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Abstract

We describe algorithms for the problem of minimum distortion embeddings of finite metric
spaces into the the real line (or a finite subset of the line). The time complexities of our
algorithms are parametrized by the values of the minimum distortion, δ, and the spread, ∆, of
the point set we are embedding.

We consider the problem of finding the minimum distortion bijection between two finite
subsets of R. This problem was known to have an exact polynomial time solution when δ
is below a specific small constant, and hard to approximate within a factor of δ1−ε, when δ
is polynomially large. Let D be the largest adjacent pair distance, a value potentially much
smaller than ∆. Then we provide a δO(δ2 log2D)nO(1) time exact algorithm for this problem,
which in particular yields a quasipolynomial running time for constant δ, and polynomial D.

For the more general problem of embedding any finite metric space (X, dX) into a finite

subset of the line, Y , we provide a ∆O(δ2)(mn)O(1) time O(1)-approximation algorithm (where
|X| = n and |Y | = m), which runs in polynomial time provided δ is a constant and ∆ is

polynomial. This in turn allows us to get a ∆O(δ2)(n)O(1) time O(1)-approximation algorithm
for embedding (X, dX) into the continuous real line.

1 Introduction

Given two metric spaces (X, dX) and (Y, dY ), an embedding of X into Y is an injective map
f : X → Y . The expansion ef and the contraction cf of f are defined as follows.

ef = max
x,x′∈X
x 6=x′

dY (f(x), f(x′))

dX(x, x′)
, cf = max

x,x′∈X
x 6=x′

dX(x, x′)

dY (f(x), f(x′))
.

The distortion of f is defined as δf = ef · cf .
Finding an embedding of minimum (or small) distortion is of interest due to its varied ap-

plications. Often the goal is to map a given metric space (X, dX) into a “simpler” metric space
(Y, dY ). For example, by embedding (high dimensional) metrics into R2 or R3, one can visualize
a data set, facilitating observations of patterns in the data (e.g., clusters). Moreover, if one can
embed into a low dimensional space, then one gains access to a number of algorithmic tools which
are prohibitively expensive in higher dimensions due to exponential dependence on the dimension.
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There are also natural applications when the two metric spaces are similar. For example, consider
the problem of finding a minimum distortion bijection between two finite subsets of Rd. In this
case there are natural applications to problems such as shape matching and object recognition.

Due to its varied applications, the problem of computing small distortion embeddings of finite
metric spaces has been studied extensively. Consequently, it is an area rich with results, perhaps
most notably Bourgain’s theorem stating that any finite metric space is embeddable into RO(log2 d)

(with the standard `2 norm) with O(log n) distortion [Bou85, LLR94]. Rather than giving an
exhaustive list, we refer the reader to [Ind01] and [Mat13], for a list of applications, results, and a
general introduction to the area of metric embeddings.

Finite Metrics into R.

Here we focus on the specific case of embeddings of finite metric spaces into a subset of the Euclidean
line. Results in this area fall into two main categories, namely, embeddings into the continuous
Euclidean line or bijections into a finite subset of the line.

Bijections. Consider the case of finding the minimum distortion bijection between two finite
subsets of R. Kenyon et al. [KRS04] was the first to study this problem, providing a polynomial
time exact algorithm when the minimum distortion, δ, is < 3 + 2

√
2. Furthering the dynamic

programming approach of Kenyon et al., Chandran et al. [CMO+08] provided a polynomial time
exact algorithm when δ < 13.602, and showed this approach breaks for δ > 13.928. Surprisingly,
these exact algorithms for the case when the distortion is smaller than a specific constant, are the
only positive results that the authors are aware of for finding the minimum distortion bijection
between two finite subsets of R. Moreover, they also appear to be the only positive results for
embedding more general metric spaces into a finite subset of R.

On the other hand, a number of hardness results are known for bijections between point sets in
Rd, for d = 1 and higher. Hall and Papadimitriou [HP05] showed (among other things) that for any
fixed dimension d ≥ 1, if the distortion is polynomially large, i.e. δ = nε, then the optimal bijection
is hard to approximate within a factor of δ1−ε. Additionally, for d = 2 Edmonds et al. [ESZ10]
showed that it is hard to distinguish between the cases δ < 3.61 + ε or δ > 4 − ε, and for d = 3
Papadimitriou and Safra [PS05] showed that δ is hard to approximate within a factor of 3.

These results left open the question of whether efficient (exact or approximate) algorithms for
intermediate values of the distortion are possible. In this paper, we take our first step toward
answering this question by providing the following exact algorithm.

Theorem 1.1. Let X,Y ⊂ R be point sets of cardinality n, such that the closest pair of points
in X are distance 1 apart and the furthest adjacent pair are distance D apart. Then there is a
δO(δ2 log2D)nO(1) time exact algorithm to compute an (X,Y )-bijection of minimum distortion, δ.

Interpreting the above result, for any constant distortion δ, if D is polylogarithmic in size we get a
polynomial running time and if D polynomial in size then we get a quasi-polynomial running time.
Also note that D is the furthest distance between an adjacent pair, a value which is potentially a
linear factor smaller than the spread , ∆, defined as the ratio of the largest and smallest inter-point
distances.

On the approximation side, our technique also yields a O(1)-approximation algorithm for the
minimum distortion bijection when (X, dX) is allowed to be any finite metric space. This result,
however, more naturally fits into the setting of embeddings into R.
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Embedding into R. Another category of results consider minimum distortion embeddings from
more general metric spaces into the Euclidean line. Here the results can be further broken down
into two cases, based on whether (X, dX) is allowed to be any general finite metric space, or
some restricted subclass. Specifically, for the case when (X, dX) is restricted to be (the short-
est path metric induced by) an unweighted graph, Badiou et al. [BDG+05] provided an O(

√
n)-

approximation algorithm and an nO(δ) exact algorithm, which later Fellows et al. [FFL+13] im-
proved to an O(nδ4(2δ + 1)2δ) time exact algorithm. For the case of unweighted trees, Badiou
et al. [BDG+05] provided an Õ(n1/3)-approximation. For weighted trees, Badiou et al. [BCIS05]
provided a δO(1)-approximation and showed that the minimum distortion embedding is hard to
approximate within a polynomial factor in n for weighted tree metrics with ∆ = nO(1), where ∆
denotes the spread of (X, dX).

For general metric spaces, Badiou et al. [BCIS05] provided an O(∆3/4δO(1))-approximation
algorithm (and their hardness result for weighted trees applies here as well). Perhaps the most
relevant result for the current work, is the result of Fellows et al. [FFL+13], who provided a fixed
parameter tractable algorithm with running time n(δ∆)4(2δ+1)2δ∆. Moreover, they show that the
exponential dependence on ∆ is unavoidable for any exact algorithm. However, this did not rule
out the possibility of an approximation algorithm with polynomial dependence on ∆. In particular,
we show the following more general result.

Theorem 1.2. There is a ∆O(δ2)(mn)O(1) time O(1)-approximation algorithm to compute a mini-
mum distortion embedding of a metric space of cardinality n into a point set on the Euclidean line
of cardinality m, where δ is the minimum distortion, ∆ is the spread, and m ≥ n.

In particular, our results imply a polynomial time constant factor approximation algorithm, pro-
vided the distortion is constant and the spread is polynomial. Note that this result is strictly
more general than the case when Y is the entire real line. Specifically, if one can approximately
embed (X, dX) into the integer line, then at the cost of an additional small constant factor, one
can approximately embed (X, dX) into the real line.

Theorem 1.3. There is a ∆O(δ2)(n)O(1) time O(1)-approximation algorithm to compute a mini-
mum distortion embedding of a metric space of cardinality n into the Euclidean line, where δ is
the minimum distortion and ∆ is the spread.

Significance of our work. For the problem of finding the minimum distortion bijection between
point sets on the line, previous results were on one of two extremes, either providing exact algorithms
for δ < 14, or strong inapproximability results for polynomially large δ. Thus our work bridges
this knowledge gap by showing that for larger constant values of distortion, the problem is still
polynomial time solvable, provided a polynomial spread. Our results are in part facilitated by
parameterizing on the value D (the largest adjacent pair distance) for the R bijection problem,
and the spread, ∆, for the problem of embedding into the line. Previous work on the embedding
problem, such as the work of Fellow et al. [FFL+13], also achieved positive results by parameterizing
on ∆. However, the key distinction is that in our work rather than ∆ appearing in the exponent,
only log2D or log ∆ appears in the exponent. Note that in the later case log ∆ is achieved at the
cost of a constant factor approximation, however, the work of Fellow et al. also implies that such
a running time requires that the algorithm be approximate.

For the embedding problem, our work also differs in another significant way. Previous work
considered embedding either into the continuous real line or the integer line (which are related
problems). Our work on the other hand more generally allows the subset of points on the line to
have arbitrary spacing. In particular the scales of adjacent point distances can differ dramatically.
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Note on the running time and approximation quality. In this paper we focus on improving
the allowable ranges of the values δ, D, and ∆, which lead to polynomial running times, rather
than optimizing the precise constant of the polynomial. In particular, when stating running times
exponents are often written using O(·) notation. Additionally, in our O(1)-approximation section,
rather than optimizing the precise value of the constant in the approximation, we make some
assumptions which degrade the constant, but significantly simplify the presentation. As such, both
the constants in the running time as well as in the approximation, can be improved.

2 Overview

We now provide a high level overview of our approach. The main idea is to use a sliding window,
as was done by Badiou et al. [BCIS05] and Fellows et al. [FFL+13].

Bijections in R. Suppose there was a non-contracting bijection f between X,Y ( R of expansion
δ.1 Consider the function f restricted to some interval on the Y side. Here we call this interval a
window as it provides a partial view of the function f . Now we don’t actually know the function
f (or even if it exists), but if this window is small enough then one can simply guess all possible
functions into the window. The goal then is to determine the entire function f by stitching together
views as we slide our window from the leftmost point in Y all the way to the rightmost point. In
order for this stitching process to work, we need our windows to be stateless (otherwise we end up
guessing all possible bijections). In other words, guessing how f maps into a given window should
allow us to partition X into three sets: (1) points mapped into the window by f , (2) points that
must map to the left of the window by f , and (3) points that must map to the right of the window
by f . To achieve this tri-partition property, the size of the sliding window should be sufficiently
large. Specifically, if the window is at least δD wide, then no adjacent points in X can map to
different sides of the window (as D is the distance between the furthest adjacent pair in X, and
no pair can be expanded by more than δ). However, now we have a tug of war on the size of our
window. We need the window to be large to break up the problem, and we need it to be small
to guess all partial maps into the window. Specifically, (as we show later) one can assume the
smallest inter-point distance is 1, and so the total number of maps into a δD length interval is
(δD)O(δD)nO(1), which is far too expensive.

