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Abstract
The Most Likely Voronoi Diagram is a generalization of the well known Voronoi Diagrams to
a stochastic setting, where a stochastic point is a point associated with a given probability of
existence, and the cell for such a point is the set of points which would classify the given point
as its most likely nearest neighbor. We investigate the complexity of this subdivision of space in
d dimensions. We show that in the general case, the complexity of such a subdivision is Ω(n2d)
where n is the number of points. This settles an open question raised in a recent (ISAAC 2014)
paper of Suri and Verbeek [24], which also defined the Most Likely Voronoi Diagram. We also
show that when the probabilities are assigned using a random permutation of a fixed set of values,
in expectation the complexity is only Õ

(
ndd/2e) where the Õ(·) means that logarithmic factors

are suppressed. In the worst case, this bound is tight up to polylog factors.
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1 Introduction

Voronoi diagrams are a well known data structure in Computer Science. Given a finite set
of points S, say in Euclidean d-space, the Voronoi diagram is a partition of space into cells,
one for each point of S, such that the cell for each point s ∈ S contains all points closer
to s than to any other point of S. We study this classical data structure in the presence
of uncertainty. For example, consider a situation in which a set of facilities (say car repair
shops) are modeled as points, and the probability that a particular facility can provide a
desired service (repairing your car) is known. A natural question is then, which facility is
the most likely to be the nearest facility that can provide the desired service.

While uncertainty has been modeled in several ways in different contexts, we investigate
the problem in the presence of existential uncertainty. The input in this model is a set
P = {p1, . . . , pn} of n stochastic points, where each stochastic point pi is a tuple (si, πi)
where si is a regular point in IRd (we will call them sites, or simply points when it is clear
they are not meant as probabilistic points) and πi is its probability of existence. Consider the
product distribution induced by these individual distributions. Under this distribution, we
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can compute for any query point x, its most likely nearest neighbor (MLNN). The partition
of IRd where for each pi we have the associated region of points which would classify it as
its most likely nearest neighbor, is called the Most Likely Voronoi Diagram (MLVD). This
data structure was introduced in [24], where the authors investigated its properties in the
simplest setting of d = 1 dimensions. Even in this simple setting, it was not obvious how
to bound the worst case complexity of this data structure, but it was shown to be Θ(n2).
However, the lower bound construction relied on very carefully chosen probability values and
location of the sites involved. Under certain conditions, such as the probabilities assigned
to the sites coming from a random permutation of a fixed set of values, the authors showed
an upper bound of O(n logn) on the complexity. We investigate the complexity of this data
structure in higher dimensions.

Results. Our contributions can be summarized as follows.

We show that in the worst case, the complexity of the MLVD is Ω(n2d). This settles an
open question raised in [24].

When the probabilities assigned to the stochastic points come from a random permuta-
tion on a fixed set of n values, we show that the expected complexity of the MLVD is
Õ(ndd/2e) where the Õ(·) means that terms poly-logarithmic in n are suppressed. Note
that this includes the case when all values are independently sampled from a single distri-
bution (as one can first sample and then randomly permute the values). This generalizes
a result of [24]. In the worst case, this bound is tight up to polylog factors.

Related work. The work most closely related to ours is of course the paper [24] which
defined the MLVD and investigated upper and lower bounds for it in 1-d. Under the aegis
of proximity searching, there has also been work under different uncertainty models [5, 3].
These papers investigate different definitions of closeness in the presence of uncertainty, and
thereby the resulting Voronoi diagrams are different. For example the Expected Nearest
Neighbor(ENN) Voronoi diagram is defined in [5], and the nonzero Nearest Neighbor Voronoi
diagram is studied in [3]. These works focus on the 2-dimensional case, and even there
tight bounds on the complexity of the Voronoi diagrams defined are not known. More
generally, there has been a lot of work on uncertainty in several communities including
databases, machine learning, optimization, and computational geometry [8, 9, 16]. Several
fundamental problems have been studied in uncertain settings; see [5, 3] for work on nearest
neighbors, [4] for work on range searching, [2] for skylines, and [1] for work on coresets. In
the existential uncertainty model there has been a flurry of recent work on convex hulls [6],
separability [14, 25] (see also [12] for work on separability in a different model of uncertainty),
containment and evasion problems [21], arrangements [22], skylines [10] and optimization
problems such as minimum spanning trees, and closest pair problems [17, 18].

