
1

The Fréchet Distance Revisited and Extended∗

Sariel Har-Peled† Benjamin Raichel‡

March 10, 2011

Abstract

Given two simplicial complexes in IRd, and start and end vertices in each complex,
we show how to compute curves (in each complex) between these vertices, such that
the Fréchet distance between these curves is minimized. As a polygonal curve is a
complex, this generalizes the regular notion of weak Fréchet distance between curves.
We also generalize the algorithm to handle an input of k simplicial complexes.

Using this new algorithm we can solve a slew of new problems, from computing
a mean curve for a given collection of curves, to various motion planning problems.
Additionally, we show that for the mean curve problem, when the k input curves are
c-packed, one can (1 + ε)-approximate the mean curve in near linear time, for fixed k
and ε.

Additionally, we present an algorithm for computing the strong Fréchet distance
between two curves, which is simpler than previous algorithms, and avoids using para-
metric search.

1 Introduction

The Fréchet distance provides a way to measure the similarity between curves. Unlike the
Hausdorff distance, which treats the curves as sets, the Fréchet distance takes into account the
structure of the curves, by requiring continuous reparameterizations of the curves. Informally,
the Fréchet distance between two curves, π and σ, is the minimum length leash needed to
walk a dog when the person walks along π and the dog walks along σ.

In this paper, we are interested in extending this concept to facilitate solving more general
motion planning problems.

∗The latest full version of this paper is available online [HR10].
†Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801,

USA; sariel@uiuc.edu; http://www.uiuc.edu/~sariel/. Work on this paper was partially supported by
a NSF AF award CCF-0915984.
‡Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801,

USA; raichel2@uiuc.edu; http://www.uiuc.edu/~raichel2/. Work on this paper was partially sup-
ported by a NSF AF award CCF-0915984.

http://www.uiuc.edu/~sariel/
http://www.uiuc.edu/~raichel2/

2

Previous Work. The Fréchet distance and its variants have been used to measure similar-
ity between curves in applications such as dynamic time-warping [KP99], speech recognition
[KHM+98], signature and handwriting recognition [MP99, SKB07], matching of time series
in databases [KKS05], as well as geographic applications, such as map-matching of vehicle
tracking data [BPSW05, WSP06], and moving objects analysis [BBG08a, BBG+08b].

Alt and Godau [AG95] showed how to compute the Fréchet distance between two polyg-
onal curves in IRd, of total complexity n, in O(n2 log n) time1. It is an open problem to find
a subquadratic algorithm for computing the Fréchet distance for two curves. The decision
problem (i.e., deciding whether the Fréchet distance is smaller than a given value) has a lower
bound of Ω(n log n) [BBK+07]. Driemel et al. [DHW10] provided a (1 + ε)-approximation
for polygonal curves, that works in O(N(ε, π, σ) + N(1, π, σ) log n) time, where N(ε, π, σ)
is the relative free space complexity of two curves under simplification. In particular, their
algorithm runs in O(cn/ε+ cn log n) time for c-packed curves.

One can generalize the problem to consider an input of multiple curves. Dumitrescu
and Rote [DR04] consider the problem of simultaneously minimizing the Fréchet distance
between all pairs of a set of k curves. They show one can get a 2-approximation in O(n2 log n)
time, whereas the naive extension to k curves of the exact algorithm takes O(nk log n) time.
Buchin et al. [BBvK+10] consider the problem of finding the median trajectory (polygonal
curve) of a set of k trajectories in the plane that all share the same starting and ending points,
where the median trajectory is a trajectory contained in the union of the k input trajectories
that must cross at least half of the input trajectories in order to reach the unbounded face
(though Fréchet distance does not directly come in to play in their problem, it is related to
the mean curve problem that we consider in Section 4.1).

The notion of the Fréchet distance can also be generalized to encompass distances be-
tween surfaces. Unfortunately, for general surfaces the decision problem is NP-hard [God99].
In fact, whether the Fréchet distance for general surfaces is computable is still an open prob-
lem. Recently Alt and Buchin [AB10] showed that the problem is semi-computable between
surfaces, and polynomial time computable for the weak Fréchet distance. The problem is
hard even if the surfaces are well-behaved terrains, see Buchin et al. [BBS10].

Moving away from Fréchet distances between surfaces, Alt et al. [AERW03] presented
an O(n2 log2 n) time algorithm to compute the Fréchet distance between two graphs. Specif-
ically, they require that one of the two graphs has to be entirely traversed and in the other
graph we seek the path that minimizes the Fréchet distance to the path of this traversal.

Complexes. The notion of a complex (which is an abstract simplicial complex together
with its realization), defined formally in Section 2.2, is a generalization of polygonal curves,
triangulations, meshes, straight line graphs, etc. In particular, our algorithm uses complexes
as inputs and as such would apply for all these different inputs in a verbatim fashion.

Our Contribution. Given two complexes and start and end points in each one of them, we
present a general algorithm that computes the two curves in these complexes that are closest
to each other, under the Fréchet distance, and connect the corresponding start and end

1In their paper, as well as ours, d is considered to be a constant.

3

points. The running time of this new algorithm is O(n2). Our algorithm can be interpreted
as an extension of the algorithm of Alt and Godau [AG95] for computing the weak Fréchet
distance between polygonal curves. Our main contribution is the usage of the product
complex instead of the parametric space – this enables us to easily encode the, potentially
very complicated, connectivity information of the two input complexes in a simple way.

As concrete applications of our algorithm consider the following variants, all of them
immediately solvable by our algorithm:

(A) Fréchet for paths with thickness. Imagine the classical setting of the Fréchet dis-
tance where a person walks a dog, but both the dog and the person might walk on paths
that have non-zero width. That is, the input is two simple polygons (i.e., “thickened”
paths) and one needs to compute the two paths of minimum Fréchet distance between
them that lie inside their respective polygons.

(B) In a similar vane, consider a wiring problem: You are given a three dimensional model
(of say a car or an airplane) specified by its mesh, and you are given a rough suggested
path connecting two points in the mesh. Our algorithm can compute the optimal wiring
path inside the model that is closest, under the Fréchet distance, to the suggested rough
path.

Interestingly, this approach also extends to inputs of more than two complexes, and also
to arbitrary convex functions between these different complexes. Specifically, consider a
situation where the input includes k complexes C1, . . . , Ck. The reader might think about
the complex Ci as the domain of the ith agent. Given a location in each of these complexes
of their respective agent (i.e., a point pi inside the complex Ci and the simplex ∆i ⊆ Ci that
contains it) consider a scoring function f(p1, . . . , pk) that assigns a cost to the configuration
(p1, . . . , pk). Furthermore, assume that this scoring function is convex on the domain ∆1 ×
∆2×· · ·×∆k, and this holds for any combination of such simplices. Now, given that the agents
want to move from some starting vertices v1, . . . , vk to ending vertices v′1, . . . , v

′
k, the new

algorithm can compute the synced motion of these k agents from the starting configuration to
the ending configuration, such that the maximum cost of any configuration used throughout
the motion is minimized.

The reader might consider these settings a bit abstract, so here are a few examples of
problems that can be solved using this framework:

(P1) Mean curve. Given a set of k curves in IRd, find a new curve that minimizes the maxi-
mum Fréchet distance between this new curve and each of the input curves. Namely,
this computes a mean curve for a given collection of curves.

(P2) One can compute the optimal way to walk k agents on k curves/complexes such that
the maximum distance between any pair of agents, at any point in time, is minimized.

(P3) Compute the optimal way for the k agents to walk on the k curves/complexes, such that
the maximum average distance between any pair of agents is minimized (the average
is over all pairs).

(P4) Walk a pack of dogs while minimizing a weighted sum of the leash lengths (i.e. maybe
some dogs need to be kept close since they like to chase squirrels).

(P5) Motion minimizing the perimeter of the convex hull. Given k curves/complexes that k
agents have to move on (in the plane), compute a motion from the start points to

4

the end points, such that the maximum perimeter of the convex hull is minimized
throughout the motion.

The running time of all these algorithms for k input complexes of total complexity n
is O

(
nk
)
. In Section 5 we show that by making minor (realistic) assumptions about the

input curves, for the median curve problem, one can remove the exponential dependence on
k (however, the constant retains the exponential dependence on k).

As a side problem, we also consider the problem when the input is two DAG complexes,
which are directed acyclic straight line graphs embedded in IRd. By considering the product
space of two such complexes (instead of the parametric space) we show that the decision
problem can be solved in O(n2) time. We then present a simple randomized technique to
solve the general problem in O(n2 log n) time. In particular, this provides an alternative
algorithm that computes the (strong) Fréchet distance between two polygonal curves with-
out using parametric search. Specifically, this algorithm is considerably simpler than the
algorithm of Alt and Godau [AG95], while matching its running time. Previous efforts to
avoid the parametric search by using randomization resulted in algorithms that are slower by
a logarithmic factor [vOV04, CW09]. This new algorithm uses ideas applied for the problem
of slope selection [Mat91] to the computation of the Fréchet distance. See Theorem 6.3 for
details.

Organization. In Section 2, we define the Fréchet distance and complexes formally, as
well as introduce the key concept of using the product space instead of the parametric space,
when defining the free space. Section 3 outlines the main algorithm of the paper, where
it is shown that by applying the convexity property of the free space, our problem can be
converted into the problem of computing the bottleneck shortest path. We also generalize the
algorithm to handle k input complexes, as well as arbitrary convex functions. In Section 4
we outline some applications of the main algorithm. In Section 5 we show that when the
k input curves are c-packed, one can solve the mean curve problem in near linear time. In
Section 6, we present an algorithm for computing the monotone Fréchet distance between
two curves or between two DAG complexes.

2 Preliminaries

2.1 Curves and the Fréchet Distance

Let π ⊆ IRd be a curve; that is, a continuous mapping from [0, 1] to IRd. In the following, we
will identify π with its range π([0, 1]) ⊆ IRd if it is clear from the context.