The real difficulty is the various competing scales of adjacent pair distances. Specifically, if
D = O(1) then this approach yields an efficient algorithm (for constant δ), since windows can
then be very small. On the other hand, if we have just one really large adjacent pair distance,
our window must be large. To remedy the situation, we use the scales of adjacent pairs in X to
determine the size of the windows they map into. Specifically, we view X as a graph (a path), and
assign scales to edges based on their length. Namely, an edge of scale s has its length in (δs−1, δs].
The vertices (i.e. points in X) inherit the scales of their incident edges. Next, observe that only
O(δ2) points of scale s can map into an interval of length 2δs+1, which we call a window of scale
s. Also observe that such a window is wide enough such that two points in X at distance ≤ δs

apart, cannot map to the left and right of such an interval (otherwise, the expansion is too large).
So windows of length 2δs+1 give us a tri-partition for points at scale s, but what about points at
other scales? To that end, we consider a collection of maps into a tower of concentric windows at
all scales, which we call a multi-scale window. Our algorithm then slides this multi-scale window
from left to right to view the pre-image of Y . Using this multi-scale window allows us to save

1Later on it is proven why one can assume the bijection is non-contracting.
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a D/log2D factor in the exponent when compared to the single large window approach, overall

yielding a δO(δ2 log2D)nO(1) running time.

General Metric Spaces. Now consider the problem of embedding any finite metric space
(X, dX) into a (potentially larger) finite subset Y ( R. We want to adapt the algorithm above to
this more general setting. However, now there is an issue. Previously, we used adjacency relations
between points on the line to define scales. In general metric spaces, however, we lose the notion
of points in X being adjacent along the line, and so we need a new way to define scales. Here
we solve this problem by using the permutation of X defined by the standard Gonzalez algorithm
for k-center clustering. Specifically, this permutation is defined recursively by setting x1 to be
an arbitrary starting point, and for all 1 < i ≤ n, defining xi as the point furthest from the set
Si−1 = {x1, . . . , xi−1}. Clearly d(xi, Si−1) > d(xj , Sj−1) for i < j, and so the intuition is that points
earlier on in this permutation have larger scale. So the natural question then is if the Gonzalez
permutation gives a way to define scales, why was it not also used for the case when X ( R? To
answer this, let x, x′ be the pair in X realizing the expansion. The issue is that as we slide our
multi-scale window, the Gonzalez permutation does not guarantee there will be a single moment
in time in which both x and x′ are seen in our window.2 However, for the Gonzalez permutation
one can at least argue that there is some moment in time where our window sees a pair z, z′ ∈ X
such that x is close the z and x′ is close to z′. (Specifically, we argue the pairs we see in X form
an O(1)-spanner.)

By the above, we will have to settle for our algorithm being an O(1)-approximation to the
optimal embedding of (X, dX) into Y ( R. However, now that we have moved to approximation,
one can speed up our algorithm as follows. Previously, we used the fact that the mapping we are
looking for is non-contracting, so points at scale s must be at least δs apart from one another in
the image of f , producing a bound on the number of scale s points which can map into a window
of length 2δs+1. However, a priori we do no which points in this window get mapped onto by scale
s points, and such a window could potentially contain many points of Y . Previously we had to try
all possibilities as the goal was an exact algorithm. However, in the approximate setting one can
instead breakup this interval into δs length bins (each of which can contain the image of at most
one scale s point), and map to these approximate bins rather than directly to points.

In order to make this idea go through, a lot machinery must be set up, which previously was
not needed. However, there are two key advantages to all this extra work. First, our algorithm
will now run in polynomial time (as opposed to quasipolynomial) when the spread is polynomial.
The second, more surprising advantage, is that this additional machinery makes for a near seamless
transition from the case of bijections to case of embeddings, either into larger finite point sets or
the entire real line.

3 Preliminaries

Maps. Let A and B be two sets. A partial map f from A to B is denoted by f : A 9 B. The
domain of f , denoted by Dom(f), is the set of all a ∈ A for which f(a) is defined. So, Dom(f) ⊆ A.
The Image of f , denoted by Im(f), is the set of all b ∈ B such that b = f(a) for some a ∈ A. So,
Im(f) ⊆ B. In the special case that A = Dom(f), we call f a total map, or simply a map, and we
denote it by f : A→ B.

2Intuitively, this was inevitable, as X no longer lies on a line, and so one should not be able to define scales in a
way that imposes a linear adjacency relationship on X.
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Distortion. Let (X, dX) and (Y, dY ) be two metric spaces. An embedding of X into Y is an
injective map f : X → Y . The expansion ef and the contraction cf of f are defined as follows.

ef = max
x,x′∈X
x 6=x′

dY (f(x), f(x′))

dX(x, x′)
, cf = max

x,x′∈X
x 6=x′

dX(x, x′)

dY (f(x), f(x′))
.

The distortion of f is defined as δf = ef · cf . It follows by definition that distortion is invariant
under scaling of either of the sets. We say that the pair (x, x′) realizes the expansion of the map
f , if d(f(x), f(x′))/d(x, x′) = ef . Similarly, we say that the pair (y, y′) realizes the contraction of
the map f , if d(f−1(y), f−1(y′))/d(y, y′) = cf .

Basic distortion facts. Variants of the following two lemmas can be found in previous papers
(e.g., [KRS04]), and we include proofs for the sake of completeness. For a finite subset A ( R,
a, a′ ∈ A are said to be adjacent in A if the interval (a, a′)∩A = ∅. The first lemma tells us that for
embedding finite point sets into the line (or a subset of the line), one only needs to look at adjacent
pairs in the image to know the contraction, and moreover if embedding from a finite subset of the
line then one only needs to look at adjacent pairs in the domain to know the expansion.

Lemma 3.1. Let f be an embedding of X into Y with expansion ef and contraction cf . The
following properties hold.

1. If X is a finite subset of R, then there are adjacent points x, x′ ∈ X that realize the expansion.

2. If Im(f) ⊆ Y is a finite subset of R, then there are points y, y′ ∈ Im(f) which are adjacent in
Im(f) and that realize the contraction.

Proof: Let X = {x1, . . . , xn} ( R, and suppose, to derive a contradiction, that the expansions of
all adjacent pairs are smaller than ef .

for all 1 ≤ i < n, d(f(xi), f(xi+1)) < efd(xi, xi+1) (1)

Since the expansion of the map is ef there are xp and xq such that d(f(xp), f(xq))/d(xp, xq) = ef .
Thus, we have:

ef =
d(f(xp), f(xq))

d(xp, xq)
=

d(f(xp), f(xq))∑q−1
i=p d(xi, xi+1)

≤
∑q−1

i=p d(f(xi), f(xi+1))∑q−1
i=p d(xi, xi+1)

<

∑q−1
i=p efd(xi, xi+1)∑q−1
i=p d(xi, xi+1)

= ef

The first inequality is implied by triangle inequality, and the second one is implied by (1). The
derived contradiction implies the first part of the lemma statement. The proof for the second part
is similar. Essentially, change x’s to y’s and f to f−1 in the previous proof. �

An embedding is non-contracting if the contraction is ≤ 1. The following lemma allows us to
restrict our attention to non-contracting embeddings of expansion ≤ δ, where δ is a known value.

Lemma 3.2. Let (X, dX) and (Y, dY ) be finite metric spaces of sizes n and m, respectively. Then
the problem of finding an embedding of X into Y with minimum distortion reduces to solving
(mn)O(1) instances of the following problem: given a real value δ ≥ 1, compute a non-contracting
embedding of X into Y with expansion at most δ, or correctly report that no such embedding
exists.
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Proof: Let f be any optimal map with distortion δ = δf . Let x, x′ ∈ X and y, y′ ∈ Y realize the
expansion ef and contraction cf , respectively. Let Y = {y1, . . . , ym}, and let Y ′ = {cfy1, . . . , cfyn}
be this set after scaling by cf . Consider the function f ′ : X → Y ′, in which f ′(x) = cff(x), for any
x ∈ X. Clear the contraction, cf ′ , of this function is 1. As the distortion is invariant under scaling,
it then must be that ef ′ = δ. Therefore, one can look for f ′ instead, after scaling Y .

As we do not know the function f , we must guess x, x′, f(x), f(x′), y, y′, f−1(y) and f−1(y′).
However, there are (mn)O(1) choices for these values, which proves the lemma. �

4 An Exact Fixed-parameter Tractable Algorithm

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two point sets on the Euclidean line. To
simplify explanations, we assume all members of X and Y are positive. The pairs (X, d) and
(Y, d) are metric spaces, where d is the Euclidean distance on the line, that is for any p, q ∈ R+,
d(p, q) = |p − q|. As scaling either X or Y does not affect the distortion, we assume for all
i ∈ {1, 2, . . . , n− 1}, 1 ≤ d(xi, xi+1) ≤ D, and mini d(xi, xi+1) = 1.

In this section we describe a fixed-parameter tractable algorithm for computing the minimum
distortion bijection between X and Y . By Lemma 3.2, it suffices to instead solve the problem of
finding a non-contracting bijection of expansion at most δ, where δ ≥ 1 is a known value (we will
also detect when such a bijection does not exist).

4.1 Windows, Scales, and Partial Maps

Scales. The scale of an edge (xi, xi+1) (1 ≤ i < n) is s if and only of d(xi, xi+1) ∈ (δs−1, δs].
Similarly, the scale of an edge (yi, yi+1) (1 ≤ i < n) is s if and only of d(yi, yi+1) ∈ (δs−1, δs]. In
turn, a point has scale s if it is adjacent to an edge of scale s. So, a point has one or two scales.
For each s ∈ {0, 1, . . . , S = logδ(D)}, sets Xs and Ys are composed of the scale s vertices of X and
Y , respectively. Note that for s 6= t, Xs and Xt are not necessarily disjoint.

Windows. Let B(c, r) = [c − r, c + r] be the ball of radius r centered at c, and let Y [c, r] =
B(c, r) ∩ Y . We refer to the set Y [c, δs+1] as a window of scale s with center c. In turn, we refer
to the collection of concentric windows of scales 0 to S, Wc = {Y [c, δ], Y [c, δ2], . . . , Y [c, δS+1]}, as
a multi scale window with center c.

The multi scale window Wc′ succeeds the multi scale window Wc if there exists an 0 ≤ s ≤ S
with the following properties.

1. For all 0 ≤ i ≤ S, i 6= s, we have Y [c, δi+1] = Y [c′, δi+1].

2. Either Y [c, δs+1] = Y [c′, δs+1] ∪ {c− δs+1} or Y [c′, δs+1] = Y [c, δs+1] ∪ {c′ + δs+1}.

Intuitively, the set of points at all scales except s are identical. At scale s, they differ in one point,
which is either c − δs+1 or c′ + δs+1. Sometimes, we refer to this point as the difference of Wc

and Wc′ .