For the upper bound, we use the candidate set technique, developed by Har-Peled and
Raichel [15], and in particular the notation and background we present to use this technique
closely follows that of [15]. Their aim was to bound the expected complexity of the multi-
plicative Voronoi diagram. While such diagrams differ from the MLVD, the candidate set
technique is general enough, that with some modification and generalization, it can also be
used to bound the complexity of the MLVD. We remark that while our upper bound proof
is a significant contribution of this paper, in particular as it generalizes the bounds of [24]
to higher dimensions, the main new technical contribution is our lower bound proof.
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2 Preliminaries

Notation. Let S be a set of n points in general position in IRd, which we call sites.
Throughout the paper we assume d is a constant. Let Π be a set of n values in the interval
(0, 1). The values in Π are indexed in decreasing order, π1 ≥ . . . ≥ πn.

We use T = 〈s1, . . . , sn〉 to denote a random permutation of the sites in S. Let Ti =
〈s1, . . . , si〉 denote the prefix of this permutation of length i.

When we care only about what elements appear in a permutation, T , but not their
internal ordering, we use the notation S = set(T ) to denote the associated set. As such,
Si = set(Ti) is the unordered prefix of length i of T .

We let [n] denote the set {0, 1, . . . , n− 1} for any natural number n.
Arrangements. As it will be used throughout the paper, we now define the standard
terminology of arrangements (see [7]). A set H of n hyperplanes in IRd, induces a partition
of IRd into connected cells, called the arrangement of H, and denoted A(H). Specifically,
each cell is a maximal connected region of the intersection of a (possibly empty) subset of H,
which does not intersect any hyperplane not in this subset. In particular, the d-dimensional
cells are the maximal connected subsets of IRd which do not intersect any hyperplanes in H.
The combinatorial complexity of A(S) is the total number of cells of all dimensions.

2.1 Voronoi diagrams
Let S = {s1, . . . , sn} be a set of n point sites in the IRd. For a closed set Y ⊆ IRd, and any
point x ∈ IRd, let d(x, Y ) = miny∈Y ‖x− y‖ denote the distance of x to the set Y . For
any two sites s, r ∈ S, we define their bisector β(s, r) as the set of points x ∈ IRd such
that d(x, s) = d(x, r). Clearly, β(s, r) is a hyperplane, passing through the midpoint of the
segment [s, r] and orthogonal to it.

Each s ∈ S, induces the function fs(x) = d(x, s), where x is any point in IRd. For
any subset H ⊆ S and any site s ∈ H, the Voronoi cell of s with respect to H, de-
noted Vcell(s,H), is the subset of IRd whose closest site in H is s, i.e. Vcell(s,H) ={
x ∈ IRd

∣∣∣ ∀r ∈ H fs(x) ≤ fr(x)
}
. Finally, for any subset H ⊆ S, the Voronoi diagram

of H, denoted V(H), is the partition of space into Voronoi cells induced by the minimization
diagram of the set of functions

{
fs
∣∣ s ∈ H}.

2.2 Most Likely Voronoi diagrams
We now consider a set P of n stochastic points where the ith stochastic point pi = (si, πi),
and πi > 0.

For a given query point x, let Bi(x) denote the set of sites in the open ball with center x
and radius ‖x− si‖. The probability that a site si is the nearest neighbor to a query point
x is given by the expression

Πnn(si, x) = πi
∏

sj∈Bi(x)

(1− πj) (1)

The most likely nearest neighbor of the query point x is thenMLNN(x) = arg maxsi∈P
Πnn(pi, x).

For any subset H ⊆ S and any point s ∈ H, the most likely Voronoi cell of s with
respect to H, denotedMcell(s,H), is the subset of IRd whose most likely nearest neighbor in
H is s, i.e. Mcell(s,H) =

{
x ∈ IRd

∣∣∣ ∀r ∈ H Πnn(s, x) ≥ Πnn(r, x)
}
. Finally, for any subset
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H ⊆ S, the most likely Voronoi diagram (MLVD) of H, denotedM(H), is the partition
of space into Voronoi cells induced by the maximization diagram of the set of functions{

Πnn(s, ·)
∣∣ s ∈ H}. The MLVD is a polyhedral partition of space such that the cell for

each site is the union of a set of polyhedral sets, where some of these sets may possibly be
open. The cell for a given site is not necessarily a connected set. The complexity of the
MLVD is the total number of faces, over all dimensions, of this polyhedral partition.