A reparameterization is a continuous one-to-one function f : [0, 1]→ [0, 1], such that
f(0) = 0 and f(1) = 1. Given two reparameterizations f and g for two curves π and σ,
respectively, define their width as

widthf,g(π, σ) = max
s∈[0,1]

‖π(f(s))− σ(g(s))‖ .

5

This can be interpreted as the maximum length of a leash one needs to walk a dog, where
the dog walks along π according to f , while the handler walks along σ according to g. In this
analogy, the Fréchet distance is the shortest possible leash admitting such a walk. Formally,
given two curves π and σ in IRd, the monotone Fréchet distance between them is

dF(π, σ) = min
f :[0,1]→[0,1]
g:[0,1]→[0,1]

widthf,g(π, σ) ,

where f and g are orientation-preserving reparameterizations of the curves π and σ, respec-
tively. We will also be interested in the weak Fréchet distance , where the reparameteriza-
tions are required to be continuous but not necessarily bijections (i.e., one is allowed to walk
backwards on their respective curve). In our problem we will be defining the curves in the
respective domains. Hence finding curves that minimize the weak Fréchet distance and find-
ing curves that minimize the strong Fréchet distance, are equivalent problems. The reader
should note, however, that when the input domains are curves, our algorithm is equivalent
to computing the weak Fréchet distance between those curves.

2.2 Complexes

An n-dimensional simplex is the convex hull of n+1 affinely independent vertices. We call
the convex hull of any m+1 vertex subset of the vertices of a simplex, an m-dimensional
subcell (or face) of that simplex (note that a subcell is in fact an m-dimensional simplex).
A proper subcell is one such that m < n.

An abstract simplicial complex C1 = (P,F), is a set system. The elements of P are
points and the elements of F are subsets of P called simplices. An abstract simplicial
complex is downward closed; that is for any Ψ ∈ F, and Υ ⊆ Ψ, it holds that Υ ∈ F. For
our purposes, the ground set P will always be a subset of IRd. We also use the natural
realization of the abstract simplicial complex (P,F), by mapping any simplex Ψ ∈ F to
rel(Ψ) = CH(Ψ), where CH(Ψ) denotes the convex hull of Ψ. Throughout our discussion we
assume that for any Ψ ∈ F, we have |Ψ| = dim(CH(Ψ)) + 1 (i.e. Ψ is affinely independent).
We also require that our realization is locally consistent; that is ∀Ψ,Υ ∈ F, if Ψ ∩ Υ 6= ∅
then rel(Ψ) ∩ rel(Υ) = rel(Ψ ∩Υ).

Note, that the geometric realization of such an abstract simplicial complex does not
induce a simplicial complex. For example, such an abstract simplicial complex might define
a self intersecting polygonal curve, where two disjoint simplices Ψ and Υ have that rel(Ψ)
and rel(Υ) intersect in their interior. In the following, we will refer to an abstract simplicial
complex together with its realization as a complex .

For a complex, C1, we will refer to any simplex in C1 as a cell of C1. The dimension of
a complex is the maximum dimension of any of its cells. We say Ψ ∈ C1 is a maximal cell
of C1 if there is no Υ ∈ C1 such that Ψ ⊂ Υ (note that a maximum cell is one such that
dim(Ψ) = dim(C1)).

A pair of simplices Ψ,Υ are adjacent if Ψ ⊆ Υ or Υ ⊆ Ψ. A simplicial path in a
complex is a function φ : [0, 1]→ F, such that: (A) For any ∆ ∈ F, we have that φ−1(∆) is
a finite union of open intervals and points. (B) If φ(·) has only two distinct values (say ∆
and Ψ) on an interval [x, y] ⊆ [0, 1], then the simplices ∆ and Ψ are adjacent.

6

A curve π ⊆ IRd parameterized over [0, 1] is a realization of a simplicial path φ, if for
any t ∈ [0, 1] we have that π(t) ∈ rel(φ(t)) and φ(t) is the simplex of lowest dimension of
F that contains π(t). In our applications, a maximal interval (x, y) such that φ is constant
corresponds to a straight segment of π. In particular, when dealing with a curve π ⊆ IRd,
we will assume that its associated simplicial path is also known.

In the following we will abuse notation and refer to Ψ as a shorthand for rel(Ψ). In
particular, for a point p ∈ IRd, we will say that p is in the simplex Ψ if p ∈ rel(Ψ).

2.3 Product Spaces

Let C1 = (P1,F1) and C2 = (P2,F2) be two simplicial complexes in IRd. Consider the product
space C1×C2. Intuitively, we view the product space as a subset of the space IR2d, where the
first d coordinates are from C1 and the remaining d coordinates are from C2. With this view,
C1×C2 is similar to a simplicial complex although the cells will be convex polyhedra instead
of just simplices (in the literature this is known as a polyhedral complex). We define a
cell (Ψ,Υ) of C1 × C2 to be the product of any cell Ψ from C1 with any cell Υ from C2. Its
realization is the set rel(Ψ,Υ) = rel(Ψ) × rel(Υ). In the polyhedral complex C1 × C2, two
cells (Ψ,Υ) and (Ψ′,Υ′) are adjacent if Ψ is adjacent to Ψ′ in C1 and Υ = Υ′, or Ψ = Ψ′

and Υ is adjacent to Υ′ in C2. Also, note that C1×C2 is connected since, by assumption, the
complexes C1 and C2 are connected.

Let π and σ be curves with reparameterizations f and g, respectively. Let cellπ(·) and
cellσ(·) be the simplicial paths associated with π(f) and σ(g), respectively. Since the Carte-
sian product of two continuous functions is continuous, we have that h(t) = (π(f(t)), σ(g(t)))
defines a curve τ = ∪th(t) in C1 × C2, which we call the product curve of π(f) and σ(g).
The curve τ has a corresponding product cell path which is the function cellπ,σ(t) =
(cellπ(t) , cellσ(t)). (For the sake of simplicity of exposition, we are assuming here that
cellπ(t) and cellσ(t) do not change their value simultaneously at the same time t.)

For two complexes C1 and C2 in Rd, and a parameter δ ≥ 0, consider a cell (∆1,∆2)
in C1 × C2. For a point p = (p1, p2) ∈ (∆1,∆2), its elevation is the quantity elev(p) =
elev(p1, p2) = ‖p1 − p2‖. The feasible region in the cell ∆1 ×∆2 is the set

F≤δ(∆1,∆2) =

(x, y) ∈ R2d

∣∣∣∣∣∣
x ∈ rel(∆1) ⊆ Rd

y ∈ rel(∆2) ⊆ Rd

elev(p1, p2) ≤ δ

 .

The feasible region for C1 × C2 (which we will refer to as the free space2) is the set
F≤δ(C1, C2) = ∪∆1∈C1,∆2∈C2F≤δ(∆1,∆2).

Observation 2.1 Let π and σ be paths in C1 and C2, respectively, and let f and g be repa-
rameterizations of π and σ respectively, that realize the value δ of the Fréchet distance.
The product curve, τ , is contained in F≤δ(C1, C2). Indeed, for any t ∈ [0, 1], we have
elev(π(f(t)), σ(g(t))) ≤ δ, since f and g realize the Fréchet distance between π and σ.

2Note that here the free space is defined in terms of the product space, instead of the usual parametric
space.

7

Observation 2.2 Consider a curve σ in C1×C2, such that for any point p ∈ σ we have that
elev(p) ≤ δ. Then, the projection of this curve into the corresponding curves in C1 and C2

results in two curves σ1 and σ2 such that dF(σ1, σ2) ≤ δ.
Formally, for t ∈ [0, 1], let σ(t) =(σ1(t), σ2(t)) ∈ C1×C2 be a parameterization of σ, and

let cellσ(t) = (cellσ1(t) , cellσ2(t)) be its associated product cell path, such that for any t we
have σ(t) ∈ rel(cellσ(t)). Clearly, σ1(t) and σ2(t) are parameterized curves in the complexes
C1 and C2, respectively. Furthermore, for any t ∈ [0, 1], we have that ‖σ1(t)− σ2(t)‖ =
elev(σ(t)) ≤ δ. As such, dF(σ1, σ2) ≤ δ.

2.4 Convexity of the Free Space in a Cell

We need the following straightforward result. We include the proof for the sake of complete-
ness.

Lemma 2.3 Let F≤δ = F≤δ(C1, C2) be the free space of the complexes C1 and C2, both con-
tained in IRd, for some δ ≥ 0. Then F≤δ(Ψ,Υ) = F≤δ ∩(rel(Ψ)× rel(Υ)) is a convex set, for
any cell (Ψ,Υ) of C1 × C2.

Putting it differently, the elevation function elev(·) is convex over rel(Ψ) × rel(Υ), for
any cell (Ψ,Υ) of C1 × C2.

Proof : Let Ψ and Υ be simplices in C1 and C2, respectively, and let F = F≤δ(Ψ,Υ). By
the definition of free space, we know that F is just the sublevel set (i.e. the level set and
everything less than that level) of the function h : IRd × IRd → IR, where h(u, v) = ‖u− v‖,
when applied to Ψ×Υ. It is known that the sublevel set of a convex function with a convex
domain, is convex. Hence all we need to show is that h is convex (note that the domain is
convex since Ψ and Υ are convex).

So let u, u′ ∈ Ψ and v, v′ ∈ Υ. We show that th(u, v)+(1−t)h(u′v′) ≥ h
(
t(u, v) + (1− t)(u′, v′)

)
,

for t ∈ [0, 1]. Equivalently, we show that the function ĥ(t) = h
(
t(u, v) + (1− t)(u′, v′)

)
is

convex on the interval [0, 1], i.e. ĥ(t) ≤ (1− t)ĥ(0) + (t)ĥ(1) (actually we need to prove such
an inequality for all choices of u, u′ ∈ Ψ and v, v′ ∈ Υ, which holds since they were chosen
arbitrarily).