It is possible to find a sequence of multi-scale windows W = (Wc1 ,Wc2 , . . . ,Wck) with the
following properties.

1. For each i ∈ {2, 3, . . . , k}, Wci succeeds Wci−1 .

2. c1 = y1 and ck = yn.
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Specifically, let C′ = {yi − δs+1 and yi + δs+1 | i ∈ {1, . . . , n} and s ∈ {0, . . . , S}}. Then the
set of centers of the multi-scale windows is the set C = (C′ ∪ {y1, yn}) ∩ [y1, yn].3 Since in each
succession a point either enters or leaves the window of some scale, we have k = |C| = O(nS).
We fix such a sequence W for the rest of this paper, and refer to it as the standard sequence
of multi scale windows. Figure 1 illustrates a prefix of this sequence for an example with two
scales and five points.

1

2

3

4

5

6

Figure 1. A prefix of the sequence of multi scale windows. The red point is entering or leaving a single scale window.

Partial maps. A scale s partial map into the neighborhood of c is a non-contracting partial
map fs : Xs 9 Y [c, δs+1] with expansion at most δ.

Remark 4.1. Note that fs being non-contracting implies that fs is one-to-one, since if two points
were to map to the same y ∈ Y then the contraction would be infinite. The same will be true in
the definition of multi-scale partial maps below.

Lemma 4.2. Let fs be a partial map at scale s and into the neighborhood of c, for s ∈ {0, 1, 2, . . . , S},
and c ∈ R. We have, |Dom(fs)| = |Im(fs)| = O(δ2).

Proof: Let Dom(fs) = {xι1 , xι2 , . . . , xιk}, where xι1 < xι2 < . . . < xιk . Since, each of these points
is adjacent to at least one edge of scale s, for any 1 ≤ i ≤ k− 2, we have d(xιi , xιi+2) ≥ δs−1. Since
fs is non-contracting, we have d(fs(xιi), fs(xιi+2)) ≥ δs−1. Consequently, d(fs(xι1), fs(xιk)) ≥
bk/2cδs−1. Since both xι1 and xιk are mapped into Y [c, δs+1], a length 2δs+1 interval, k =
O(δ2). �

Multi-scale map. Let Wc be a multi-scale window in the standard sequence of multi-scale win-
dows, W. A function F : X 9 Y is a multi-scale partial map into Wc if:

1. F = f1 ∪ f2 ∪ . . . ∪ fS ∪ g, such that fi is a scale i partial map into c.

2. If zr = min({y ∈ Y | y > c + δ}) is defined, then Im(g) = {zr} and |Dom(g)| = 1, otherwise
g is empty. We refer to zr as the center-right point of Wc (or of F ).

3. Y [c, δ] ⊆ Im(F ).

4. F is non-contracting and has expansion at most δ.

Remark 4.3. Let h : A→ B be a non-contracting bijection of expansion ≤ δ. Then for any subset
C ⊆ A, the restriction f �C is a non-contracting bijection of expansion at most δ. In particular,
the requirements that F is non-contracting and expansion at most δ implies these requirements on
the partial maps. However, for clarity we include these redundant requirements for partial maps.

3Technically, depending on the distances between adjacent points in Y , more than one window may change
between Wci and Wci+1 . This is easily resolved by slightly increasing the width of each window by some small ε.
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Lemma 4.4. Let Wc be any multi-scale window in W. There are δO(S2δ2) · n multi-scale partial
maps into Wc.

Proof: Let y be the point in Im(F ) which is closest c. We can assume y ∈ [c, δS+1], as otherwise
F = g, and Dom(g) is either empty or one of O(n) possibilities from X. As y is the closest point
to c in Im(F ), it must be contained in all windows in Wc with non-empty intersection with Im(F )
(since the windows are concentric and all have center c). Let t be the index of the smallest window
such that y ∈ Y [c, δt+1]. For any s ≥ t, we have Im(fs) ⊆ Y [c, δs+1] ⊆ Y [y, 2δs+1].

Let h : F−1(y) → {y}, and for all fi ∈ F , let f ′i = fi ∪ h. By Remark 4.3, since F is
non-contracting and has expansion at most δ, the same holds for all f ′i . Therefore, Dom(fs) ⊆
Dom(f ′s) ⊆ X[F−1(y), 2δs+1]. Since the minimum distance between any pair of points is at least
one, we have |Y [y, 2δs+1]| = O(δs+1), and |X[F−1(y), 2δs+1]| = O(δs+1). Lemma 5.3 implies that
the size of the domain (and also the image) of fs isO(δ2). Therefore, the total number of possibilities
for fs, once y is fixed, is as follows.(

O(δs+1)

O(δ2)

)(
O(δs+1)

O(δ2)

)
O(δ2)O(δ2) = δO(Sδ2)

As y ∈ [c, δS+1], there are at most δS+1 possibilities for y, and at most n possibilities for the
pre-image of y. Once y and its pre-image are fixed, there are δO(Sδ2) number of possibilities for
each fs. Therefore, overall, the number of multi-scale partial maps is bounded by:(

δO(Sδ2)
)S
· δS+1 · n = δO(S2δ2)n

�

4.2 Left, Right, and Center

Feasibility. Call a bijection f : X → Y feasible if it is non-contracting and has expansion at
most δ. A multi-scale partial map F = f1 ∪ · · · ∪ fS ∪ g into Wc, is called a view of f in Wc if
for all s, fs is the restriction f �Xs whose range is restricted to the interval Y [c, δs+1] (formally
fs = f �f−1(Y [c,δs+1])∩Xs

), and g : {f−1(zr)} → {zr}. (Note that by Remark 4.3, the non-contracting
and expansion ≤ δ properties of multi-scale partial maps are satisfied.) In this case we call f a
feasible extension of F . Similarly, we call F feasible if there exists a feasible f , such that F is
a view of f .

For a point x ∈ X, let ms(x) be the larger of the (at most) two scales that x participates in.
For any multi-scale partial map, F = f1, . . . , fS ∪ g, with a feasible extension f , let Lf = Lf (F ) =
{x ∈ X | f(x) < c − δms(x)+1}, Cf = Cf (F ) = Dom(F ), and Rf = Rf (F ) = {x ∈ X | f(x) >
c + δms(x)+1} \ Dom(g). (Note that for R we must remove Dom(g), as Dom(g) ⊆ Dom(F ) and it
may be that zr > c+ δms(f−1(zr))+1.) We have the following.

Lemma 4.5. Let F be a feasible multi-scale partial map into Wc ∈ W. Let f and f ′ be two
distinct feasible extensions of F , then:
1) Cf 6= ∅.
2) The sets Lf , Cf , Rf , form a tri-partition of X.
3) Lf = Lf ′ and Rf = Rf ′ .

Proof: We first prove Cf 6= ∅. For any Wc ∈ W, it holds that Y ∩ [c, yn] 6= ∅. As such, the
definition of multi-scale partial maps requires that Cf 6= ∅. Specifically, either yn > c+ δ in which
case zr and hence g is defined, or yn ∈ Y [c, δ] and so yn ∈ Im(F ).
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Now we prove that Lf , Cf , Rf is a partition of X. Consider a point x ∈ Cf = Dom(F ). If
x = f−1(zr) then by definition x /∈ Lf , Rf . For any other point x ∈ Cf = Dom(F ), since F is a
multi-scale partial map, F (x) ∈ Y [c, δms(x)+1], and therefore Cf ∩Lf = Cf ∩Rf = ∅. Additionally,
trivially Lf ∩Rf = ∅. On the other hand since f is a feasible extension of F , if f(x) ∈ Y [c, δms(x)+1],
then x ∈ Cf = Dom(F ), and hence for any x ∈ X, x ∈ Lf ∪ Cf ∪Rf .

We now prove that Lf = Lf ′ , the case for R will then follow by a similar argument. Suppose
otherwise that Lf 6= Lf ′ , and without loss of generality assume that there exists some x ∈ X such
that x ∈ Lf and x /∈ Lf ′ . Since f and f ′ are both feasible extensions of F , Cf = Cf ′ . Therefore, if
x ∈ Lf , since Lf , Cf , Rf , is a tri-partition, then x /∈ Cf ′ . Therefore, x ∈ Lf and x ∈ Rf ′ .

Let a be a neighbor of x. If f(a) ∈ Y [c, δms(a)+1], then since F is a view of f , it holds that
a ∈ Cf = Cf ′ and so f(a) = f ′(a). Similarly if f ′(a) ∈ [c, δms(a)+1], then f(a) = f(a′). However,
if f(a) lies to the right of c then d(f(a), f(x)) > δd(x, a) and if f ′(a) lies to the left of c then
d(f ′(a), f ′(x)) > δd(x, a). Therefore a /∈ Cf = Cf ′ . An even simpler argument also implies that
a /∈ Rf and a /∈ Lf ′ . So since L,C,R is a tri-partition, it has been argued that, for any x ∈ Lf
and x ∈ Rf ′ , the immediate neighbors of x in either direction must also be in Lf and Rf ′ . Hence if
this argument is recursively applied to x’s neighbors, then one can conclude Lf = X and Rf ′ = X.
However, Cf = Cf ′ 6= ∅, and so we get a contradiction. �

The above lemma implies that all feasible extensions of F induce the same tri-partition of X.
Specifically, X = L ∪ C ∪ R, which we call the left , center , and right of F , respectively. The
center is the domain of F , i.e. C = Dom(F ), and the left set, L, and right set, R, are as defined in
the above lemma.

Remark 4.6. Let W = {Wc1 , . . . ,Wck} be the standard sequence of multi-scale windows. Let
F1 be a feasible multi-scale partial map into Wc1 , then L(F1) = ∅. Specifically, c1 = y1, hence
Y ∩ (−∞, c1) = ∅, and so L(F1) = {x ∈ X | f(x) < c1 − δms(x)+1} = ∅ (where f is any feasible
extension). A similar logic implies that for a feasible Fk into Wck ∈ W, R(Fk) = ∅.

Below we describe an algorithm which given a feasible F , outputs the tri-partition L∪C ∪R. If
F is not feasible, then ideally this could be detected, however being able to do so without knowing
the extension f seems unlikely. Therefore, if F is not feasible the algorithm either returns that F
is infeasible or outputs some bogus tri-partition.

Lemma 4.7. LCR(F ): Given a multi-scale partial map F into Wc ∈ W, there is a polynomial time
algorithm such that if F is feasible it outputs the corresponding partition of X into sets L∪C ∪R,
as described above. If F is not feasible it either outputs a tri-partition L ∪ C ∪ R or returns that
F is infeasible.

Proof: We say the status of a point in X is known if we know which set in L ∪ C ∪ R it belongs
to. We now prove that we can determine the status of any x ∈ X if it is adjacent to some x′ whose
status is known. By induction this will imply we can determine that status of all points in X. Note
that we must know the status of at least one point in X since Dom(F ) = C 6= ∅, by Lemma 4.5.

