interval [2α, β/2] is a subinterval of an atomic interval of Y . Hence by Lemma 5.1.10

we know that steps (D) and (E) ensure that [2α, β/2] is a subinterval of an atomic interval of Y

that contains δ∗ (and if not, these steps returned a (1+ε)-approximation for δ∗). By Lemma 5.1.11

we know that in step (F), when we call solver on the interval [2α, β/2] we get a value δ such that

δ∗ ∈ [δ − 4α, δ + 4α]. However, (D) guaranteed that δ ≥ 8α, since we checked the interval [α, 8α].

This implies α ≤ δ/8 and so δ∗ ∈ [δ − 4α, δ + 4α] implies that δ∗ ∈ [δ − δ/2, δ + δ/2]. Hence we

have an interval with bounded spread which contains δ∗ and so by Lemma 5.1.10, (G) efficiently

computes a (1 + ε)-approximation for δ∗.

5.3.2 Running Time

Let n = |P | and N = N(ε, π1, . . . , πk). By Lemma 5.1.9 that the call to approxDistances in (B)

takes O(n log n) time. Since searchEvents just preforms a binary search over the O(n) values
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returned by approxDistances by using decider, which runs in O(N) time by Lemma 5.1.6, we

know that (C) takes O(N log n) time. Since [α, 8α], [β/2, β], and [δ/2, 3δ/2] are all intervals with

bounded spread, we have by Lemma 5.1.10, that steps (D), (E), and (G) run in O(N log(1/ε)) time.

Finally, by Lemma 5.1.11, the call to solver in line (F) takes O(N logN) time. We thus have the

following.

Lemma 5.3.1 Let π1, . . . , πk be k given polygonal c-packed curves in IRd of total complexity n,

let ε > 0 be a parameter, and let N = N(ε, π1, . . . , πk). Then one can compute, in O(N log(n/ε) +

n log n) time, reparameterizations of the curves that 1+ε approximate the value of dmed(π1, . . . , πk).

In particular, one can 1 + ε approximate the median curve of π1, . . . , πk.

5.3.3 Free Space Complexity

Lemma 5.3.2 For k c-packed curves π1, . . . , πk in IRd of total complexity n, and 0 < ε < 1, we

have that N = N(ε, π1, . . . , πk) = O((c/ε)k−1n).

Proof : Let δ ≥ 0 be a fixed parameter, µ = εδ, and π′1 = simpl(π1, µ), . . . , π′k = simpl(πk, µ).

The free space in the CW-complex is partitioned into connected components. We must bound

the size of the component which contains the start vertex, that is the reachable free space, R.

Observe that one can charge a maximal dimensional cell in the CW-complex to an adjacent lower

dimensional cell, since maximal cells contribute to N only if one of their adjacent proper subcells

contributes to N. A non-maximal cell corresponds to some vertex v on one of the curves, and either

a vertex or an edge from each one of the k − 1 other curves. Consider a ball, b, of radius r = 2δ

centered at v. We now wish to count the number of features from the other curves (i.e. edges or

vertices) that intersect this ball.

b′

v
b

r

2r

To this end, consider one of the other curves, π′i. Let Xi be the set

of all features of π′i that intersect b. Consider a ball, b′, of radius 2r

around v. Since r ≥ µ and the edges of a µ simplified curve are of length

≥ µ (with the exception of the last edge), every edge feature in Xi must

contribute at least length µ to the intersection of b′ and π′i (note that if

the feature is a vertex, then it is adjacent to an edge which contributes

at least length µ). By Lemma 5.1.3, the total length of π′i inside this b′

is at most 12cr. Therefore,

|Xi| = O

(‖π′i ∩ b′‖
µ

)
= O

(
cr

µ

)
= O

(
cδ

εδ

)
= O

(c
ε

)
.

Similarly, for each of the other k − 1 simplified curves, there are also O(c/ε) features close enough

to v, that can be involved in a cell that contributes to N. Such a cell in the CW-complex involves

choosing the vertex v, and one of these O(c/ε) features from each of the other k − 1 curves, and
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hence there are |X1| · |X2| . . . · |Xk−1| = O((c/ε)k−1) such cells. Since there are n vertices in total

we thus have that N = O((c/ε)k−1n).

5.4 The Result

Theorem 5.4.1 Let π1, . . . , πk be k given polygonal c-packed curves in IRd with total complex-

ity n, let ε > 0 be a parameter, and let N = N(ε, π1, . . . , πk) = O((c/ε)k−1n). Then one can

compute, in O(N logN) time, reparameterizations of the curves that (1 + ε)-approximate the value

of dmed(π1, . . . , πk). In particular, one can 1 + ε approximate the median curve of π1, . . . , πk in

O(N logN) time.
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Chapter 6

Computing Optimal Fréchet Paths for
DAG Complexes

In this section, we present a simple algorithm for computing exactly the monotone Fréchet distance

between two polygonal curves. This algorithm has running time O
(
n2 log n

)
time, and uses ran-

domization instead of parametric search. In fact, the algorithm is considerably more general and

applies to a wider class of inputs.