Let g(n) denote the worst case complexity of the most likely Voronoi diagram. Consider
the arrangement of all the bisectors of the points involved. This has complexity O(n2d).
Within each cell of the arrangement, the ordering of distances is fixed and as such the
probability of each site to be a MLNN is also fixed, where we will resolve ties using a fixed
(but arbitrary ordering of the points). Therefore, within a cell the MLNN is the same for
all points. Thus, O(n2d) is an upper bound on the total complexity of the MLVD. However,
the total complexity of the MLVD can be smaller as adjacent cells can merge and the MLVD
can be a true coarsening of the arrangement.

3 Bounding the expected complexity of the MLVD

For most of this section, we follow closely the presentation in [15] to develop the relevant
machinery. Let S be a set of sites and T = 〈s1, . . . , sn〉 be a random permutation of the
sites in S. Let π1 ≥ π2 ≥ . . . ≥ πn be a fixed set of n probability values in (0, 1). Consider
the (random) set of stochastic points P where the ith stochastic point pi = (si, πi). In
this section we show that the expected value of the complexity of the MLVD of P where
the expectation is over the random permutation T , is given by Õ(ndd/2e) where the Õ(·)
suppresses factors logarithmic in n.

3.1 Candidate sets
I Definition 1. Let T = 〈s1, . . . , sn〉 be an ordered set of n sites in IRd. For any point x in
the IRd, the candidate set of x, denoted by L(x, T ), is the set of all sites si ∈ T , such that
‖x− si‖ = d(x, Ti), for i = 1, . . . , n. In words, si is in L(x, T ) if it is the closest site to x in
its prefix Ti.

Suppose we assign probabilities to the sites si such that πi is assigned to si, where recall
that π1 ≥ π2 ≥ . . . ≥ πn. A prerequisite for a site sj of S to be the most likely nearest
neighbor to x, is that sj is in the candidate set L(x, T ).

I Lemma 2. For a point x in IRd, if MLNN(x) = sj, then sj is in L(x, T ), where T is
the ordering of S by decreasing probabilities.

Proof. Let sj be the most likely nearest neighbor of x, and suppose that ‖x− sj‖ 6= d(x, Tj).
This implies there exists some i < j such that ‖x− si‖ < ‖x− sj‖. However, by the
definition of T , for i < j, we have πi ≥ πj , and so

Πnn(sj , x) = πj Πsk∈Bj(x)(1− πk) ≤ πi Πsk∈Bj(x)(1− πk)
< πi Πsk∈Bi(x)(1− πk) = Πnn(si, x),

which is a contradiction. Therefore, sj must be the closest point to x in its prefix Tj . J

Consider a random permutation T of S, and the candidate set as a random variable. Next, we
investigate the size of this set for all points of space. We prove that with high probability,
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the candidate set is logarithmic in size for all points in space. To this end, we need the
following well known fact. The expectation bound is well known from [20, 11], and the high
probability result was probably well known before as well, but see [15] for a recent written
proof.

I Lemma 3. Let Π = 〈π1, . . . , πn〉 be a random permutation of {1, . . . , n}, and let Xi be an
indicator variable which is 1 if πi is the smallest number among π1, . . . , πi, for i = 1, . . . , n.
Let Z =

∑n
i=1 Xi, then Z = O(logn), with high probability (i.e., for any constant c > 0, one

can choose the constant in the O(·) above such that the probability is at least ≥ 1− 1/nc).

I Corollary 4. Let π1 ≥ . . . ≥ πn be a set of n probabilities in (0, 1). Let S be a set of n
points in IRd, and let T = 〈s1, . . . , sn〉 be a random permutation of S. Assign the probability
πi to si, for all i. Then simultaneously for all points in IRd, their candidate set for T is of
size O(logn), with high probability.

Proof. Fix a point x ∈ IRd. Since T = 〈s1, . . . , sn〉 is a random permutation of S, the
sequence ‖x− s1‖ , . . . , ‖x− sn‖ is a random permutation of the distance values from x to
the sites in S. Therefore, by the definition of the candidate set and Lemma 3, we have
|L(x, T )| = O(logn) with high probability.