Let f be a feasible extension of F . The key observation is that for any x ∈ X, if x /∈ Dom(F )
then f(x) /∈ Y [c, δms(x)+1]. So let x′ be a point whose status is known, and let x be a point adjacent
to x′ whose status is unknown. Let s be the scale of the edge xx′. Without loss of generality,
suppose f(x′) lies to the right of c. In this case f(x) ≥ c − δs+1, as otherwise the edge xx′ was
stretched more than δ. Since x /∈ Dom(F ), we know f(x) /∈ Y [c, δms(x)+1], and therefore can
conclude f(x) > δms(x)+1, i.e. x ∈ R. For the case when x′ lies to the left of c, one can similarly
conclude that x ∈ L.
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After defining the sets L∪C ∪R, the algorithm performs a couple of simple consistency checks.
First, the algorithm verifies L∪C ∪R is a tri-partition, and otherwise returns infeasible. Note the
check will not return infeasible for any feasible F , since by Lemma 4.5 any feasible F induces such
a tri-partition. Next, for all adjacent xi, xi+1 ∈ X, the algorithm checks and returns infeasible if
either xi ∈ L, xi+1 ∈ R or xi+1 ∈ L, xi ∈ R. This check is valid since any feasible F cannot map
adjacent xi, xi+1 to L and R, as this would violate that the expansion is at most δ. Specifically, let
s be the scale of the edge xi, xi+1, then ms(xi),ms(xi+1) ≥ s, however, if they were mapped to the
left and right then d(f(x), f(x)) > 2δs+1 (for any feasible extension f). �

We use LCR(F ) to denote the algorithm of the above lemma which for any multi-scale partial
map, F , either returns a tri-partition L ∪ C ∪R or that F is infeasible.

Succession of maps. Let Wci+1 succeed Wci in the standard sequence W. By definition, there
is exactly one scale s such that Y [ci, δ

s+1] and Y [ci+1, δ
s+1] differ. Specifically, either Y [ci, δ

s+1] =
Y [ci+1, δ

s+1] ∪ {ci − δs+1} or Y [ci+1, δ
s+1] = Y [ci, δ

s+1] ∪ {ci+1 + δs+1}. In the former case we
say Wci+1 drops the point y = {ci − δs+1}, and in the latter case we say Wci+1 adds the point
y′ = {ci+1 + δs+1}.

Let zri+1 and zri be the center-right points of Wci+1 and Wci , respectively. We abuse notation
slightly and say zri = zri+1 if neither are defined, and zri 6= zri+1 if zri is defined but not zri+1 .
Note that if zri 6= zri+1 then it must be that Wci+1 adds zri = y′ = {c + δ} (and so F−1

i (zri) ∈ Ci
and F−1

i+1(zri) ∈ Ci+1).

Let Fi and Fi+1 be multi-scale partial maps into Wci and Wci+1 , respectively. If neither LCR(Fi)
nor LCR(Fi+1) returns infeasible, then we say Fi+1 succeeds Fi if the following conditions hold:

1. For any x ∈ X we have the following properties.

(a) If x ∈ Li then x ∈ Li+1.

(b) If x ∈ Ci then x ∈ Ci+1 or x ∈ Li+1.

(c) If x ∈ Ri then x ∈ Ri+1 or x ∈ Ci+1.

(d) If x ∈ Ci and Fi(x) ∩B(ci+1, δ
ms(x)+1) 6= ∅ then x ∈ Ci+1 and Fi(x) = Fi+1(x).

(e) If x ∈ Ci+1 and Fi+1(x) ∩B(ci, δ
ms(x)+1) 6= ∅ then x ∈ Ci and Fi+1(x) = Fi(x).

2. For gi and gi+1 we have the following properties:

(a) If zri = zri+1 then gi = gi+1.

(b) If zri 6= zri+1 then zri ∈ B(ci+1, δ) and F−1
i+1(zri) = F−1

i (zri) = g−1
i (zri)

We say that the status of a point x ∈ X changes if (1) x ∈ Li and x /∈ Li+1, (2) x ∈ Ci and
x /∈ Ci+1, or (3) x ∈ Ri and x /∈ Ri+1. The above conditions for succession then imply at most
one x ∈ X changes its status between Fi and Fi+1. Specifically, as Wci ,Wci+1 ∈ W, there is at
most one scale, s, where the set of points in a window can change and at scale s either Wci+1 drops
y = {ci − δs+1} or Wci+1 adds y′ = {ci+1 + δs+1}. Therefore, if gi = gi+1, then only the status of
the point which maps onto y or y′ can change. If gi 6= gi+1, then Wci+1 adds {ci+1 + δ}, and so
only the status of a point in Dom(gi+1) can change.

Remark 4.8. Let F1, . . . , Fk be multi-scale partial maps into W = (Wc1 ,Wc2 , . . . ,Wck), such that
Fi+1 succeeds Fi. We have the following consequences of the definition of succession,

1. ∀i ∈ {1, . . . k − 1}, Li ⊆ Li+1 and Ri ⊇ Ri+1

11



2. If x ∈ Li+1 and x /∈ Li then x ∈ Ci.
3. If x ∈ Ri and x /∈ Ri+1 then x ∈ Ci+1.

The above conditions imply that if L1 = Rk = ∅, then ∀x ∈ X,∃i ∈ {1, . . . k} such that x ∈ Ci, and
moreover the set T = {i ∈ {1, . . . , k} | x ∈ Ci} forms a consecutive subsequence of (1, 2, . . . , k),
such that Fi(x) = Fj(x), for all i, j ∈ T .

Lemma 4.9. Let Fi and Fi+1 be multi-scale partial maps into Wci ,Wci+1 ∈ W, respectively. If Fi
and Fi+1 are views of some feasible bijection f , then Fi+1 succeeds Fi.

Proof: First observe that since Fi and Fi+1 are views of a single well defined bijection f , that
if x ∈ Ci, Ci+1 then Fi(x) = Fi+1(x) = f(x). Moreover, by the definition of feasible view, if
f(x) ∈ B(ci, δ

ms(x)+1) then x ∈ Ci and if f(x) ∈ B(ci+1, δ
ms(x)+1) then x ∈ Ci+1. These facts

combined immediately imply that properties 1d and 1e of the definition of succession hold. Similarly,
property 2 holds since (a) if zri = zri+1 then either zri is not defined (in which case gi and gi+1

are empty) or g−1
i (zri) = f−1(zri) = f−1(zri+1) = g−1

i+1(zri+1), and (b) if zri 6= zri+1 then by the
definition of center-right points it holds that zri is defined and zri ∈ B(ci+1, δ), and therefore
f−1(zri) ∈ Ci, Ci+1 (by the definition of multi-scale partial maps).

What remains is to prove properties 1a, 1b, and 1c hold. First observe that the functions gi, gi+1

cannot affect the validity of these properties. Specifically, it is easy to argue that if x ∈ Dom(gi)
then x ∈ Ci, Ci+1, and if x ∈ Dom(gi+1) then x ∈ Ci+1 and either x ∈ Ci (if gi = gi+1) or x ∈ Ri.
Therefore, we only need to consider the set X ′ = X \ {Dom(gi) ∪ Dom(gi+1)}. By definition, for
x ∈ X ′, (i) x ∈ Li if f(x) < ci − δms(x)+1, (ii) x ∈ Ri if f(x) > ci + δms(x)+1, and (iii) x ∈ Ci
otherwise. Similarly, (i) x ∈ Li+1 if f(x) < ci+1 − δms(x)+1, (ii) x ∈ Ri+1 if f(x) > ci+1 + δms(x)+1,
and (iii) x ∈ Ci+1 otherwise. Properties 1a, 1b, and 1c now hold as ci+1 > ci. �

4.3 The Algorithm and Analysis

Our algorithm builds a directed graph G = (V, E), where V is the set of all non-empty multi-scale
partial maps into the set of windows W = {Wc1 , . . . ,Wck}, and (Fi → Fj) ∈ E if and only if Fj
succeeds Fi. A vertex Fi ∈ V is called starting if it maps into Wc1 and L(Fi) = ∅. Similarly,
Fi ∈ V is called ending if it maps into Wck and R(Fi) = ∅. The following lemma ensures that a
path from a starting vertex to an ending vertex translates to a feasible bijection and vice versa.

Lemma 4.10. Let G = (V, E) be as described above. There is a non-contracting map of distortion
at most δ if and only if there is a directed path from a starting vertex to an ending vertex in G.

Proof: (⇒) Let f be an map of distortion δ, and let W = {Wc1 , . . . ,Wck} be the sequence of
multi-scale windows. For each i ∈ {1, 2, . . . , k}, let Fi be the view of f in Wci . Clearly, for all i,
Fi is a multi-scale partial map (it is in fact feasible) and hence Fi ∈ V. Moreover, Fi+1 succeeds
Fi by Lemma 4.9. Finally, observe that by Remark 4.6, since F1 and Fk are feasible views of f ,
L(F1) = ∅ and R(Fk) = ∅, and so they are starting and ending vertices, respectively. Therefore,
there exists a directed path from a starting vertex to an ending vertex in G.

(⇐) Now, suppose there is a directed path F1 → F2 → . . . → Fk from a starting vertex F1 to
an ending vertex Fk in G (note that the definition of succession enforces that Fi is a multi-scale
partial map into Wci ∈ W). Let Li = L(Fi), Ri = R(Fi), and Ci = Dom(Fi). By Remark 4.8 we
know (1) for any x ∈ X there is an i ∈ {1, . . . , k} such that x ∈ Ci = Dom(Fi), and (2) the set
{i ∈ {1, . . . , k} | x ∈ Ci} forms a consecutive subsequence (i, i+ 1, . . . , j) of (1, 2, . . . , k), such that
Fi(x) = Fi+1(x) = . . . = Fj(x).
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We define the function f : X → Y as follows: f(x) = y if and only if there is an i such that
Fi(x) = y. Properties (1) and (2) ensure that f is a well-defined bijection. It remains to prove
that f is non-contracting, and has expansion at most δ. To do so we now argue that for each edge
(x`, x`+1) ∈ X (resp. (y`′ , y`′+1) ∈ Y ), that there exists some Fi such that x`, x`+1 ∈ Dom(Fi) (resp.
y`′ , y`′+1 ∈ Im(Fi)). Then since the Fi are non-contracting and have expansion ≤ δ, and since f is
a bijection consistent with the Fi, Lemma 3.1 implies f is non-contracting and has expansion ≤ δ.