DAG complexes. Consider a directed acyclic graph (DAG) with vertices in IRd, where a directed

edge p → q is realized by the segment pq. We refer to such a graph as being a DAG complex .

Given two DAG complexes C1 and C2, start vertices s1 ∈ V (C1) , s2 ∈ V (C2), and end vertices

t1 ∈ V (C1) , t2 ∈ V (C2), the problem is finding two directed polygonal paths π1, π2 in C1 and C2,

respectively, such that:

(A) The path πi uses only edges that appear in Ci, and it traverses them in the direction compliant

with the orientation of the edges in Ci, for i = 1, 2.

(B) The curve πi connects si to ti in Ci, for i = 1, 2.

(C) The monotone Fréchet distance between π1 and π2 is minimized among all such curves.

Note that this problem includes the problem of computing the monotone Fréchet distance

between two polygonal curves (i.e., orient the edges of the curves in the natural way and consider

them to be DAG complexes).

6.1 The Decision Procedure

The algorithm is a direct extension of the work of [AG95]. Their algorithm relied on the fact

that there was a clear topological ordering on the cells of the free space, and hence reachability

information could be propagated. In this case, there is also a topological ordering (since it is a

DAG). Hence, in the product space of two DAG complexes there is an ordering of the cells according

to the underlying ordering of the two DAGs, and this ordering is acyclic.

So, let C1 and C2 be the two given DAG complexes, δ a specified radius, and s1, s2, t1, t2 the

given vertices. The problem is to decide if there are paths between the start and end vertices in

the corresponding complexes of Fréchet distance at most δ.
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Algorithm. Compute the topological orderings of the cells (i.e., vertices and edges) of C1 and

C2. In the resulting ordering ≺i, it holds that ∆ ≺i ∆′ if ∆ appears before ∆′ in this ordering, for

i = 1, 2, where ∆,∆′ ∈ Ci.
We compute the product complex C = C1×C2, and compute the topological ordering of the cells

of C. Formally for ∆ =(∆1,∆2) ,∆′ =(∆′1,∆
′
2) ∈ C we have that ∆ � ∆′ if and only if ∆1 �1 ∆′1

and ∆2 �2 ∆′2. Clearly, the ordering ≺ over the cells of C is acyclic, and can be computed in linear

time in the size of the complex.

Now, just as in [AG95], we start at the start vertex in the product space (s1, s2), visit cells

according to their topological order, and compute the Freely space and propagate reachability

information on the fly when we reach a new cell.

Since we are working in the product space instead of in the parametric space, the two dimensional

cells are parallelograms instead of squares.

The reachability information is being propagated in a manner similar to [AG95], except we

propagate between adjacent cells, instead of neighboring two dimensional cells. Note, that no pair

of two dimensional cells are directly adjacent, as there must be a one dimensional cell separating

them. As such, for each edge (i.e., one dimensional cell) of C we maintain the set of reachable

points. Unlike in [AG95], the reachability information along a bounding edge in the product space

might not be a single interval, since potentially multiple cells propagate to that bounding edge.

However, by Lemma 3.1.1, we only need to compute the first point (according to the ordering along

this edge) that is reachable on this edge (notice, that an edge is always a product of a vertex of one

curve and a directed edge of the other curve, and as such it has a natural ordering).

In particular, when the algorithm visits a cell ∆ in this ordering, it fetches all the cells that

are adjacent to it and appear before it in the ordering. For each adjacent cell, the reachability

information computed is of constant size, and hence we can compute the reachability information

for the new cell in constant time. Indeed, the handling depends on the dimension of ∆:

(A) dim(∆) = 0: (∆ is a vertex), the algorithm computes if it is reachable from any of its direct

ancestors, and if so we mark it as reached.

(B) dim(∆) = 1: (∆ is an edge), the algorithm computes the first point on the edge reachable

from its direct ancestors.

(C) dim(∆) = 2: (∆ is a parallelogram), the algorithm uses the reachability information on the two

incoming edges and the incoming vertex to compute the reachability inside the parallelogram.

(Clipping the region to F≤δ inside this cell.)

As the algorithm visits the cells in a topological order, the work in maintaining the reachability

information, can be charged to a cell’s predecessors. As such, overall, the running time of the

algorithm is linear in the complex size.