Expanding out this function we get,

ĥ(t) = h
(
t(u, v) + (1− t)(u′, v′)

)
= h

(
u′ + t(u− u′), v′ + t(v − v′)

)
= ‖u′ + t(u− u′)− v′ − t(v − v′)‖ = ‖(u′ − v′) + t(u+ v′ − u′ − v)‖ .

Hence ĥ(t) is just the equation for the distance between a point on a linearly parameter-
ized line and the origin. We have by Lemma 2.4 below that this function is convex and so
we are done.

Lemma 2.4 The function representing the distance between a point on a linearly parame-
terized line l(t) and the origin, is a convex function. Specifically, let a and b be vectors in
IRd, then the function f(t) = ‖a+ tb‖, is convex.

8

Proof : We know that f(t) is of the form,

f(t) =

√∑
i

(ai + tbi)2 =
√
αt2 + βt+ γ,

where α, β, and γ are some constants such that αt2 + βt+ γ is non-negative. By the helper
lemma below, however, we know such a function is convex.

Lemma 2.5 Consider the quadratic function αt2 + βt + γ, where α, β and γ are some
constants such that the function is non-negative. Then, the function f(t) =

√
αt2 + βt+ γ

is convex.

Proof : Since αt2 + βt + γ ≥ 0 for all t, it must be that α > 0, and the corresponding
quadratic formula either has no roots, or a single root, which implies that β2 − 4αγ ≤ 0.
Now,

f ′(t) =
2αt+ β

2
√
αt2 + βt+ γ

=
h(t)

f(t)
,

for h(t) = αt+ β/2. Similarly,

f ′′(t) =
f(t)h′(t)− f ′(t)h(t)

(f(t))2
=
αf(t)− (h(t))2/f(t)

(f(t))2
=

(f(t))2 − (h(t))2/α

(f(t))3/α
.

Now, since f(t) is always non-negative, we have that

sign(f ′′(t)) = sign
(
(f(t))2 − (h(t))2/α

)
= sign

(
αt2 + βt+ γ − αt2 − βt− β2/4α

)
= sign

(
γ − β2/4α

)
= sign

(
4αγ − β2

)
≥ 0,

since α > 0 and β2 − 4αγ ≤ 0.

2.5 Bottleneck Shortest Path Algorithm

As a subroutine to our main algorithm, we need the following algorithm to compute bottle-
neck shortest paths in linear time, which is accepted as folklore, but we include for sake of
completeness.

Let G = (V,E) be an undirected graph, with weight function w on the edges. For a given
path p in G, let b(p) = maxe∈E(p) w(e). We call a path connecting two vertices s and t in G
an st path . We say that an st path, p′, is a bottleneck shortest path , if among the set of
all st paths, P , we have that b(p′) = minp∈P b(p).

Lemma 2.6 Let G = (V,E) be an undirected graph, with weight function w on the edges.
For any pair of vertices s, t ∈ V , one can compute in O(|V |+|E|) time the bottleneck shortest
path between s and t.

9

Proof : In the following, let p denote the bottleneck shortest path between s and t. First we
check to see if s and t are connected in G and output ∞ if not. Otherwise, the algorithm
proceeds in recursive stages. In each stage, we compute the median weight edge, emed, and
consider the graph G≤med = (V,E≤med), where E≤med ⊆ E consists of all the edges of weight
less than or equal to the median. We then compute the connected components of G≤med. If
s and t are in the same component of G≤med then b(p) ≤ w(emed). In this case we recurse on
the graph G≤med since none of the larger weight edges can be in p. Otherwise, b(p) > w(emed)
and so we can contract each connected component of G≤med down to a vertex, and recurse
on the graph with these vertices and the edges in E>med = E \ E≤med. In either case, at
the end of a stage we remove all isolated vertices (this is also done before the first stage).
Eventually, we will reach a stage with some small constant amount of edges in which case
we can then solve the problem by brute force.

Let mi and ni be the number of edges and vertices, respectively, in the ith stage. Com-
puting the connected components, finding the median, and removing bad edges and isolated
vertices all take O(ni +mi) time (or better). Since we always remove isolated vertices at the
end of a stage, we know that ni = O(mi), and hence each stage takes O(mi + ni) = O(mi)
time. In each stage we delete (roughly) half the edges and so there are O(lgm) stages, and
in each stage O(mi) = O(2−im) work is done, and so O(m+n) work is done in total (the n is
included since the first check for isolated vertices will cost O(n) time, and it might be that
m = o(n)).

3 Computing Optimal Fréchet Paths in Complexes

We are given as input two complexes, C1 and C2, along with corresponding start and end
vertices s1, t1 and s2, t2. We wish to compute the paths π and σ in C1 and C2, respectively,
that minimize the Fréchet distance over all paths that start and end at the respective start
and end vertices.

3.1 Algorithm

We construct a graph G = (V,E), called the cell graph of C1 × C2. Specifically, each cell
(∆1,∆2) of C1×C2 corresponds to a vertex v(∆1,∆2) ∈ V , and for every pair v(∆1,∆2), v(∆′

1,∆
′
2) ∈

V we create an edge iff (∆1,∆2) and (∆′1,∆
′
2) are adjacent in C1×C2. For ∆1 ∈ C1 and ∆2 ∈

C2, the elevation of their corresponding vertex v = v(∆1,∆2) ∈ V is elev(v) = d(∆1,∆2),
where d(∆1,∆2) = minp∈rel(∆1),q∈rel(∆2) elev(p, q) = minp∈rel(∆1),q∈rel(∆2) ‖p− q‖ is the dis-
tance between these simplices. The point realizing this minimum is the realization of the
vertex v, and is denoted by rel(v).

The cell graph is clearly connected since C1 × C2 is connected. As such, for any pair of
vertices u, v ∈ V (G) there exists a uv path in G. The elevation of a path ρ, denoted by
elev(ρ), is the maximum elevation of any vertex in ρ. The lowest uv path in G is the uv
path with minimum elevation.

We compute the lowest st path in G (where s = (s1, s2) and t = (t1, t2)), in order
to determine the desired curves with minimum Fréchet distance. To this end, we set the

10

elevation of any edge uv ∈ E(G) to be elev(uv) = max(elev(u) , elev(v)). Clearly computing
the lowest st path in a weighted graph is the same as computing the bottleneck shortest
path, and so using the algorithm of Lemma 2.6 we can efficiently compute the lowest st
path, ρ = v1 . . . vm, in G. We return the polygonal path rel(v1) rel(v2) · · · rel(vm) ⊆ C1 × C2

as the desired curve (which by Observation 2.2 encodes the two desired curves and their
reparameterizations).

3.2 Analysis

3.2.1 Correctness

As the following lemmas show, the cell graph captures the relevant information for our
problem.

Lemma 3.1 Let C1 and C2 be two complexes, and let s1 and t1 be vertices of C1 and let s2

and t2 be vertices of C2. Then, if there exists an s1t1 path π, in C1, and an s2t2 path σ,
in C2, such that dF(π, σ) = δ then there exists a v(s1,s2)v(t1,t2) path, ρ, in G(C1, C2) such that
elev(ρ) ≤ δ.

Proof : Let f and g be the reparameterizations of π and σ, respectively, that achieve the value
δ for the Fréchet distance. By Observation 2.1 the product curve τ =

⋃
t

(
π(f(t)), σ(g(t))

)
,

defines a path in C1×C2 from (s1, s2) to (t1, t2) that is contained in the free space F≤δ(C1, C2).
Let cellπ,σ(t) be the product cell path in C1 × C2 that corresponds to τ(t). Naturally, the
value of cellπ,σ(t) corresponds to a vertex in G, and let v(t) denote this vertex. It is easy to
verify that the sequence of different vertices visited by v(t), as t increases from 0 to 1, is a
valid path in G. Indeed, a product cell path defines a sequence of adjacent cells of C1 × C2

as t increases from 0 to 1, which corresponds to a path ρ = v1, . . . , vm in G.
Observe, that for any t ∈ [0, 1], we have that

elev(v(t)) = elev
(
vcellπ,σ(t)

)
= min

p∈cellπ(t),
q∈cellσ(t)

‖p− q‖ ≤ ‖π(f(t))− σ(g(t))‖ ≤ δ.

As such, elev(ρ) = maxi elev(vi) = maxt elev(v(t)) ≤ δ.

Lemma 3.2 Let C1 and C2 be two complexes, and let s1 and t1 be vertices of C1 and let s2

and t2 be vertices of C2. Then, if there exists a v(s1,s2)v(t1,t2) path ρ in G(C1, C2) such that
elev(ρ) = δ then there exists an s1t1 path, π, in C1 and an s2t2 path, σ, in C2, such that
dF(π, σ) = δ.

Proof : Let ρ = v1 . . . vm, where v1 = v(s1,s2) and vm = v(t1,t2). Each vertex vi in ρ corresponds
to a pair of cells ∆i = (∆i

1,∆
i
2), where ∆i

1 ∈ C1 and ∆i
2 ∈ C2. Furthermore, for every i, there

exists two points pi1 ∈ ∆i
1 and pi2 ∈ ∆i

2, such that elev(pi) = ‖pi1 − pi2‖ = d(∆i
1,∆

i
2), where

pi =(pi1, p
i
2).

Observe, that for all the vertices of the polygonal path Z = p1p2 . . . pm, we have that
elev(pi) = d(∆i

1,∆
i
2) = elev(vi) ≤ elev(ρ) = δ. As such, all the vertices of Z are in the free

space F≤δ.

11

For any i, the ith segment of Z is pipi+1. It corresponds to the edge vivi+1 in the graph
G, which connects adjacent cells in C1 × C2. In particular, it must be that either ∆i ⊆ ∆i+1

or ∆i+1 ⊆ ∆i. Assume the latter happens (the other case is handled in a symmetric fashion).
We have that pipi+1 ⊆ ∆i. Furthermore, by the convexity of the free space inside a single
cell (i.e., Lemma 2.3), we have that pipi+1 ⊆ ∆i ∩ F≤δ. We conclude that Z ⊆ F≤δ. Since
the two endpoints of Z are (s1, s2) = p1 and(t1, t2) = pm, Z corresponds to the desired paths
π and σ such that dF(π, σ) = δ.