So let (x`, x`+1) be an edge of X. We want to argue that for some Fi, x`, x`+1 ∈ Ci. As already
argued above we know that for x` (resp. x`+1) the set of Ci in which x` (resp. x`+1) appears, is
a non-empty consecutive subsequence of the Ci. For the sake of contradiction assume these two
subsequences for x` and x`+1 are disjoint. Without loss of generality assume that out of x` and
x`+1, that x` is the first to appear in the center. Let Ft be the last of the Fi such that x` is in
the center. It must be that x`+1 ∈ Rt, since we assumed that x` and x`+1 do not appear in the
center at the same time, and in order for x`+1 to be in Lr it must pass through the center (but x`
entered the center first). Therefore x` ∈ Lt+1 and x`+1 ∈ Rt+1, as Ft was the last time x` was in
the center and since by the definition of succession only one element in X can change its status in
the sets L,C,R. However, in this case the algorithm LCR(Ft+1) should have returned invalid (since
it specifically checks for this contradiction).

Now let (y`′ , y`′+1) be an edge of Y . Consider the multi-scale window Wci ∈ W such that y`′ is
the rightmost point in the window Y [ci, δ], in which case y`′+1 is the point realizing zr = min({y ∈
Y | y > c+ δ}). Then by the definition of multi-scale partial map (y`′ , y`′+1) ∈ Im(Fi). �

Now, we are ready to present the proof for Theorem 1.1, which summarizes our algorithm for
finding the minimum distortion bijection between two finite point sets on the line.

Proof (of Theorem 1.1): Lemma 3.2 reduces the problem to nO(1) instances of the following
problem: given a real value δ ≥ 1, compute a non-contracting (X,Y ) bijection with expansion at
most δ, or correctly report that no such embedding exists.

To find a non-contracting bijection of distortion δ, we build G and look for a directed path from
a starting vertex to an ending vertex, based on Lemma 4.10. The vertices of G are multi-scale
partial maps on the elements of the standard sequence of multi-scale windows of W, which has
length O(Sn). Lemma 4.4 implies there are at most δO(δ2S2)n multi-scale partial maps into a single
multi-scale window, and so the size of the graph G is δO(δ2S2)nO(1). Thus, in the same asymptotic
running time, we can check whether there is a path from a starting vertex to an ending vertex.

Since S = O(logD), the running time of the algorithm is δO(δ2 log2D)nO(1). �

5 An Approximate Algorithm for Embedding into the Line

Let (X, dX) be a discrete metric space over X = {x1, x2, . . . , xn}. Suppose that for any pair
x, x′ ∈ X, 1 ≤ dX(x, x′) ≤ ∆, and minx,x′∈X dX(x, x′) = 1. ∆ will be called the spread of X.
Also, let Y = {y1, y2, . . . , ym} ⊂ R+ be a set of points, where m ≥ n, and let (Y, dY ) be the induced
metric space.

In this section, we describe an algorithm which computes an embedding of X into Y , whose
distortion is an O(1)-approximation to the minimum distortion embedding. This algorithm has
polynomial running time for polynomial ∆ and constant δ. At the end of the section we show this
result can be extended to the case when Y is the entire real line.

By Lemma 3.2, it suffices to instead solve the problem of finding a non-contracting embedding
of expansion at most δ, where δ ≥ 1 is a known value (we will also detect when such an embedding
does not exist). Furthermore, we assume that such an embedding is onto y1 and ym. This is fine
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because the first and the last point in the image of the desired embedding can be guessed from
O(m2) choices.

Remark 5.1. The algorithm in this section can be seen as an extension of the algorithm from the
previous section. In particular, much of the terminology is the same (e.g. scales, windows, succes-
sion, etc.). However, all the definitions here differ, and are often more complicated. Specifically,
rather than defining the terms once in a manner consistent with both problems, here we choose to
redefine the terms so that the previous section was as simple as possible.

5.1 Scales, Windows, and Bins

Scales on X. Let (x1, x2, . . . , xn) be the Gonzales permutation of X computed as follows. The
point x1 is an arbitrary point in X. For every 2 ≤ i ≤ n, the point xi ∈ X\{x1, . . . , xi−1} is
the farthest point from the set {x1, . . . , xi−1}. For each s ∈ {0, 1, . . . , S = blogδ ∆c + 1}, the set
X≥s is composed of the points in the maximal subsequence of (x1, x2, . . . , xn), in which the mutual
distances of the points are at least δs. Note that X≥S = ∅, as ∆ < δS . The scale of a point x ∈ X,
is the largest s such that x ∈ X≥s.

For the remainder of the paper we assume that we have precomputed the sets Xs = X≥s\X≥s+1,
for all s ∈ {0, 1, . . . , S−1}. Additionally, we also precompute for each x ∈ X and for each 0 ≤ s < S,
the x’s nearest neighbor in X≥s. This can all be done in (Sn)O(1) time.

Windows. Let B(c, r) = [c − r, c + r] be the ball of radius r centered at c, and let Y [c, r] =
B(c, r)∩ Y . We refer to the set Y [c, 3δs+2] as a window of scale s with center c. In turn, we refer
to the collection of concentric windows of scales 0 to S, Wc = {Y [c, 3δ2], Y [c, 3δ3], . . . , Y [c, 3δS+2]},
as a multi-scale window with center c.

The multi-scale window Wc′ succeeds the multi-scale window Wc if there exists an 0 ≤ s ≤ S
with the following properties.

1. For all 0 ≤ i ≤ S, i 6= s, we have Y [c, 3δi+2] = Y [c′, 3δi+2].

2. Either Y [c, 3δs+2] = Y [c′, 3δs+2] ∪ {c− 3δs+2} or Y [c′, 3δs+2] = Y [c, 3δs+2] ∪ {c′ + 3δs+2}.

Intuitively, the set of points at all scales except s are identical. At scale s, they differ in one point,
which is either c− 3δs+2 or c′ + 3δs+2. Sometimes we refer to this point as the difference of Wc

and Wc′ .

It is possible to find a sequence of multi-scale windows W = (Wc1 ,Wc2 , . . . ,Wck) with the
following properties.

1. For each i ∈ {2, 3, . . . , k}, Wci succeeds Wci−1 .

2. c1 = y1 and ck = ym.

Specifically, let C′ = {yi−3δs+2 and yi+3δs+2 | i ∈ {1, . . . , n} and s ∈ {0, . . . , S}}. Then the set of
centers of the multi-scale windows is the set C = (C′ ∪ {y1, yn})∩ [y1, yn].4 Since in each succession
a point either enters or leaves the window of some scale, we have k = |C| = O(nS). We fix such a
sequence W for the rest of this paper, and refer to it as the standard sequence of multi-scale
windows.

4Technically, depending on the distances between adjacent points in Y , more than one window may change
between Wci and Wci+1 . This is easily resolved by slightly increasing the width of each window by some small ε.
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Bins. For each i ∈ {0, 1, . . . , S}, we partition R+ into intervals of length δs: ts = {[0, δs), [δs, 2δs), . . .}.
In other words, ts is the one dimensional grid on R+, of cell width δs. We refer to these intervals
as bins of scale s. In turn, we define ts[c, r] as the subset of intervals in ts that intersect B(c, r).
Some of these bins are contained in B(c, r), but some of them may only partially intersect B(c, r).

Remark 5.2. In the remainder of this section we will assume that δ is a power of 2. Note that
this can be done at the cost of a factor of 2 in the final approximation since we know δ ≥ 1. This
assumption is not necessary, but it will make the presentation simpler as bins from different scales
will now be concentric.

In order to obtain a faster algorithm, we consider approximate maps into bins rather than into
the actual points in Y . The following lemma, is immediate from the definitions above.

Lemma 5.3. Let fs : X≥s → ts[c, 3δs+2] be a one-to-one partial map, for s ∈ {0, 1, . . . , S}, and
c ∈ R. We have, |Dom(fs)| = |Im(fs)| = O(δ2).

Proof: Each bin in ts has length δs, so there are O(δ2) bins intersecting B[c, 3δs+2]. Thus,
|Im(fs)| = O(δ2). In addition, |Dom(fs)| = |Im(fs)| since fs is one-to-one. �

5.2 Approximate Maps, Restrictions, and Extension

Approximate maps. Consider a collection of maps Z = {f0, f1, . . . , fS , g} with the following
properties:

1. For each 1 ≤ s ≤ S, the map fs : X≥s → ts[c, 3δs+2] is one-to-one.

2. The map f0 : X → Y [c, 3δ2] is one-to-one5.

3. For any x ∈ X and 0 ≤ s1 < s2 ≤ S, if x ∈ Dom(fs1) then x ∈ Dom(fs2) and fs1(x) ⊆ fs2(x).

4. If [iδs, (i+ 1)δs) ∈ Im(fs) then [iδs, (i+ 1)δs) ∩ Y 6= ∅.

5. The map g : X → Y ∩ (c+ 3δ2,∞) acts on exactly one point in X if ym ∈ (c+ 3δ2,∞), and
it is empty otherwise.

6. If y1 ∈ [c, 3δ2] then f0 maps onto y1, and if ym ∈ [c, 3δ2] then f0 maps onto ym.

We define the approximate map, F , induced by Z to be the function such that:

1. Dom(F ) = ∪h∈ZDom(h) 2. F (x) = ∩h∈Z, x∈Dom(h)h(x)

In particular, for any x /∈ Dom(g), if F (x) is defined then it is just the smallest bin containing x
(which may be a single point). Also note that if x ∈ Dom(g), then it may be that F (x) = ∅.

We will use the notation F = 〈f0, f1, . . . , fS , g〉 to refer to the approximate map induced by a
set {f0, f1, . . . , fS , g} (satisfying the above properties). We say that such an F as defined above is
an approximate map into c (or rather into the multi-scale window with center c).

Remark 5.4. Note that the last two conditions on g and f0, respectively, imply that for any
Wc ∈ W, if F is an approximate map into Wc, then Dom(F ) 6= ∅.

5Note that f0 can be defined into ts[c, 3δ2] as well, however, explicitly defining it as a map into the points makes
the exposition of the ideas simpler.
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Restriction and Extension. Let f be an embedding of X into Y , and let fs : X≥s → ts[c, 3δs+2]
be a scale s map. Also, let qs[c, 3δs+2] be the union of all bins in ts[c, 3δs+2] (i.e. qs[c, 3δs+2] is an
interval on the real line). Note that this might properly contain B(c, 3δs+2) because the extreme
bins might partially intersect B(c, 3δs+2). The partial function fs is an approximate restriction
of f into X≥s × ts[c, 3δs+2] if the following properties hold:

1. For any x ∈ X≥s and f(x) ∈ qs[c, 3δs+2], we have f(x) ∈ fs(x).

2. For all other x ∈ X, x /∈ Dom(fs).

Under these conditions, we also say that f is an extension of fs.
Let F = 〈f0, f1, . . . , fS , g〉. The approximate map F is the approximate restriction of the

embedding f into Wc if the following properties hold.