The size of a DAG complex is the number of edges in it (since we assumed implicitly that the

input DAG complexes are connected). Let n be the number of edges in the larger of the two DAG

complexes under consideration. There are potentially O(n2) cells in the product space C. As such,

the running time of the decision procedure is O(n2).
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Lemma 6.1.1 Let C1 and C2 be two DAG complexes, n be the number of edges in the larger of

the two, s1, t1 ∈ C1, s2, t2 ∈ C2 be start and end vertices, and δ ≥ 0 be a parameter. Then, one

can decide, in O
(
n2
)

time, if there exists two paths π1 and π2 in C1 and C2, respectively, such that

(i) πi connects si with ti, for i = 1, 2, and (ii) dm
F (π1, π2) ≤ δ. Furthermore, if such paths exist, the

algorithm returns them together with their respective reparameterizations realizing this distance.

6.2 Using the Decision Procedure

In the following, let C1 and C2 be the two DAG complexes under consideration. We outline a

randomized algorithm to compute the value of the Fréchet distance between the two curves in C1

and C2, that start and end at their respective start and end vertices, that minimize the Fréchet

distance.

The algorithm needs to search over the critical values when the decision procedure changes its

behavior. These critical values are the same as in Alt and Godau [AG95] (vertex-vertex, vertex-

edge and monotonicity events). Indeed, for any pair of paths in the DAG complexes, the critical

values for these two paths are the same as in [AG95]. As such, since DAG complexes are the union

of paths, the critical values are the same.

In the following, let δ∗ denote the actual minimum value of the Fréchet distance. Given a

parameter δ, let decider(δ) be the decision procedure described above. Let extract(a, b) be a

procedure that returns all critical values determined by C1 and C2 whose radius is in the interval

[a, b]. Suppose, for the time being, that the following subroutines have the following running times:

(A) decider(δ) runs in O(n2) time (Lemma 6.1.1).

(B) extract(a, b) runs in O(n2 log n+ k log n) time, where k is the number of critical values with

radius in the interval [a, b].

(C) One can uniformly sample a critical value from the set of all critical values in O(1) time per

sample.

The new algorithm is depicted in Figure 6.1.

6.2.1 Computing the Critical Values in an Interval

To complete the description of the algorithm, we need to describe how to implement extract(a, b).

For the interval I = [a, b], we need to compute all the critical values with radius in I. We can

explicitly compute all the radii of vertex-vertex and vertex-edge events in this interval and sort

them in O(n2 log n) time, where n is the number of edges (since there are O
(
n2
)

such events in

total and each radius can be computed in O(1) time). Indeed, for a vertex-vertex event, its radius

is the distance between the two vertices that define it. Similarly, the radius of a vertex-edge event

is the distance between a vertex and an edge. Both types of radii can be computed in constant

time, given the two elements that define them.
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compFr(C1, C2, s1, s2, t1, t2):
R: random sample of µ = 4n2 critical values
Sort R
Perform a binary search over R using decider
I = [a, b]← Atomic interval of R containing δ∗

S ← extract(a, b)
// S: all critical values in [a, b]

Sort S
x← Smallest value in S for which decider accepts

// Computed using a binary search

Return x

Figure 6.1: The algorithm for computing the Fréchet distance between two DAG complexes.

In order to compute the radii of monotonicity events in I, we apply a variant of the standard

line sweeping algorithm (i.e KDS). Specifically, for two DAG complexes C1 and C2, consider finding

all monotonicity events between an edge e of C1, and pairs of vertices from V = V (C2). To this

end, place a sphere of radius δ at each point of V with radius δ = a. We now increase the radius δ

till it reaches b. The algorithm maintains an ordered list L of the intersections of the spheres with

the edge e. The events in this growing process are:

(A) The first time a sphere intersects e (this will create two intersections, if the intersection happens

internally on e, since after this point the sphere will intersect e in two places).

(B) When the intersection point of a sphere with e grows past an endpoint of e.

(C) When two different spheres intersect at the same point on e. At this point, the algorithm

exchanges the order of these two intersections along e. The value of δ when such an event

happens is the radius of a monotonicity event.

At any point in time, the algorithm maintains a heap of future events. Whenever a new intersection

point is introduced, or two intersections change their order along e, the algorithm computes the

next time of an event involving these intersections with the intersections next to them along e.

It is clear that between such events the ordering of the intersections of the spheres with e does

not change. Similarly, for a monotonicity event to happen on e, there must be a point in time in

which the corresponding spheres are neighbors along e. Hence, this algorithm will correctly find all

the monotonicity events.