Corollary 3.3 Let C1 and C2 be two complexes, and let s1 and t1 be vertices of C1 and let
s2 and t2 be vertices of C2. Moreover, let π and σ be the paths in C1 and C2, respectively,
that minimize the Fréchet distance over all pairs of s1t1 and s2t2 paths. Then we have that
dF(π, σ) = δ if and only if the lowest v(s1,s2)v(t1,t2) path, ρ, in G(C1, C2) has elev(ρ) = δ.

3.2.2 Running Time Analysis

Computing the lowest st path takes O(|V|+|E|) time by Lemma 2.6. Since a vertex in the
cell graph represents a pair of simplices from C1 and C2, we know that |V (G)| = O(|C1||C2|).
We also know that |E(G)| = O(|V (G)|) since each cell in C1 × C2 has at most O(1) proper
subcells (specifically O

(
22d
)

= O(1)). Hence the running time of the algorithm is O(n2),
where n = max(|C1| , |C2|).

Putting everything together, we get the following result.

Theorem 3.4 Let C1 and C2 be two simplicial complexes, and n = max(|C1|, |C2|). Given
any pair of start and end vertices from C1 and any pair of start and end vertices from C2, we
can compute, in O(n2) time, the paths π and σ in C1 and C2, respectively, that minimize the
Fréchet distance over all paths that start and end at the respective start and end vertices.

Remark 3.5 It is easy to verify that Theorem 3.4 yields a path that is locally as low
as possible. Formally, if the solution in the polyhedral complex is a curve π, then for any
subcurve σ ⊆ π, we have the property that for any other curve τ , that has the same endpoints
of σ, it holds that elev(τ) ≥ elev(σ).

When computing the Fréchet distance for two curves for example, this property implies
that the parameterization we get is never lazy – it always tries to be as tight as possible at
any given point in time.

3.2.3 Applications

Fréchet for paths with thickness. Given two polygons (maybe with holes) in the plane
and start and end vertices in the two polygons, one can triangulate the two polygons and
then feed them into Theorem 3.4. This results in two paths in the two triangulations that
minimize the Fréchet distance between the paths. As a concrete application, this can be
used for solving the classical Fréchet distance problem where the input curves have thickness
associated with them and one can move in this enlarged region. Indeed, each “thickened”
curve can be represented as a polygon, and hence we can apply the above algorithm.

12

Wiring. The wiring problem, mentioned in the introduction, can be solved by immediate
plug and play into the above result.

Motion planning in planar environments. Consider the case where you need to plan
the motion of two entities in a two dimensional environment, where they have to stay close
together (i.e., Fréchet distance) while complying with different constraints on which part of
the environment they can travel on. As a concrete example, one entity might be a pedestrian
and the other might be a vehicle. The pedestrian can not use the road, and the vehicle can
not use the sidewalk or the parks available. Finding the best motion for the two entities is no
more than solving the Fréchet problem in this setting. Indeed, we compute a triangulation
of the environment for the first entity, and then remove all triangles and edges that can
not be used by the first entity. Similarly, we compute a triangulation for the second entity,
removing the regions that are unusable for it.

Now, applying the algorithm of Theorem 3.4 to these two triangulations (with the desired
starting and ending points) results in the desired motion.

Naturally, the algorithm of Theorem 3.4 can be applied in more general settings where
the input is three dimensional, etc.

3.3 Generalized Algorithm for k Complexes

Let us recap the algorithm from the previous section. We considered finding the path in the
product space (of two complexes) such that the maximum value of f(x, y) = ‖x− y‖ among
all the points (x, y) in the path is minimized. If we add an extra dimension for the value
of f , then one can think of f as defining a terrain. Then the problem becomes computing
a path that does not traverse high in this terrain. The free space was the sublevel set of
f for some parameter δ. Next, we defined the elevation of a vertex in the cell graph to be
the minimum value of f for the cell that the vertex corresponds to. By observing that f
was a convex function within each cell in the product space, we were able to argue that the
value of the best path (i.e. lowest maximum value of f) was equivalent to the value of the
bottleneck shortest path, and thus the problem was efficiently solvable.

With this abstract description, the only property of f that we used was that it was convex
within each cell in the product space. Hence, we can conclude that the same procedure will
work for any choice of f , so long as it is convex within each cell in the product space.

We can generalize the problem even further. Earlier we considered only two complexes.
However, there is no reason why we can not consider an input of k complexes, for some
arbitrary integer k. In order to handle this case we generalize all our earlier definitions for
two complexes in the following natural way.

Let C1 = (P1,F1), . . ., Ck = (Pk,Fk) be a set of k simplicial complexes in Rd. Consider the
product space C1 × · · · × Ck. Intuitively, we view the product space as a subset of the space
Rkd. We define a cell (∆1, . . . ,∆k) of C = C1 × · · · × Ck to be the product of k cells, where
∆i ∈ Ci, for i = 1, . . . , k. Its realization is the set rel(∆1, . . . ,∆k) = rel(∆1)× . . .× rel(∆k).
In C1 × . . . × Ck, two cells (∆1, . . . ,∆k) and (Ψ1, . . . ,Ψk) are adjacent if there is a j such
that for all i 6= j, ∆i = Ψi and ∆j is adjacent to Ψj in Cj.

13

We now are given a function f defined over IRkd that is convex for any cell rel(∆1, . . . ,∆k).
As before, we build the cell graph G of the polyhedral complex C. Every vertex v of G
corresponds to a cell ∆ of C, and its elevation is the minimum value of f in this cell.

As before, we are given start vertices s1, . . . , sk and end vertices t1, . . . , tk in these k
complexes. We compute the lowest elevation path between the vertex in G corresponding to
(s1, . . . , sk) and the vertex in G corresponding to (t1, . . . , tk). Arguing as before, it is easy to
show that the resulting path in the graph can be realized by a path in C that yields the k
desired paths and their reparameterizations. As such, we get the following result.

Theorem 3.6 We are given k simplicial complexes C1, . . . , Ck, n = maxi |Ci|, start vertices
s1 ∈ C1, . . . sk ∈ Ck, end vertices t1 ∈ C1, . . . , tk ∈ Ck, and a function f : rel(C) → IR that is
convex for any cell in the realization of C = C1 × · · · × Ck.

Then, one can compute, in O
(
nk
)

time, k curves π1, . . . , πk (and their reparameterizations
ψ1, . . . , ψk) connecting s1, . . . , sk to t1, . . . , tk, respectively, such that maxt f(π1(ψ1(t)), . . . ,
πk(ψk(t))) is minimized, among all such curves and reparameterizations.

4 Applications

4.1 Mean Curve

We are given k polygonal curves π1, . . . , πk in IRd, and we would like to compute a curve σ
that minimizes the maximum weak Fréchet distance between σ and each one of the curves
π1, . . . , πk.

For a set of points P ⊆ IRd, let rmin(P) denote the radius of the minimum enclosing ball
of P.

Lemma 4.1 Let P(t) be a set of points in IRd moving linearly with t. Then, the function
rmin(t) = rmin(P(t)) is convex.

Proof : Fix any three times, x < y < z, where y = αx + (1 − α)z for some α ∈ (0, 1). Let
pi(t) denote the ith moving point of P(t).

Let vx (resp. vz) be the center of the minimum enclosing ball of P(x) (resp. P(z)), and
let v(y) = αvx + (1− α)vz. Observe that

rmin(y) = rmin

(
P(αx+ (1− α)z)

)
≤ max

i
‖v(αx+ (1− α)z)− pi(αx+ (1− α)z)‖

≤ max
i

(α ‖vx − pi(x)‖+ (1− α) ‖vz − pi(z)‖)
= αrmin(x) + (1− α)rmin(z) ,

since the distance between a pair of linearly moving points is convex (for example by
Lemma 2.4).

Using the lemma above, we get the following desired result.

14

Lemma 4.2 Given k curves π1, . . . , πk in IRd with total complexity n, one can compute, in
O
(
nk
)

time, a curve σ that minimizes maxi d
w
F (πi, σ), where dw

F (πi, σ) is the weak Fréchet
distance between πi and σ.

Proof : A cell in the polyhedral complex of π1 × · · · × πk is the product of k segments (or
points) in IRd. For a point p = (p1, . . . , pk) ∈ IRdk inside such a cell, consider the elevation
of p to be f(p) = rmin({p1, . . . , pk}). Lemma 4.1 implies that f(·) is convex inside each such
cell. As such, applying Theorem 3.6 to the given curves, using the function f(·), results
in a parameterization that minimizes the maximum radius of the minimum enclosing ball
throughout the motion. Since the center of the minimum enclosing ball (for continuously
moving points) changes continuously over time, the curve formed by this center throughout
the motion is a natural mean curve. Let σ denote this curve. It is easy to prove that the
maximum Fréchet distance of σ to any of the curves π1, . . . , πk is the minimum such value
among all possible curves.

4.2 Walking a Pack of Dogs

So suppose you have a pitbull, a chiwawa, a corgi, and a terrier. You want to walk all the
dogs at the same time instead of walking each one individually.3 However, as before, long
leashes are expensive, so you want to minimize the maximum length leash (among all the
leashes) that you need to use.

Formally, you are given k complexes, C1, . . . , Ck, and start and end vertices si, ti ∈ Ci,
for i = 1, . . . , k. The first complex corresponds to the person leading the dogs, and the
complexes C2, . . . , Ck corresponds to the k− 1 given dogs. You wish to find the set of paths,
π1, . . . , πk, and corresponding reparameterizations, ψ1, ψ2, . . . , ψk, such that,

max
t∈[0,1]

max
i>1
‖π1(ψ1(t))− πi(ψi(t))‖ = max

t∈[0,1]
f(π1(ψ1(t)), . . . , πk(ψk(t))),

is minimized, where f(p1, . . . , pk) = maxi ‖p1 − pi‖.