1. For each s ∈ {0, . . . , S}, fs is the approximate restriction of f into X≥s × ts[c, 3δs+2].

2. For x ∈ Dom(g), we have g(x) = f(x).

Under these conditions, we also say that f is an extension of F .
An approximate map F = 〈f0, f1, . . . , fS , g〉 is feasible if it has a non-contracting extension,

f , of expansion at most δ.6 In this case f is a feasible extension of F .

5.3 Left, Right, and Center

Left, right. For any approximate map, F = 〈f0, . . . , fS , g〉, with a feasible extension f , let
Ls,f = Ls,f (F ) = {x ∈ X≥s|x /∈ Dom(fs) and f(x) < c − 3δs+2}, Cs,f = Cs,f (F ) = Dom(fs), and
Rs,f = Rs,f (F ) = {x ∈ X≥s|x /∈ Dom(fs) and f(x) > c+ 3δs+2}. We have the following.

Lemma 5.5. Let F be a feasible approximate map into Wc ∈ W. Let f and f ′ be two distinct
feasible extensions of F , then:

1. The sets Ls,f , Cs,f , Rs,f , form a tri-partition of X≥s.

2. Ls,f = Ls,f ′ and Rs,f = Rs,f ′ .

Proof: Since F is a restriction of f , if f(x) ∈ B(c, 3δs+2) then x ∈ Dom(fs) = Cf,s. Otherwise, if
x /∈ Dom(fs), then if x < c− 3δs+2 then x ∈ Lf,s and if x > c+ 3δs+2 then x ∈ Rf,s.

To prove the second part, we show that given F the condition of any point in any feasible
extension is uniquely determined. We present the following algorithmic proof for this statement.

We use induction on s, the scale of x, starting from s = S − 1 and going to s = 0 (recall that
X≥S = ∅).

Since there is an embedding from X into Y of expansion at most δ, it follows that dY (y1, ym) ≤
δS+1 (recall that we only consider embeddings which are required to map onto both y1 and ym).
Hence, for any Wc ∈ W, since c ∈ [y1, ym], it follows that the scale S − 1 window of any standard
multi-scale window contains all points. Consequently, this window intersects all non-empty bins of
scale S − 1. Therefore, for all x ∈ X≥S−1, we have x ∈ Dom(fS−1) (as F is feasible), and so the
base case for induction holds.

Now, assume that the condition of any point in X≥s+1 is uniquely determined. Let x ∈
X≥s\X≥s+1, and suppose x /∈ Dom(fs), then we show that simultaneously for all feasible ex-
tensions of F , either the image of x lies strictly to the left of c or strictly to the right of c. Since

6Conversely, it is easy to verify that the restriction of a non-contracting and expansion at most δ embedding of
X into Y satisfies all the requirements defining an approximate map.
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x /∈ Dom(fs), this will imply that simultaneously for all feasible extensions of F , either x is on the
left or right side of fs.

Let x′ be x’s nearest neighbor in X≥s+1. By the definition of X≥s+1, we have dX(x, x′) ≤ δs+1

(as otherwise x ∈ X≥s+1), and so dY (f(x), f(x′)) ≤ δs+2, for any feasible extension f . By the
induction hypothesis, exactly one of the following three conditions hold for x′.

1. x′ is on the left side of fs+1: Therefore, for any feasible extension, f(x′) < c− 3δs+3.

⇒ f(x) < c− 3δs+3 + dY (f(x), f(x′)) ≤ c− 3δs+3 + δs+2 ≤ c.

2. x′ is on the right side of fs+1: Therefore, for any feasible extension, f(x′) > c+ 3δs+3.

⇒ f(x) > c+ 3δs+3 − dY (f(x), f(x′)) ≥ c+ 3δs+3 − δs+2 ≥ c.

3. x′ is in Dom(fs+1). We consider three cases:

(a) The interval fs+1(x′) is completely on the left side of c: Therefore, for any feasible
extension, f(x′) < c.

⇒ f(x) < f(x′) + dY (f(x), f(x′)) ≤ c+ δs+2

Since x /∈ Dom(fs), we have f(x) /∈ B(c, 3δs+2), so f(x) < c.

(b) The interval fs+1(x′) is completely on the right side of c: Therefore, for any feasible
extension, f(x′) > c.

⇒ f(x) > f(x′)− dY (f(x), f(x′)) ≥ c− δs+2

Since x /∈ Dom(fs), we have f(x) /∈ B(c, 3δs+2), so f(x) > c.

(c) The interval fs+1(x′) contains the point c: Therefore, for any feasible extension, f(x′) ∈
[c− δs+1, c+ δs+1], as fs+1(x′) is an interval of length δs+1. Therefore,

f(x) ∈ [c− δs+1 − δs+2, c+ δs+1 + δs+2] ⊆ [c− 2δs+2, c+ 2δs+2].

So, x must be in the domain of fs, as fs is a restriction of f into X≥s × ts[c, 3δs+2].
Hence, this case cannot happen.

�

The above lemma implies that all feasible extensions of F induce the same tri-partition of each
X≥s. Specifically, X≥s = Ls ∪ Cs ∪Rs, which we call the left , center , and right of F at scale s,
respectively. The center is the domain of fs, i.e. Cs = Dom(fs), and the left set, Ls, and right set,
Rs, are as defined in the above lemma.

This lemma also gives an algorithm which given a feasible F , outputs the tri-partitions Ls ∪
Cs ∪ Rs at all scales 0 ≤ s ≤ S. If F is not feasible, then ideally this could be detected, however
being able to do so without knowing the extension f seems unlikely. Therefore, if F is not feasible
the algorithm either returns that F is infeasible if a tri-partition is not produced or outputs some
bogus tri-partition. The following corollary formalizes this statement.

Corollary 5.6. Given an approximate map F into Wc ∈ W, there is a polynomial time algorithm
such that if F is feasible it outputs the corresponding partition of X≥s into sets Ls ∪ Cs ∪ Rs for
all 0 ≤ s ≤ S, as described above. If F is not feasible it either outputs a tri-partition Ls ∪Cs ∪Rs
or returns that F is infeasible.
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Remark 5.7. Note that in the previous section our algorithm for determining left, right, and
center (i.e. Lemma 4.9), also performed a consistency check to make sure adjacent points did not
get assigned to the left and right. Here the check is more involved (as left and right are with
respect to individual scales), and so instead we perform a second post-processing step. This is the
“plausible” check as described below.

Plausible approximate maps. An approximate map F assigns an interval to each point in its
domain. These intervals, intuitively indicate estimations of the image of the points in an optimal
solution. Lemma 5.5 extends these estimations to the points that are not in the domain of F . It
assigns intervals (of infinite lengths) to the points not in the domain of F . Therefore, F together
with Lemma 5.5 gives an estimation for the image of all points in X in an optimal solution.
Corollary 5.6 ensures that these estimations are computable in polynomial time. The following
definition, formalizes this idea by introducing a function F̃ : X → I, where I is the set of all
intervals on the real line. (We emphasize that ∅ ∈ I.) For each x ∈ X:

1. If x ∈ Dom(F ) then F̃ (x) = F (x).

2. If x /∈ Dom(F ) then

F̃ (x) =

( ⋂
x∈Ls

(−∞, c− 3δs+2)

)
∩

( ⋂
x∈Rs

(c+ 3δs+2,∞)

)
.

Intuitively, F is plausible if one cannot conclude that it is not feasible by examining F̃ . Formally,
F is plausible if the following properties hold.

1. For all x ∈ X, F̃ (x) 6= ∅.

2. For all x, x′ ∈ X, there are y ∈ F̃ (x) and y′ ∈ F̃ (x′) such that:

1 ≤ dY (y, y′)/dX(x, x′) ≤ δ.

In particular, if F is feasible then it is plausible, but not necessarily the other way around. The
following lemma ensures that plausibility can be checked in polynomial time.

Lemma 5.8. Let F = 〈f0, f1, . . . , fS , g〉 be an approximate map into Wc. It can be decided in
polynomial time whether F is plausible or not.

Proof: It takes O(Sn) time to compute F (x) for all x ∈ X, given the functions f0, f1, . . . , fS , g.
By Corollary 5.6, F̃ can be computed in polynomial time. Finally, given F̃ , plausibility conditions
can be checked in O(n2) time. �

Next, we bound the number of plausible approximate maps into a fixed multi-scale window.
To that end, we need the following lemma that bounds the density of points in a metric space,
provided it admits an embedding of small distortion into the Euclidean line.

Lemma 5.9. Let (X, dX) be any metric space that can be embedded into the line with distortion
δ, and let R, r ∈ R+. Let K ⊆ X be a subset of the points with the property that for any x, x′ ∈ K,
we have dX(x, x′) > r. Finally, let B = B(c,R) be any ball with center c ∈ X and radius R. B
contains at most 2δR/r points of K.
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Proof: Let f be any embedding of contraction 1 and expansion δ. Such an embedding exists
because distortion is invariant under scaling of X. Let I be the shortest interval on the line that
contains Im(f). The length of I is at most 2δR, because the expansion of f is δ.

In addition, because f is non-contracting, for any x, x′ ∈ K, we have |f(x) − f(x′)| > r.
Furthermore, f maps all points of K into I. Thus, by a packing argument, |K| ≤ 2δR/r. �

Lemma 5.10. For any c ∈ R+, there are are δO(Sδ2) · (mn)O(1) plausible approximate maps into
Wc. Moreover, there is an algorithm to enumerate these approximate maps in the same asymptotic
running time.

Proof: Let F = 〈f0, f1, . . . , fS , g〉 be a plausible approximate map into Wc. Let a be the smallest
integer in {0, 1, . . . , S}, for which fa is not empty, and let x ∈ Dom(fa). (Note there are at most
O(mn) ways to define g, and hence this bound the number of possible F where a is not defined.)

First, for each s ∈ {a, . . . , S}, we show that given x and fa(x) are fixed, then there is a small
set, Ts, which must contain all points in Dom(fs). Specifically, Ts will be all points from X≥s which
are in the ball of radius 8δs+2 centered at x. By Lemma 5.9, since the distance between any pair
of points in X≥s is Ω(δs), we know |Ts| = O(δ3). Therefore, if we can show Dom(fs) ⊆ Ts (given
that x is already fixed), then we can limit the possible choices for the points in Dom(fs).

Specifically, we show dX(x, x′) ≤ 8δs+2, for any x′ ∈ Dom(fs). By definition, fa(x) and fs(x
′)

are intervals of length δa and δs, respectively, and both fa(x) and fs(x
′) intersect B(c, 3δs+2). In

addition, F (x) ⊆ fa(x) and F (x′) ⊆ fs(x′). Thus, for any y ∈ F (x) and y′ ∈ F (x′) we have:

dY (y, y′) ≤ 6δs+2 + δa + δs ≤ 8δs+2. (2)

Because F is plausible, there are z ∈ F (x) and z′ ∈ F (x′) such that dX(x, x′) ≤ dY (z, z′). Also, as
z ∈ F (x) and z′ ∈ F (x′), we have dY (z, z′) ≤ 8δs+2. Therefore, we have the desired bound:

dX(x, x′) ≤ dY (z, z′) ≤ 8δs+2.