It takes O((n+ k) log n) time to compute all the relevant monotonicity events involving e and

V , where k is the number of such events. We must do this for all edges of C1 and hence it takes

O((n2 + k′) log n) time to compute all the monotonicity events between edges of C1 and vertices of

C2, where k′ =
∑

i ki and ki is the number of monotonicity events in the interval [a, b] involving the

ith edge of C1. Therefore it takes O((n2 + k′′) log n) time to compute all the relevant monotonicity

events between C1 and C2, where k′′ is the number of such events (i.e. both those involving edges

of C1 and those involving edges of C2).
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6.2.2 Sampling Critical Values

We can uniformly sample critical values in O(1) time, as follows. A vertex-edge event is determined

by sampling a vertex and an edge, a vertex-vertex event is determined by sampling a pair of vertices,

and a monotonicity event is determined by sampling a pair of vertices and an edge. Since we can

easily uniformly sample vertices and edges in O(1) time, we can therefore do so for critical events.

In general, the decision of which type of critical event to sample would have to be weighted by the

respective number of such events.

6.3 Analysis

Let R be the random sample of critical values, of size O(n2). The interval [a, b] computed by

compFr contains δ∗. The call to extract(a, b) takes O(n2 log n + k log n) time, where k is the

number of monotonicity events. The following lemma shows that k = O(n2).

Lemma 6.3.1 Let I = [a, b] be the interval computed by compFr, and let c be some positive

constant. Then,

Pr
[
number of critical events in [a, b] > 2cn lnn

]
≤ 1

nc
.

Proof : There are 2
(
n
2

)
n ≤ n3 possible monotonicity events, 2n2 possible vertex-edge events, and

n2 possible vertex-vertex events. As such, the total number of critical events is bounded by Z =

n3 + 2n2 + n3 ≤ 2n3.

Consider the position of δ∗ on the real line. Let C be the set of the radii of all these critical

events, and let U− (resp. U+) be the set of M = cn lnn values of C that are closest to δ∗ that are

smaller (resp. larger) than it, and let U = U− ∪ U+.

If the number of values in C smaller than δ∗ is at most M , then there could be at most M

critical values smaller than δ∗ in [a, b]. The same holds if the C contains less than M values larger

than δ∗. As such, in the following, assume that both quantities are larger than M .

The probability that the random sample R of size µ = 4n2 picked by the algorithm, does not

contain a point of U−, is at most(
1− |U

−|
|C|

)µ
≤
(

1− c lnn

2n2

)4n2

≤ exp(−2c lnn) ≤ 1

2nc
.

This also bounds the probability that R does not contain a value of U+. As such, with high

probability, [a, b] contains only events in the set U . Namely, [a, b] contains the radii of at most

|U−|+ |U+| ≤ 2M monotonicity events, with probability ≥ 1− 1/nc.

Combining all our results, we thus have the following theorem.

Theorem 6.3.2 For two DAG complexes, C1 and C2, of total complexity n, with start and end

vertices s1, t1 ∈ C1, s2, t2 ∈ C2, the algorithm compFr(C1, C2, s1, t1, s2, t2) returns two curves π1 and
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π2, such that π1 (resp. π2) connects s1 (reps. s2) to t1 (resp. t2) in C1 (resp. C2). Furthermore,

the monotone Fréchet distance between π1 and π2, is the minimum among all such curves. The

running time of the algorithm is O
(
n2 log n

)
time, with probability ≥ 1− 1/nc.

Remark 6.3.3 The above result implies that given two polygonal curves in IRd one can compute

the Fréchet distance between them, in O(n2 log n) time (this running time bound holds with high

probability), by a simple algorithm that does not use parametric search.
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Chapter 7

Conclusions

In this thesis, we showed that the algorithm for computing the (weak) Fréchet distance between

two curves can be extended to more general settings. This results in a slew of problems that can

be solved using the new framework.

Monotonicity. Our main algorithm from Chapter 3 is an extension of the algorithm of Alt and

Godau [AG95] for the weak Fréchet distance. It is natural to ask if the new framework can handle

monotonicity. In Chapter 6, we offered a very restricted extension of our framework to this case,

in the process presenting a new simpler algorithm for computing the monotone Fréchet distance

between polygonal curves.

For more general settings, if the underlying complex is not one dimensional then it is not clear

what monotonicity means. Even if we restrict ourselves to the case of k input curves, for k > 2,

it is not immediately clear how to handle monotonicity efficiently, and we leave this as an open

problem for further research. Interestingly, there are cases where monotonicity actually makes the

problem easier.

Running Time. The expected running time of the general algorithm is O
(
nk
)

when handling k

input complexes and is probably practical only for very small values of k. In Chapter 5 we showed

that one can get a (1 + ε)-approximation for the median curve problem for k c-packed curves in

Õ(n log n) time. It should be possible to extend this same procedure to approximate, in a similar

running time, some of the other problems that are solved by the general framework, under similar

assumptions on the input.
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