Lemma 4.3 Given k polygonal curves π1, . . . , πk of total complexity n, one can compute
non-monotone reparameterizations of these curves such that maxt maxi ‖π1(ψ1(t))− πi(ψi(t))‖
is minimized. The running time of the algorithm is O

(
nk
)
.

This works verbatim for complexes, and in this case the algorithm also computes the paths
inside the complexes realizing the Fréchet distance.

Proof : We need to prove that the function f(p1, . . . , pk) = maxi ‖p1 − pi‖ is convex within
each cell in order to apply Theorem 3.6.

So, consider a cell ∆ =(∆1, . . . ,∆k) ∈ C = C1×· · ·×Ck. Its realized cell rel(∆) = rel(∆1)×
· · · × rel(∆k) is a convex set. In particular, consider the functions of the form fi(p1, pi) =
‖p1 − pi‖, defined over rel(∆1)×rel(∆i), for 2 ≤ i ≤ k. Each of these functions are convex by
Lemma 2.3 on the domain rel(∆1)× rel(∆i). In particular, setting gi(p1, . . . , pk) = fi(p1, pi),
for i = 1, . . . , k, results in k convex functions over rel(∆).

3Since clearly you are a person that is very concerned with efficiency.

15

Clearly, f(p1, . . . , pk) = maxi gi(p1, . . . , pk), which is convex as the maximum of a set of
convex functions is a convex function. As such, plugging this into Theorem 3.6 implies the
result.

4.3 More General Settings

From the previous example, consider the person and the dogs at any given time as vertices
in space. The leashes are thus edges connecting the vertices. Hence in the above example
the topology of the graph is that of star graphs (i.e. the person is at the center and the dogs
are the ends of the star). The “weight” of each edge in the graph is the value of a convex
function between the respective pair of vertices at a given instance of time (i.e. the distance
of the person to a specific dog at a specific time). The general function we were trying to
minimize was the maximum value over the functions between each pair of vertices. We were
able to conclude that the overall function was convex because the maximum value of a set
of convex functions, is a convex function.

Let the above described graph be called a dependency graph . In general we can
consider any topology for the dependency graph. More formally, between every pair of
complexes we define a convex function (note that the zero function is convex, and so we can
ignore certain pairs if we like). For our global function we can then take any function of
these functions, which preserves convexity. For example, taking the maximum, the sum, or
(positively) weighted sum of convex functions is again a convex function. Therefore, all of
the applications (P1)–(P4) mentioned in the introduction are solvable immediately within
this framework.

4.3.1 Minimizing Perimeter of Motion

We are given k complexes C1, . . . , Ck all with realizations in the plane. As before, we are given
k starting vertices s1, . . . , sk and k ending vertices t1, . . . , tk, in these k complexes, respec-
tively. We are interested in computing the k polygonal paths (and their reparameterizations)
connecting these endpoints, such that the maximum perimeter is minimized. As before, to
use the framework, we need to show that the perimeter function is convex inside a cell of the
resulting polyhedral complex. So, consider two points p = (p1, . . . , pk) and q = (q1, . . . , qk).
We need to show that the perimeter function

perim(t) = perim(tp + (1− t)q) = perimeter
(
CH
({
tp1 + (1− t)q1, . . . , tpk + (1− t)qk

}))
is convex. This fact, which we state below as a lemma, is proved in [AC10] using the Cauchy-
Crofton inequality.

Lemma 4.4 ([AC10]) The perimeter of a set of linearly moving points in the plane is a
convex function.

This implies that the perimeter function is convex inside each cell of C = C1 × · · · × Ck,
and hence the framework applies. We thus get the following result.

16

Lemma 4.5 Given k complexes C1, . . . , Ck all with realizations in the plane, and k starting
vertices s1, . . . , sk and ending vertices t1, . . . , tk, in these k complexes, respectively, then one
can compute paths in these complexes, and their corresponding reparameterizations, such
that the maximum perimeter of the moving points during this motion is minimized over all
such motions. The running time of the algorithm is O(nk).

The running time stated above is under the assumption that computing the minimum
perimeter for k points whose locations are restricted by a cell of the polyhedral complex, can
be done in constant time. This constant would depend on k, naturally.

5 Computing the Mean Curve for c-packed Curves

Driemel et al. [DHW10] introduced a realistic class of curves, called c-packed curves. We now
show that when the k input curves are c-packed, one can compute a (1 + ε)-approximation

to the mean curve in Õ(n log n) time, where Õ() is used to emphasize that the constant
depends on ε and c, and exponentially on k and d (see Lemma 5.13 and Lemma 5.14 for
details). This is a significant improvement over the algorithm for the general case, presented
in Section 4.1, where the running time is O(nk).

In this section, when we refer to the free space, it is meant with respect to the mean
curve distance function. In particular, for k curves π1, . . . , πk let dmean(π1, . . . , πk) denote
the maximum distance of the mean curve to the πi’s, for the optimum reparameterizations.

5.1 Preliminaries

5.1.1 Definitions and Lemmas

We first cover the definitions and lemmas from [DHW10] that are relevant to our problem.

Definition 5.1 For a parameter c > 0, a curve π in IRd is c-packed if for any point q in
IRd and any radius r > 0, the total length of the portions of π inside the ball b(q, r) is at
most cr.

Algorithm 5.2 Given a polygonal curve π = q1q2q3 . . . qk and a parameter µ > 0, consider
the following simplification algorithm: First mark the initial vertex q1 and set it as the
current vertex. Now scan the polygonal curve from the current vertex until it reaches the
first vertex qi that is in distance at least µ from the current vertex. Mark qi and set it as
the current vertex. Repeat this until reaching the final vertex of the curve, and also mark
this final vertex. Consider the curve that connects only the marked vertices, in their order
along π. We refer to the resulting curve π′ = simpl(π, µ) as being the µ-simplification of
π. Note, that this simplification can be computed in linear time.

We need the following useful facts about µ-simplifications from [DHW10].

Lemma 5.3 (i) For any curve π in IRd, and µ > 0, we have that dF
(
π, simpl(π, µ)

)
≤ µ.

17

(ii) Let π be a c-packed curve in IRd, let µ > 0 be a parameter, and let π′ = simpl(π, µ) be
the simplified curve. Then, π′ is a 6c-packed curve.

Observation 5.4 Let π and σ be two given curves, and let π′ and σ′ be their µ simplified
curves, for some value µ. By Lemma 5.3, dF(π, π′) ≤ µ and dF(σ, σ′) ≤ µ. Hence we have
reparameterizations f and g such that ‖π(f(t))− π′(t)‖ ≤ µ and ‖σ(g(t))− σ′(t)‖ ≤ µ for
all t ∈ [0, 1] (without loss of generality we can assume these reparameterizations are bijec-
tive). Let dw

F (π′, σ′) = δ, where dw
F (·, ·) is the weak Fréchet distance. Then we have that

dw
F (π, σ) ≤ δ+2µ, since we can just map each pair (x, y) ∈ (π′, σ′) that is seen in the optimal

(not necessarily injective) reparameterizations of π′ and σ′, to the corresponding pair in (π, σ)
determined by f and g. In particular, this implies that for curves π1, . . . , πk with correspond-
ing µ simplifications π′1, . . . , π

′
k, we have that dmean(π1, . . . , πk) ≤ dmean(π′1, . . . , π

′
k) + 2µ.

Let π1, . . . , πk be k given curves. The complexity of the reachable free space for these
curves, for a distance δ, denoted by N≤δ(π1, . . . , πk), is the total number of cells in the
polyhedral complex with non-empty intersection with F≤δ(π1, . . . , πk) such that there exists
a path with elevation ≤ δ from the start vertex to that cell.

Definition 5.5 For k curves π1, . . . , πk, let

N(ε, π1, . . . , πk) = max
δ≥0

N≤δ
(
simpl(π1, εδ) , . . . , simpl(πk, εδ)

)
be the maximum complexity of the reachable free space for the simplified curves. We refer
to N(ε, π1, . . . , πk) as the ε-relative free space complexity of π1, . . . , πk.

5.1.2 Subroutines

We now list the relevant subroutines from [DHW10], which carry over directly for our prob-
lem.

Using the same procedure as in [DHW10], one can build a decider, decider(δ, ε, π1, . . . , πk)
that runs in O(N(ε, π1, . . . , πk)) time (the only difference being that in our case the BFS ig-
nores monotonicity). Specifically, we have the following.

Lemma 5.6 Let π1, . . . , πk be k polygonal curves in IRd with total complexity n, and let 1 ≥
ε > 0 and δ > 0 be two parameters. Then, there is an algorithm decider(δ, ε, π1, . . . , πk) that,
in O(N(ε, π1, . . . , πk)) time, returns one of the following outputs: (i) a (1+ε)-approximation
to dmean(π1, . . . , πk), (ii) dmean(π1, . . . , πk) < δ, or (iii) dmean(π1, . . . , πk) > δ.

Definition 5.7 Given a finite set Z ⊆ IR, we say an interval [α, β] is atomic if it is a
maximal interval on the real line that does not contain any point of Z in its interior.

Algorithm 5.8 For a set of numbers Z, let searchEvents(Z, ε, π1, . . . , πk) denote the al-
gorithm that performs a binary search over the values of Z, to compute the atomic interval
of Z that contains dmean(π1, . . . , πk). This procedure would use decider (Lemma 5.6) to
perform the decisions during the search.

18

Lemma 5.9 Given a set P of n points in IRd, let
(
P
2

)
be the set of all pairwise distances

of points in P. Then, one can compute in O(n log n) time a set Z of O(n) numbers, such
that for any y ∈

(
P
2

)
, there exist numbers x, x′ ∈ Z such that x ≤ y ≤ x′ ≤ 2x. Let

approxDistances(P) denote this algorithm.