By Lemma 5.3, |Dom(fs)| = |Im(fs)| = O(δ2). Therefore, the total number of candidates for
fs can be bounded as follows, given that x and fa(x) are fixed.(

|Ts|
|Dom(fs)|

)
· |Dom(fs)||Im(fs)| =

(
O(δ3)

O(δ2)

)
·O(δ2)

O(δ2)
= δO(δ2).

Our algorithm guesses a, fa(x), and x, in this order. There are, S options for a, O(δ2) options
for fa(x), and O(n) options for x. Once x, a, and fa(x) are fixed, there are δO(δ2) possibilities for
each fs. So, the total number of candidates for {f0, . . . , fS} considered by our algorithm is

S ·O(δ2) · n ·
(
δO(δ2)

)S
= δO(Sδ2)n.

Finally, our algorithm guesses g from mn + 1 options. It either maps exactly one point in X
to exactly one point in Y , or it is empty. Therefore, overall the total number of candidates for
plausible approximate maps into Wc, enumerated by our algorithm, is δO(Sδ2)mn2. �

Succession of maps. Let Wci+1 succeed Wci in the standard sequenceW. By definition, there is
exactly one scale s such that Y [ci, 3δ

s+2] and Y [ci+1, 3δ
s+2] differ. Specifically, either Y [ci, δ

s+1] =
Y [ci+1, 3δ

s+2]∪{ci− 3δs+2} or Y [ci+1, 3δ
s+2] = Y [ci, 3δ

s+2]∪{ci+1 + 3δs+2}. In the former case we
say Wci+1 drops the point y = {ci − 3δs+2} at scale s, and in the latter case we say Wci+1 adds
the point y′ = {ci+1 + 3δs+2} at scale s.

Let Fi = 〈f i0, f i1, . . . , f iS , gi〉 and Fi+1 = 〈f i+1
0 , f i+1

1 , . . . , f i+1
S , gi+1〉 be plausible approximate

maps into Wci and Wci+1 , respectively. We say Fi+1 succeeds Fi if the following conditions hold.
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1. For any s ∈ {0, . . . , S}, and for any x ∈ X≥s we have the following properties.

(a) If x ∈ Lis then x ∈ Li+1
s .

(b) If x ∈ Cis then x ∈ Ci+1
s or x ∈ Li+1

s .

(c) If x ∈ Ris then x ∈ Ri+1
s or x ∈ Ci+1

s .

(d) If x ∈ Cis and f is(x) ∩B(ci+1, 3δ
s+2) 6= ∅ then x ∈ Ci+1

s and f is(x) = f i+1
s (x).

(e) If x ∈ Ci+1
s and f i+1

s (x) ∩B(ci, 3δ
s+2) 6= ∅ then x ∈ Cis and f is(x) = f i+1

s (x).

2. For gi and gi+1 we have the following properties:

(a) If Wci+1 does not add a point at scale zero then gi = gi+1.

(b) If Wci+1 adds y at scale zero then

i. If y /∈ Im(gi) then y /∈ Im(f i+1
0 ) and gi = gi+1.

ii. If y ∈ Im(gi) and gi(x) = y then f i+1
0 (x) = y.

Remark 5.11. Let Fi, Fi+1 be as defined above. Then one can show that if Fi and Fi+1 are
restrictions of some feasible f , then Fi+1 succeeds Fi. Indeed, the definition of succession was
chosen to have the strictest rules possible which are consistent with feasible maps (i.e. we want
to weed out non-feasible maps). This can be formally proven, as was done in Lemma 4.9, but we
spare the reader (and the writer) the tedious details.

5.4 The Algorithm and Analysis

Our algorithm builds a directed graph G = (V, E), where V is the set of all plausible approximate
maps into the set of windows W = {Wc1 , . . . ,Wck}, and (Fi → Fj) ∈ E if and only if Fj succeeds
Fi. A vertex Fi ∈ V is called starting if it maps into Wc1 and L(Fi) = ∅. Similarly, Fi ∈ V is
called ending if it maps into Wck and R(Fi) = ∅.

Recall that c1 = y1 and ck = ym, and also that the last property of approximate maps requires
that an embedding hits y1 and ym (i.e. this holds for any starting and ending vertex, respectively).
This can be ensured by guessing the first and the last point of the image of an optimal embedding
among a polynomial number of choices.

Our algorithm computes a directed path in G from any starting vertex to any ending vertex.
The following lemma ensures that such a path exists if X admits a feasible embedding into Y .

Lemma 5.12. If there is a non-contracting map of distortion at most δ then there is a directed
path from a starting vertex to an ending vertex in G.

Proof: Let f be a feasible map, and let W = {Wc1 , . . . ,Wck} be the standard sequence of multi-
scale windows. For each i ∈ {1, 2, . . . , k}, let Fi be the restriction of f into Wci . For each 1 ≤ i ≤ k,
Fi is plausible (in fact, feasible) since it is a restriction of the feasible map f , and hence Fi ∈ V.
Moreover, Fi+1 succeeds Fi by Remark 5.11. Finally, observe that since F1 and Fk are restrictions
of a feasible f , L(F1) = ∅ and R(Fk) = ∅, and so they are starting and ending vertices, respectively.
Therefore, there exists a directed path from a starting vertex to an ending vertex in G. �

On the other hand, we now want to show that given a directed path P = F1 → F2 → . . .→ Fk
from a starting vertex F1 to an ending vertex Fk, that an embedding of X into Y with distortion
O(δ) can be computed. The following lemma describes some properties of the approximate maps
in P that will be helpful towards this end.
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Lemma 5.13. Let P = F1 → F2 → . . . → Fk be a directed path from a starting vertex F1 to an
ending vertex Fk in G, where Fi = 〈f i0, . . . , f iS , gi〉, for all 1 ≤ i ≤ k. For each 1 ≤ i ≤ k and for
each 0 ≤ s ≤ S, let Lis = Ls(Fi), Rs = Ris(Fi), and Cis = Dom(f is). The following properties hold.

1. ∅ = L1
s ⊆ L2

s ⊆ . . . ⊆ Lks .

2. R1
s ⊇ R2

s ⊇ . . . ⊇ Rks = ∅.

3. For any x ∈ X≥s there is a non-empty contiguous subsequence (`, `+ 1, . . . , r) of (1, 2, . . . , k)
such that for all i ∈ {`, ` + 1, . . . , r} we have x ∈ Cis = Dom(f is). Moreover, for all i, j ∈
{`, `+ 1, . . . , r}, f is(x) = f js (x).

4. For any x ∈ X≥s, either ` = 1 or f `s(x) is the rightmost bin at scale s intersection B(c`, 3δ
s+2).

Similarly, either r = k or f rs (x) is the leftmost bin at scale s intersecting B(cr, 3δ
s+2).

Proof: The fact that L1
s = ∅ and Rks = ∅ is immediate from the definition of starting and ending

vertices. The remaining statements of the lemma are then all direct consequences of the definition
of succession. Specifically, the containment properties, i.e. L1

s ⊆ L2
s ⊆ . . . ⊆ Lks and R1

s ⊇ R2
s ⊇

. . . ⊇ Rks are implied by the first three properties of succession (i.e. 1a, 1b, and 1c). Statement
3 above then follows as 1c of the definition of succession does not allow any x ∈ X to go directly
from the right to the left (at any scale), and moreover, each x ∈ X must be in the center at some
point as L1

s = ∅ and Rks = ∅ for all s. The last statement then follows by properties 1d and 1e from
the definition of succession. �

Given P, we define the relation h from X to Y as follows: we say h(x) = y if and only if there
is an 1 ≤ i ≤ k such that f i0(x) = y.

Lemma 5.14. The relation h defined above is an embedding of X into Y .

Proof: First, we show that h is a function. Note that (x, y) pairs are added to h only by looking
at the smallest scale functions f i0. The three properties of Lemma 5.13 guarantee that the set
{Fi|1 ≤ i ≤ k, x ∈ Ci0 = Dom(f i0)} is a non-empty contiguous subpath Fi → . . .→ Fj of P. So, by

the definition of succession, f i0(x) = . . . = f j0 (x), so x is mapped to at most one point in Y . Since,
the subpath is not empty, h acts on all members of X. Therefore, h is a function.

To show that h is injective, we prove that the pre-image of each y ∈ Y , if it exists, is unique.
To that end, let x, x′ ∈ X, and suppose h(x) = h(x′) = y ∈ Y . Therefore, there exist i and j such
that f i0(x) = y and f j0 (x′) = y, and without loss of generality assume i < j. It follows, from the
definition of the standard sequence of multi-scale windows, that y is in the smallest scale window of
{Wci ,Wci+1 , . . . ,Wcj}. Therefore, because of the definition of succession f i0(x) = f i+1

0 (x) = . . . =

f j0 (x). Finally, f j0 (x) = y and f j0 (x′) = y implies x = x′, as approximate maps are injective. �

Now that we have ensured that h is an embedding of X into Y , what remains is to bound the
distortion of h. To this end, images of x (that are intervals on the real line) under different Fi’s are
considered as estimates for h(x). The following lemma ensures that these estimates are consistent
with h(x).

Lemma 5.15. Let x ∈ X, and let Fi = 〈f i0, f i1, . . . , f iS , gi〉 ∈ P. For any 0 ≤ s ≤ S, if f is(x)
is defined then h(x) ∈ f is(x). Moreover, if x ∈ Lis then h(x) < ci − 3δs+2, and if x ∈ Ris then
h(x) > ci + 3δs+2.
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Proof: Let Fj be any approximate map in P such that x ∈ Dom(f j0 ). Property 3 of approximate

maps implies that for all 0 ≤ s ≤ S, x ∈ Dom(f js ), and h(x) = f j0 (x) ∈ f js (x). Now, let Fi be any
approximate map of P and suppose that x ∈ Dom(f is) for an 0 ≤ s ≤ S. Lemma 5.13(3) implies
that f is(x) = f js (x), and so it contains h(x).

Next, we show that x ∈ Lis implies h(x) < ci − 3δs. Choose j so that x ∈ Cjs and x ∈ Lj+1
s .

Such a j exists by Lemma 5.13(3). By Lemma 5.13(4) f js (x) is the leftmost bin that intersects
B(cj , 3δ

s+2). Therefore, f j+1
s (x) is completely on the left side of cj+1 − 3δs. Moreover, for any

i > j, it is completely on the left side of ci − 3δs. By the first part of this lemma, h(x) ∈ f js (x),
therefore, h(x) is on the left side of ci − 3δs, for any i > j. By Lemma 5.13(1), x ∈ Lis implies
i > j. Thus, x ∈ Lis implies h(x) < ci − 3δs. The proof for x ∈ Ris is symmetric. �

In the following couple of lemmas we bound the expansion of h. We start by bounding the
expansion of pairs of points in X that are close to each other relative to their scales.