The following subroutine, from [DHW10], will allow us to efficiently check intervals with
bounded spread for dmean(π1, . . . , πk).

Lemma 5.10 Given k curves π1, . . . , πk in IRd of total complexity n, a parameter 1 ≥ ε >
0, and an interval [α, β], one can compute a (1 + ε)-approximation to dmean(π1, . . . , πk) if
dmean(π1, . . . , πk) ∈ [α, β], or report that dmean(π1, . . . , πk) /∈ [α, β]. The algorithm, denoted

by searchInterval ([α, β], ε, π1, . . . , πk), takes O

(
N(ε, π1, . . . , πk) log

log(β/α)

ε

)
time.

We will also need a new subroutine, called solver, but first we prove the following easy
lemma about MST’s.

Lemma 5.11 Let G be a graph with non-negative weights on its edges. For any two vertices
u, v ∈ V (G), for the unique path τ between u and v in the MST, we have that elev(τ) ≤
elev(σ), where σ is any uv path in G, and elev(τ) is the maximum weight edge along the path
τ .

Proof : For the sake of simplicity of exposition assume that all the weights on the edges of G
are distinct.

Consider a uv path σ in G. If σ is contained in the MST then we are done. Otherwise,
let e be any edge of σ that is not contained in the MST. Introducing the edge e into the MST
creates a cycle, where all the other edges on the cycle are lighter than e (otherwise, e must
be in the MST). Therefore, we can replace e in σ by the portion of this cycle connecting
its endpoints. This new path σ′ has one less edge outside the MST, and it holds that
elev(σ′) ≤ elev(σ). Continuing in this fashion, we end up with a path τ ′ in the MST between
u and v such that elev(τ ′) ≤ elev(σ). Since the path in the MST between u and v is unique,
the claim now follows.

Lemma 5.12 Let π1, . . . , πk be k polygonal curves in IRd with total complexity n, 1 ≥ ε >
0 be a given parameter, δ∗ = dmean(π1, . . . , πk), and N = N(ε, π1, . . . , πk). Let [α, β] be
an atomic interval that contains δ∗, and such that for any µ, µ′ ∈ [α, β], simpl(πi, µ) =
simpl(πi, µ

′) for i = 1, . . . , k. Then one can compute in O(N logN) time, a value δ such that
δ∗ ∈ [δ − 2α, δ + 2α]. Let this algorithm be denoted by solver([α, β], π1, . . . , πk)

Proof : Let µ = β. We run the algorithm of Lemma 4.2 on π′1 = simpl(π1, µ), . . . , π′k =
simpl(πk, µ), except with the following modifications. First, instead of using the bottleneck
shortest path algorithm of Lemma 2.6, we will use Prim’s algorithm, starting from the vertex
that corresponds to the starting points of the curves, where we stop when we reach the vertex
that corresponds to the ending points of the curves. Also, instead of explicitly computing the
cell graph, we only compute the relevant parts of the cell graph on the fly as they are needed
for Prim’s algorithm. Note that if δ is the elevation of the shortest path in the MST from

19

aprxMean(ε, π1, . . . ,πk)
(A) P = V (π1) ∪ · · · ∪ V (πk)
(B) Z ← approxDistances(P) (Lemma 5.9).
(C) [α, β]← searchEvents(Z, ε, π1, . . . , πk) (Algorithm 5.8).
(D) Call searchInterval([α, 8α], ε, π1, . . . , πk) (Lemma 5.10).
(E) Call searchInterval([β/2, β], ε, π1, . . . , πk).
(F) δ ← solver([2α, β/2], π1, . . . , πk) (Lemma 5.12).
(G) Return the value returned by searchInterval([δ/2, 3δ/2], ε, π1, . . . , πk).

Figure 1: The basic approximation algorithm.

s to t, then Prim’s is guaranteed to stay within N≤δ(π
′
1, . . . , π

′
k) until reaching t. Moreover,

by Lemma 5.11 this path will be the lowest st path.
This modified version of the algorithm computes a curve σ that minimizes maxi d

w
F (π′i, σ),

in O(N logN) time, since we are running Prim’s on an effective graph of size N (and where
E(G) = O(V (G))). Observe that since the µ simplification is constant on the interval [α, β],
δ is the same value that would be returned had we set µ = δ∗. Also, again since the µ
simplification is constant on this interval, by Observation 5.4 and considering µ = α, we
know that δ∗ ∈ [δ − 2α, δ + 2α].

5.2 Algorithm

Given k curves, π1, . . . , πk, Figure 1 shows the algorithm to efficiently compute a 1 + ε
approximation to dmean(π1, . . . , πk). Note that the algorithm depicted in Figure 1 performs
numerous calls to decider, with an approximation parameter ε > 0. If any of these calls
discovers the approximate distance, then the algorithm immediately stops and returns the
approximation. As such, at any point in the execution of the algorithm, the assumption is
that all previous calls to decider returned a direction where the optimal distance must lie.

5.3 Correctness and Running Time

5.3.1 Correctness

In order to apply the algorithm of Lemma 5.12 we first need to find an atomic interval (or
subinterval), [α, β], that contains δ∗ = dmean(π1, . . . , πk), such that none of the µ simplifica-
tions of any of the k curves change for any choice of µ ∈ [α, β]. Note that by the way in
which µ simplified curves are constructed, Algorithm 5.2, if we consider increasing the value
of µ from 0 to ∞, the only events at which any of the µ simplifications of any of the curves
change, are when µ is equal to one of the distances between a pair of vertices on one of the
curves. Hence if Y denotes the set of all pairwise distances between vertices in P (step (A) in
the algorithm) then in order to apply Lemma 5.12 we want the atomic interval with respect
to Y that contains δ∗. Since it is costly to compute Y explicitly, we instead compute an
O(n) sized set Z (step (B)), such that each value in Y is 2-approximated by some value in Z.
Step (C) performs a binary search over Z, using decider, in order to find an atomic interval

20

[α, β] containing δ∗. Since each value in Y is 2-approximated by some value in Z, we know
that the interval [2α, β/2] is a subinterval of an atomic interval of Y . Hence by Lemma 5.10
we know that steps (D) and (E) ensure that [2α, β/2] is a subinterval of an atomic interval
of Y that contains δ∗ (and if not, these steps returned a (1 + ε)-approximation for δ∗). By
Lemma 5.12 we know that in step (F), when we call solver on the interval [2α, β/2] we get
a value δ such that δ∗ ∈ [δ − 4α, δ + 4α]. However, (D) guaranteed that δ ≥ 8α, since we
checked the interval [α, 8α]. This implies α ≤ δ/8 and so δ∗ ∈ [δ − 4α, δ + 4α] implies that
δ∗ ∈ [δ − δ/2, δ + δ/2]. Hence we have an interval with bounded spread which contains δ∗

and so by Lemma 5.10, (G) efficiently computes a (1 + ε)-approximation for δ∗.

5.3.2 Running Time

Let n = |P | and N = N(ε, π1, . . . , πk). By Lemma 5.9 that the call to approxDistances
in (B) takes O(n log n) time. Since searchEvents just preforms a binary search over the
O(n) values returned by approxDistances by using decider, which runs in O(N) time by
Lemma 5.6, we know that (C) takes O(N log n) time. Since [α, 8α], [β/2, β], and [δ/2, 3δ/2]
are all intervals with bounded spread, we have by Lemma 5.10, that steps (D), (E), and
(G) run in O(N log(1/ε)) time. Finally, by Lemma 5.12, the call to solver in line (F) takes
O(N logN) time. We thus have the following.

Lemma 5.13 Let π1, . . . , πk be k given polygonal c-packed curves in IRd of total complexity
n, let ε > 0 be a parameter, and let N = N(ε, π1, . . . , πk). Then one can compute, in
O(N log(n/ε) + n log n) time, reparameterizations of the curves that 1 + ε approximate the
value of dmean(π1, . . . , πk). In particular, one can 1 + ε approximate the mean curve of
π1, . . . , πk.

5.3.3 Free Space Complexity

Lemma 5.14 For k c-packed curves π1, . . . , πk in IRd of total complexity n, and 0 < ε < 1,
we have that N = N(ε, π1, . . . , πk) = O((c/ε)k−1n).

Proof : Let δ ≥ 0 be a fixed parameter, µ = εδ, and π′1 = simpl(π1, µ), . . . , π′k = simpl(πk, µ).
The free space in the polyhedral complex is partitioned into connected components. We

must bound the size of the component which contains the start vertex, that is the reachable
free space, R. Observe that one can charge a maximal dimensional cell in the polyhedral
complex to an adjacent lower dimensional cell, since maximal cells contribute to N only if
one of their adjacent proper subcells contributes to N. A non-maximal cell corresponds to
some vertex v on one of the curves, and either a vertex or an edge from each one of the k−1
other curves. Consider a ball, b, of radius r = 2δ centered at v. We now wish to count the
number of features from the other curves (i.e. edges or vertices) that intersect this ball.

21

b′

v
b

r

2r

To this end, consider one of the other curves, π′i. Let Xi be the
set of all features of π′i that intersect b. Consider a ball, b′, of radius
2r around v. Since r ≥ µ and the edges of a µ simplified curve are
of length ≥ µ (with the exception of the last edge), every edge
feature in Xi must contribute at least length µ to the intersection
of b′ and π′i (note that if the feature is a vertex, then it is adjacent
to an edge which contributes at least length µ). By Lemma 5.3,
the total length of π′i inside this b′ is at most 12cr. Therefore,

|Xi| = O

(‖π′i ∩ b′‖
µ

)
= O

(
cr

µ

)
= O

(
cδ

εδ

)
= O

(c
ε

)
.

Similarly, for each of the other k − 1 simplified curves, there are also O(c/ε) features close
enough to v, that can be involved in a cell that contributes to N. Such a cell in the polyhedral
complex involves choosing the vertex v, and one of these O(c/ε) features from each of the
other k− 1 curves, and hence there are |X1| · |X2| . . . · |Xk−1| = O((c/ε)k−1) such cells. Since
there are n vertices in total we thus have that N = O((c/ε)k−1n).

5.4 The Result

Theorem 5.15 Let π1, . . . , πk be k given polygonal c-packed curves in IRd with total com-
plexity n, let ε > 0 be a parameter, and let N = N(ε, π1, . . . , πk) = O((c/ε)k−1n). Then one
can compute, in O(N logN) time, reparameterizations of the curves that (1 + ε)-approximate
the value of dmean(π1, . . . , πk). In particular, one can 1 + ε approximate the mean curve of
π1, . . . , πk in O(N logN) = O((c/ε)k−1n log n) time.

6 Computing Optimal Fréchet Paths for DAG Com-

plexes

In this section, we present a simple algorithm for computing exactly the monotone Fréchet
distance between two polygonal curves. This algorithm has running time O(n2 log n), and
uses randomization instead of parametric search. In fact, the algorithm is considerably more
general and applies to a wider class of inputs.

DAG complexes. Consider a directed acyclic graph (DAG) with vertices in IRd, where a
directed edge p → q is realized by the segment pq. We refer to such a graph as being a
DAG complex . Given two DAG complexes C1 and C2, start vertices s1 ∈ V (C1) , s2 ∈ V (C2),
and end vertices t1 ∈ V (C1) , t2 ∈ V (C2), the problem is finding two directed polygonal paths
π1, π2 in C1 and C2, respectively, such that:
(A) The path πi uses only edges that appear in Ci, and it traverses them in the direction

compliant with the orientation of the edges in Ci, for i = 1, 2.
(B) The curve πi connects si to ti in Ci, for i = 1, 2.
(C) The monotone Fréchet distance between π1 and π2 is minimized among all such curves.

22

Note that this problem includes the problem of computing the monotone Fréchet distance
between two polygonal curves (i.e., orient the edges of the curves in the natural way and
consider them to be DAG complexes).

6.1 The Decision Procedure

The algorithm is a direct extension of the work of [AG95]. Their algorithm relied on the fact
that there was a clear topological ordering on the cells of the free space, and hence reachability
information could be propagated. In this case, there is also a topological ordering (since it is
a DAG). Hence, in the product space of two DAG complexes there is an ordering of the cells
according to the underlying ordering of the two DAGs, and this ordering is acyclic.

So, let C1 and C2 be the two given DAG complexes, δ a specified radius, and s1, s2, t1, t2
the given vertices. The problem is to decide if there are paths between the start and end
vertices in the corresponding complexes of Fréchet distance at most δ.

Algorithm. Compute the topological orderings of the cells (i.e., vertices and edges) of C1

and C2. In the resulting ordering ≺i, it holds that ∆ ≺i ∆′ if ∆ appears before ∆′ in this
ordering, for i = 1, 2, where ∆,∆′ ∈ Ci.

We compute the product complex C = C1 × C2, and compute the topological ordering of
the cells of C. Formally for ∆ = (∆1,∆2) ,∆′ = (∆′1,∆

′
2) ∈ C we have that ∆ � ∆′ if and

only if ∆1 �1 ∆′1 and ∆2 �2 ∆′2. Clearly, the ordering ≺ over the cells of C is acyclic, and
can be computed in linear time in the size of the complex.

Now, just as in [AG95], we start at the start vertex in the product space (s1, s2), visit cells
according to their topological order, and compute the free space and propagate reachability
information on the fly when we reach a new cell.

Since we are working in the product space instead of in the parametric space, the two
dimensional cells are parallelograms instead of squares.

The reachability information is being propagated in a manner similar to [AG95], except
we propagate between adjacent cells, instead of neighboring two dimensional cells. Note, that
no pair of two dimensional cells are directly adjacent, as there must be a one dimensional cell
separating them. As such, for each edge (i.e., one dimensional cell) of C we maintain the set
of reachable points. Unlike in [AG95], the reachability information along a bounding edge in
the product space might not be a single interval, since potentially multiple cells propagate
to that bounding edge. However, by Lemma 2.3, we only need to compute the first point
(according to the ordering along this edge) that is reachable on this edge (notice, that an
edge is always a product of a vertex of one curve and a directed edge of the other curve, and
as such it has a natural ordering).

In particular, when the algorithm visits a cell ∆ in this ordering, it fetches all the cells
that are adjacent to it and appear before it in the ordering. For each adjacent cell, the
reachability information computed is of constant size, and hence we can compute the reach-
ability information for the new cell in constant time. Indeed, the handling depends on the
dimension of ∆:
(A) dim(∆) = 0: (∆ is a vertex), the algorithm computes if it is reachable from any of its

direct ancestors, and if so we mark it as reached.

23

(B) dim(∆) = 1: (∆ is an edge), the algorithm computes the first point on the edge reachable
from its direct ancestors.

(C) dim(∆) = 2: (∆ is a parallelogram), the algorithm uses the reachability information on
the two incoming edges and the incoming vertex to compute the reachability inside the
parallelogram. (Clipping the region to F≤δ inside this cell.)

As the algorithm visits the cells in a topological order, the work in maintaining the
reachability information, can be charged to a cell’s predecessors. As such, overall, the running
time of the algorithm is linear in the complex size.

The size of a DAG complex is the number of edges in it (since we assumed implicitly that
the input DAG complexes are connected). Let n be the number of edges in the larger of the
two DAG complexes under consideration. There are potentially O(n2) cells in the product
space C. As such, the running time of the decision procedure is O(n2).

Lemma 6.1 Let C1 and C2 be two DAG complexes, n be the number of edges in the larger of
the two, s1, t1 ∈ C1, s2, t2 ∈ C2 be start and end vertices, and δ ≥ 0 be a parameter. Then,
one can decide, in O(n2) time, if there exists two paths π1 and π2 in C1 and C2, respectively,
such that (i) πi connects si with ti, for i = 1, 2, and (ii) dm

F (π1, π2) ≤ δ, where dm
F (·, ·) is

the monotone Fréchet distance. Furthermore, if such paths exist, the algorithm returns them
together with their respective reparameterizations realizing this distance.

6.2 Using the Decision Procedure

In the following, let C1 and C2 be the two DAG complexes under consideration. We outline a
randomized algorithm to compute the value of the Fréchet distance between the two curves
in C1 and C2, that start and end at their respective start and end vertices, that minimize the
Fréchet distance.

The algorithm needs to search over the critical values when the decision procedure changes
its behavior. These critical values are the same as in Alt and Godau [AG95] (vertex-vertex,
vertex-edge and monotonicity events). Indeed, for any pair of paths in the DAG complexes,
the critical values for these two paths are the same as in [AG95]. As such, since DAG
complexes are the union of paths, the critical values are the same.

In the following, let δ∗ denote the actual minimum value of the Fréchet distance. Given
a parameter δ, let decider(δ) be the decision procedure described above. Let extract(a, b)
be a procedure that returns all critical values determined by C1 and C2 whose radius is in the
interval [a, b]. Suppose, for the time being, that the following subroutines have the following
running times:

(A) decider(δ) runs in O(n2) time (Lemma 6.1).
(B) extract(a, b) runs in O(n2 log n+ k log n) time, where k is the number of critical values

with radius in the interval [a, b].
(C) One can uniformly sample a critical value from the set of all critical values in O(1) time

per sample.

The new algorithm is depicted in Figure 2.

24

compFr(C1, C2, s1, s2, t1, t2):
R: random sample of µ = 4n2 critical values
Sort R
Perform a binary search over R using decider
I = [a, b]← Atomic interval of R containing δ∗

S ← extract(a, b)
// S: all critical values in [a, b]

Sort S
x← Smallest value in S for which decider accepts

// Computed using a binary search

Return x

Figure 2: The algorithm for computing the Fréchet distance between two DAG complexes.

6.2.1 Computing the Critical Values in an Interval

To complete the description of the algorithm, we need to describe how to implement ex-
tract(a, b). For the interval I = [a, b], we need to compute all the critical values with radius
in I. We can explicitly compute all the radii of vertex-vertex and vertex-edge events in this
interval and sort them in O(n2 log n) time, where n is the number of edges (since there are
O(n2) such events in total and each radius can be computed in O(1) time). Indeed, for a
vertex-vertex event, its radius is the distance between the two vertices that define it. Simi-
larly, the radius of a vertex-edge event is the distance between a vertex and an edge. Both
types of radii can be computed in constant time, given the two elements that define them.

In order to compute the radii of monotonicity events in I, we apply a variant of the
standard line sweeping algorithm (i.e KDS). Specifically, for two DAG complexes C1 and C2,
consider finding all monotonicity events between an edge e of C1, and pairs of vertices from
V = V (C2). To this end, place a sphere of radius δ at each point of V with radius δ = a. We
now increase the radius δ till it reaches b. The algorithm maintains an ordered list L of the
intersections of the spheres with the edge e. The events in this growing process are:
(A) The first time a sphere intersects e (this will create two intersections, if the intersection

happens internally on e, since after this point the sphere will intersect e in two places).
(B) When the intersection point of a sphere with e grows past an endpoint of e.
(C) When two different spheres intersect at the same point on e. At this point, the algorithm

exchanges the order of these two intersections along e. The value of δ when such an
event happens is the radius of a monotonicity event.

At any point in time, the algorithm maintains a heap of future events. Whenever a new
intersection point is introduced, or two intersections change their order along e, the algorithm
computes the next time of an event involving these intersections with the intersections next
to them along e.

It is clear that between such events the ordering of the intersections of the spheres with e
does not change. Similarly, for a monotonicity event to happen on e, there must be a point
in time in which the corresponding spheres are neighbors along e. Hence, this algorithm will
correctly find all the monotonicity events.