Lemma 5.16. Let x, x′ ∈ X be of scales s and s′ respectively. If dX(x, x′) ≤ 3δmax (s,s′)+1 then

dY (h(x), h(x′)) = O(δ) · dX(x, x′)

Proof: Let h(x) < h(x′). First consider the case that s′ = max(s, s′). Let Fj (into Wcj ) be the
last approximate map of P such that h(x) ∈ B(cj , 3δ

2). The properties of the standard sequence
imply Fj(x) = h(x) ≤ cj . Consequently, for any y′ > cj + 3δs

′+2, we have dY (y′, Fj(x)) > 3δs
′+2.

Thus, plausibility of Fj implies x′ /∈ Rjs′ (as we assumed dX(x, x′) ≤ 3δs
′+1). Additionally, since

h(x′) > h(x) ≥ cj − 3δs
′+2, Lemma 5.15 implies x′ /∈ Ljs′ . Therefore, x′ ∈ Cjs′ = Dom(f js′).

Let a be smallest scale such that x′ ∈ Cja. If a = 0 then x′ ∈ Dom(f j0 ) and its image has to be
h(x′) (again by Lemma 5.15), and the lemma statement immediately follows from the definition of
plausibility. So we assume that 0 < a ≤ s′, in the rest of the proof.

The plausibility of Fj implies the existence of a z′ ∈ f ja(x′) such that

dY (z′, h(x)) ≤ δdX(x′, x).

Since, f ja(x′) is an interval of length δa that contains h(x′), this in turn implies

dY (h(x′), h(x)) ≤ δdX(x′, x) + δa. (3)

Because h(x′) > h(x) ≥ cj − 3δa+1, Lemma 5.15 implies x′ /∈ Lja−1. Also, x′ /∈ Cja−1 because of

the choice of a. Thus, x′ ∈ Rja−1. It follows, by the plausibility of Fj , that a point w′ > cj + 3δa+1

exists such that
dY (w′, h(x)) ≤ δdX(x′, x).

In particular, we have,
3δa+1 ≤ dY (w′, h(x)) ≤ δdX(x′, x),

which implies
δa ≤ dX(x′, x).

Substituting in (3), we conclude:

dY (h(x′), h(x)) ≤ δdX(x′, x) + δa ≤ 2δdX(x′, x).

The proof for the other case, in which s = max(s, s′), follows by a symmetric argument, via
considering the first approximate map Fj (into Wcj ) of P such that h(x′) ∈ B(cj , 3δ

2).
�
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In order to bound the expansion for all pairs of points in X, we show that the set of relatively
close pairs form a spanner of the metric space. The following lemma formalizes this idea. Note that
this lemma is only about the metric space (X, dX), and it has nothing to do with the embedding
or Y .

Lemma 5.17. Let GS = (X,ES) be a weighted graph, with vertex set X. For x, x′ ∈ X, of
scales s and s′ respectively, we have (x, x′) ∈ ES (with weight dX(x, x′)) if and only if dX(x, x′) ≤
3δmax(s,s′)+1. Let (X, dS) be the shortest path metric on GS . We have

dS(x, x′) ≤ O(1) · dX(x, x′).

Proof: Let the scale of x, x′ be of scales s and s′, respectively. Also, let δk ≤ dX(x, x′) < δk+1.
Finally, let z and z′ be the closest points of X≥k to x and x′, respectively. By the definition of X≥k,

dX(x, z) ≤ δk,

and,

dX(x′, z′) ≤ δk.

On the other hand, since z, z′ ∈ X≥k their scale is at least k. So, (x, z), (x′, z′) ∈ ES . Moreover, by
the triangle inequality, we have:

dX(z, z′) ≤ dX(z, x) + dX(x, x′) + dX(x′, z′) ≤ 2δk + dX(x, x′) ≤ 3δk+1. (4)

Again, by the definition of ES , (z, z′) ∈ ES because the scale of z is at least k, and dX(z, z′) ≤ 3δk+1.
Thus, (x, z, z′, x′) is an (x, x′)-path in GS . Therefore, we have

dS(x, x′) ≤ dX(x, z)+dX(z, z′)+dX(z′, x′) ≤ δk+dX(z, z′)+δk = 2δk+dX(z, z′) ≤ 2dX(x, x′)+dX(z, z′).

Also, from (4), we have:

dX(z, z′) ≤ 2δk + dX(x, x′)⇒ dX(z, z′) ≤ 3dX(x, x′).

Therefore, combining the above two inequalities,

dS(x, x′) ≤ 2dX(x, x′) + dX(z, z′) ≤ 2dX(x, x′) + 3dX(x, x′) = 5dX(x, x′)

�

Lemma 5.16 and Lemma 5.17 imply an O(δ) expansion for h, which is formalized in the following
lemma. To bound the contraction of h, the following lemma considers the g part of the approximate
maps.

Lemma 5.18. Let X, Y , and G = (V, E) be as described above. Given a directed path from a
starting vertex to an ending vertex in G, an embedding of X into Y of distortion O(δ) can be
computed in polynomial time.

Proof: First, we bound the expansion between an arbitrary pair of points x, x′ ∈ X. Lemma 5.17
implies the existence of a sequence (x = x1, x2, . . . , xt = x′) with following properties.

1.
∑t−1

i=1 dX(xi, xi+1) = O(1) · dX(x, x′).
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2. For all 1 ≤ i < t, dX(xi, xi+1) ≤ 3δmax(si,si+1)+1, where si and si+1 are the scales of xi and
xi+1, respectively.

The second property and Lemma 5.16 imply for each 1 ≤ i < t, dY (h(xi), h(xi+1)) = O(δ) ·
dX(xi, xi+1). So, we have:

dY (h(x), h(x′)) ≤
t−1∑
i=1

dY (h(xi), h(xi+1)) = O(δ) ·
t−1∑
i=1

dX(xi, xi+1) = O(δ) · dX(x, x′).

Next, we bound the contraction of h. By Lemma 3.1, it suffices to bound the contraction for
adjacent pairs of points in Im(h) ⊆ Y . Let (y`, y`+1) be a consecutive pair in Im(h). Also, let
h(x) = y`, and h(x′) = y`+1. Consider any multi-scale window Wci such that y` ∈ B(ci, δ

2), and
the approximate map Fi into Wci in P. Either y`+1 ∈ B(ci, δ

2) or y`+1 is the leftmost point in
Im(h) ∩ (ci + δ2,∞). In the former case Fi(x

′) = f i0(x′) = y`+1, and in the latter case Fi(x
′) =

gi(x′) = y`+1. In both cases, Fi(x) = h(x). Since Fi is plausible, we have

dY (y`, y`+1) = dY (h(x), h(x′)) = dY (Fi(x), Fi(x
′)) ≥ dX(x, x′).

Hence, h is non-contracting. �

Now, we are ready to present a proof for Theorem 1.2, which summarizes our algorithm for
embedding a finite metric space into a finite subset of the Euclidean line.

Proof (of Theorem 1.2): Lemma 3.2 reduces the problem to (nm)O(1) instances of the following
problem: given a real δ ≥ 1, compute a non-contracting embedding of X into Y with expansion at
most δ, or correctly report that no such embedding exists

To find a non-contracting embedding of distortion δ, we build G and look for a directed path from
an starting vertex to an ending vertex, based on Lemma 5.12 and Lemma 5.18. The vertices of G are
approximate maps into standard multi-scale windows of the sequenceW, which has length O(Sm).
Lemma 5.10 implies there are at most δO(δ2S)(mn)O(1) approximate maps into a single multi-scale
window. So, the the number of vertices of G is δO(δ2S)(mn)O(1). Thus, in δO(δ2S)(mn)O(1) time,
we can check whether there is a path from a starting vertex to an ending vertex. Finally, since
S = O(logδ ∆), the running time of the algorithm is ∆O(δ2)(mn)O(1). �

Corollary 5.19. There is a ∆O(δ2)nO(1) time O(1)-approximation algorithm to compute a mini-
mum distortion bijection between a metric space to a point set on the real line, both of cardinality
n, where δ is the minimum distortion and ∆ is the spread.

5.5 Embedding into the Euclidean line

We now extend Theorem 1.2 to obtain an algorithm for embedding a metric space into the Eu-
clidean line. The following key lemma contains similar observations to those found in [FFL+13]
and [BCIS05].

Lemma 5.20. Let (X, dX) be any metric space that can be embedded into the real line with
distortion δ. There exists an embedding f of X into Z with distortion O(δ).

Proof: Suppose, that after scaling dX , that dX(x, x′) ≥ 1 for all distinct x, x′ ∈ X. Let f be an
embedding of X into the line with distortion δ. By scaling the image of f we can assume that
cf = 1, and ef = δ. Therefore, for any x, x′ ∈ X we have dY (f(x), f(x′)) ≥ 1.
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Now let f ′ : X → R be defined as f ′(x) = df(x)e. We show that ef ′ is at most 2δ and that cf ′

is at most 2. For any distinct x, x′ ∈ X, by the definition of f ′,

dY (f ′(x), f ′(x′)) ≤ dY (f(x), f(x′)) + 1 ≤ δdX(x, x′) + 1 ≤ 2δdX(x, x′).

Also, by the same definition, we have

dY (f ′(x), f ′(x′)) ≥ 1.

Thus, if dX(x, x′) ≤ 2 then its contraction is clearly bounded by 2. Otherwise, if dX(x, x′) > 2,
then

dY (f ′(x), f ′(x′)) ≥ dY (f(x), f(x′))− 1 ≥ dX(x, x′)− 1 ≥ dX(x, x′)/2

Hence, the contraction is again bounded by 2. �

Now, we are ready to prove Theorem 1.3, that gives an algorithm for embedding a finite metric
space into the real line.

Proof (of Theorem 1.3): Assume that dX has been scaled such that minx 6=x′∈X dX(x, x′) = 1.
Then by the definition of spread, ∆ = maxx,x′∈X dX(x, x′).

By Lemma 5.20, there is an embedding f into Z, with distortion O(δ). Let y1, ym ∈ Z be the
leftmost point and rightmost point, respectively, that f maps onto. By the definition of distortion,
|y1 − ym| = O(δ∆). Therefore, if there is an embedding f into Z, with distortion O(δ), then there
is an embedding f ′ into {1, . . . , cδ∆} of distortion O(δ), for some sufficiently large constant c.

Therefore, by Theorem 1.2, one can compute an O(1)-approximation to f ′ in time

∆O(δ2)(cδ∆n)O(1) = ∆O(δ2)nO(1).

�
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