25

It takes O((n+ k) log n) time to compute all the relevant monotonicity events involving
e and V , where k is the number of such events. We must do this for all edges of C1 and
hence it takes O((n2 + k′) log n) time to compute all the monotonicity events between edges
of C1 and vertices of C2, where k′ =

∑
i ki and ki is the number of monotonicity events in

the interval [a, b] involving the ith edge of C1. Therefore it takes O((n2 + k′′) log n) time to
compute all the relevant monotonicity events between C1 and C2, where k′′ is the number of
such events (i.e. both those involving edges of C1 and those involving edges of C2).

6.2.2 Sampling Critical Values

We can uniformly sample critical values in O(1) time, as follows. A vertex-edge event is de-
termined by sampling a vertex and an edge, a vertex-vertex event is determined by sampling
a pair of vertices, and a monotonicity event is determined by sampling a pair of vertices
and an edge. Since we can easily uniformly sample vertices and edges in O(1) time, we can
therefore do so for critical events. In general, the decision of which type of critical event to
sample would have to be weighted by the respective number of such events.

6.3 Analysis

Let R be the random sample of critical values, of size O(n2). The interval [a, b] computed
by compFr contains δ∗. The call to extract(a, b) takes O(n2 log n+ k log n) time, where k
is the number of monotonicity events. The following lemma shows that k = O(n2).

Lemma 6.2 Let I = [a, b] be the interval computed by compFr, and let c be some positive
constant. Then,

Pr
[
number of critical events in [a, b] > 2cn lnn

]
≤ 1

nc
.

Proof : There are 2
(
n
2

)
n ≤ n3 possible monotonicity events, 2n2 possible vertex-edge events,

and n2 possible vertex-vertex events. As such, the total number of critical events is bounded
by Z = n3 + 2n2 + n3 ≤ 2n3.

Consider the position of δ∗ on the real line. Let C be the set of the radii of all these
critical events, and let U− (resp. U+) be the set of M = cn lnn values of C that are closest
to δ∗ that are smaller (resp. larger) than it, and let U = U− ∪ U+.

If the number of values in C smaller than δ∗ is at most M , then there could be at most
M critical values smaller than δ∗ in [a, b]. The same holds if the C contains less than M
values larger than δ∗. As such, in the following, assume that both quantities are larger than
M .

The probability that the random sample R of size µ = 4n2 picked by the algorithm, does
not contain a point of U−, is at most(

1− |U
−|
|C|

)µ
≤
(

1− c lnn

2n2

)4n2

≤ exp(−2c lnn) ≤ 1

2nc
.

26

This also bounds the probability that R does not contain a value of U+. As such, with high
probability, [a, b] contains only events in the set U . Namely, [a, b] contains the radii of at
most |U−|+ |U+| ≤ 2M monotonicity events, with probability ≥ 1− 1/nc.

Combining all our results, we thus have the following theorem.

Theorem 6.3 For two DAG complexes, C1 and C2, of total complexity n, with start and end
vertices s1, t1 ∈ C1, s2, t2 ∈ C2, the algorithm compFr(C1, C2, s1, t1, s2, t2) returns two curves
π1 and π2, such that π1 (resp. π2) connects s1 (reps. s2) to t1 (resp. t2) in C1 (resp. C2).
Furthermore, the monotone Fréchet distance between π1 and π2, is the minimum among all
such curves. The running time of the algorithm is O(n2 log n), with probability ≥ 1− 1/nc.

Remark 6.4 The above result implies that given two polygonal curves in IRd one can com-
pute the Fréchet distance between them, in O(n2 log n) time (this running time bound holds
with high probability), by a simple algorithm that does not use parametric search.

7 Conclusions

In this paper, we showed that the algorithm for computing the (weak) Fréchet distance
between two curves can be extended to more general settings. This results in a slew of
problems that can be solved using the new framework.

Monotonicity. Our main algorithm from Section 3 is an extension of the algorithm of Alt
and Godau [AG95] for the weak Fréchet distance. It is natural to ask if the new framework
can handle monotonicity. In Section 6, we offered a very restricted extension of our framework
to this case, in the process presenting a new simpler algorithm for computing the monotone
Fréchet distance between polygonal curves.

For more general settings, if the underlying complex is not one dimensional then it is not
clear what monotonicity means. Even if we restrict ourselves to the case of k input curves,
for k > 2, it is not immediately clear how to handle monotonicity efficiently, and we leave this
as an open problem for further research. Interestingly, there are cases where monotonicity
actually makes the problem easier.

Running Time. The running time of the general algorithm is O
(
nk
)

when handling k
input complexes and is probably practical only for very small values of k. In Section 5
we showed that one can get a (1 + ε)-approximation for the mean curve problem for k c-

packed curves in Õ(n log n) time. It should be possible to extend this same procedure to
approximate, in a similar running time, some of the other problems that are solved by the
general framework, under similar assumptions on the input.

Acknowledgments.

The authors thank Anne Driemel, Jeff Erickson, Steve LaValle, Jessica Sherette and Carola
Wenk for useful discussions on the problems studied in this paper.

27

References

[AB10] H. Alt and M. Buchin. Can we compute the similarity between surfaces? Dis-
crete Comput. Geom., 43(1):78–99, 2010.

[AC10] H. Ahn and O. Cheong. Aligning two convex figures to minimize area or perime-
ter. Algorithmica, 2010.

[AERW03] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. J. Algorithms,
49:262–283, 2003.

[AG95] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5:75–91, 1995.

[BBG08a] K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement.
In Proc. 16th ACM SIGSPATIAL Int. Conf. Adv. GIS, pages 288–297, 2008.

[BBG+08b] K. Buchin, M. Buchin, J. Gudmundsson, Maarten L., and J. Luo. Detecting
commuting patterns by clustering subtrajectories. In Proc. 19th Annu. Internat.
Sympos. Algorithms Comput., pages 644–655, 2008.

[BBK+07] K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is it
to walk the dog? In Proc. 23rd Euro. Workshop on Comput. Geom., pages
170–173, 2007.

[BBS10] K. Buchin, M. Buchin, and A. Schulz. Fréchet distance of surfaces: Some simple
hard cases. In Proc. 18th Annu. European Sympos. Algorithms, pages 63–74,
2010.

[BBvK+10] K. Buchin, M. Buchin, M. van Kreveld, M. Löffler, R. I. Silveira, C. Wenk, and
L. Wiratma. Median trajectories. In Proc. 18th Annual European Symposium
on Algorithms (ESA), volume 6346, pages 463–474. Springer, 2010.

[BPSW05] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. In Proc. 31st VLDB Conference, pages 853–864, 2005.

[CW09] A. F. Cook and C. Wenk. Geodesic fréchet distance inside a simple polygon.
ACM Trans. Algo., page to appear, 2009.

[DHW10] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. In Proc. 26th Annu. ACM Sympos. Comput.
Geom., pages 365–374, 2010. http://arxiv.org/abs/1003.0460.

[DR04] A. Dumitrescu and G. Rote. On the Fréchet distance of a set of curves. In Proc.
16th Canad. Conf. Comput. Geom., pages 162–165, 2004.

[God99] M. Godau. On the complexity of measuring the similarity between geometric
objects in higher dimensions. PhD thesis, Free University of Berlin, 1999.

http://arxiv.org/abs/1003.0460

28

[HR10] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended, 2010.
http://www.cs.uiuc.edu/~sariel/papers/10/frechet3d/.

[KHM+98] S. Kwong, Q. H. He, K. F. Man, K. S. Tang, and C. W. Chau. Parallel genetic-
based hybrid pattern matching algorithm for isolated word recognition. Int. J.
Pattern Recog. Art. Intel., 12(5):573–594, August 1998.

[KKS05] M.S. Kim, S.W. Kim, and M. Shin. Optimization of subsequence matching under
time warping in time-series databases. In Proc. ACM symp. Applied comput.,
pages 581–586, New York, NY, USA, 2005.

[KP99] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive
dataset. In Proc. of the Third Euro. Conf. Princip. Data Mining and Know.
Disc., pages 1–11, 1999.

[Mat91] J. Matoušek. Randomized optimal algorithm for slope selection. Inform. Process.
Lett., 39:183–187, 1991.

[MP99] M. E. Munich and P. Perona. Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification. In Proc.
7th Int. Conf. Comp. Vision, pages 108–115, 1999.

[SKB07] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Fréchet distance based
approach for searching online handwritten documents. In Proc. 9th Int. Conf.
Doc. Analy. Recog., pages 461–465, 2007.

[vOV04] R. van Oostrum and R. C. Veltkamp. Parametric search made practical. Comput.
Geom. Theory Appl., 28(2-3):75–88, 2004.

[WSP06] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed:
Localizing global curve-matching algorithms. In Proc. 18th Int. Conf. Sci. Statis.
Database Manag., pages 879–888, 2006.

http://www.cs.uiuc.edu/~sariel/papers/10/frechet3d/

	Introduction
	Preliminaries
	Curves and the Fréchet Distance
	Complexes
	Product Spaces
	Convexity of the Free Space in a Cell
	Bottleneck Shortest Path Algorithm

	Computing Optimal Fréchet Paths in Complexes
	Algorithm
	Analysis
	Correctness
	Running Time Analysis
	Applications

	Generalized Algorithm for k Complexes

	Applications
	Mean Curve
	Walking a Pack of Dogs
	More General Settings
	Minimizing Perimeter of Motion

	Computing the Mean Curve for c-packed Curves
	Preliminaries
	Definitions and Lemmas
	Subroutines

	Algorithm
	Correctness and Running Time
	Correctness
	Running Time
	Free Space Complexity

	The Result

	Computing Optimal Fréchet Paths for DAG Complexes
	The Decision Procedure
	Using the Decision Procedure
	Computing the Critical Values in an Interval
	Sampling Critical Values

	Analysis

	Conclusions