Consider the arrangement of all the bisectors of all the pairs of sites in S of complexity
O(n2d). Within each face of this arrangement, the candidate set cannot change, for any
permutation, since all points in this face have the same ordering of their distances to the
sites in S. So pick a representative point for each of the O(n2d) faces. For any such
representative, with probability ≤ 1/nc, the candidate set has > α log(n) sites, for any
constant c of our choosing (where α is a constant that depends only on c). Therefore, by
choosing c to be sufficiently large, taking the union bound on the bad events (where a bad
event is that the size of the candidate set for some face exceeds α log(n)), and then taking
the complement, the claim follows. J

3.2 Getting a compatible partition
The goal now is to find a low complexity subdivision of space, such that within each cell
of the subdivision the candidate set is fixed. As we know, the arrangement of the bisectors
already provides such a subdivision. However, the complexity of this subdivision is high. The
main insight is that by using the standard Voronoi diagram one can get such a subdivision,
which(A) is sensitive to an ordering of the sites (thus, it can intuitively save on certain
permutations over the worst case), and, (B) its complexity in expectation can be bounded
by Õ(ndd/2e). Let Ki denote the Voronoi cell of si in the usual Voronoi diagram of the ith
prefix Si = {s1, . . . , si}. Let A denote the arrangement formed by the overlay of the regions
K1, . . . ,Kn. The complexity of A, denoted by |A|, is the total number of these faces of all
dimensions in the arrangement.

I Lemma 5. For any face F of A = A(K1, . . . ,Kn), the candidate set is the same, for all
points in F .

Proof. Consider adding points in the order s1, . . . , sn. Initially, before any points are added,
all points in IRd have the same candidate set, namely the empty set. When the site si is
added, the only points in IRd whose candidate set changes are those for which si is their
nearest neighbor in Si. However, these are precisely the points in the Voronoi cell of si in
the usual Voronoi diagram of Si. That is, the candidate set changes only for the points
covered by Ki.

The claim now easily follows, as A is the overlay arrangement of these regions. J
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I Theorem 6. Let π1 ≥ . . . ≥ πn be a set of n probabilities in (0, 1). Let S be a set of
n points in IRd, and let T = 〈s1, . . . , sn〉 be a random permutation of S, where probability
πi is assigned to si, for all i. Let Ki = Vcell(si, Ti), for i = 1, . . . , n. Finally, let A =
A(K1, . . . ,Kn) be the arrangement formed by the overlay of all these cells.

Then, the expected complexity of the most likely Voronoi diagram is O
(

E
[
|A|
]
g(logn)

)
,

where |A| is the total complexity of A, and g(m) denotes the worst case complexity of the
most likely Voronoi diagram of m sites.

Proof. Let Z be the set of all permutations of S. For any z ∈ Z, let C(z) denote the size
of the largest candidate set of any point in IRd determined by z. We first argue that for z
sampled uniformly at random from Z, E[|A| g(C(z))] = O(E[|A|] g(logn)).

Partition Z into two sets, good and bad, such that for any z ∈ Z, z ∈ good if C(z) ≤
α logn, and z ∈ bad otherwise, for some constant α. Using Corollary 4, we choose α large
enough such that for z sampled uniformly at random from Z, P[z ∈ bad] ≤ 1/nβ , where
β = β(α) is some sufficiently large constant to be determined shortly. We then have:

E[|A| g(C(z))]
= E[|A| g(C(z)) | z ∈ good] P[z ∈ good] + E[|A| g(C(z)) | z ∈ bad] P[z ∈ bad]
≤ E[|A| g(α logn) | z ∈ good] P[z ∈ good] + E[|A| g(C(z)) | z ∈ bad] /nβ

= g(α logn) E[|A| | z ∈ good] P[z ∈ good] + E[|A| g(C(z)) | z ∈ bad] /nβ .

Now the first term in the above sum is bounded by g(α logn) E[|A|] because of the following
equality: E[|A| | z ∈ good] P[z ∈ good] = E[|A|] − E[|A| | z ∈ bad] P[z ∈ bad] ≤ E[|A|]. To
bound the second term in the sum, observe that both |A| and g(C(z)) are in the worst
case bounded by O(n2d), as both the MLVD and |A| are coarsenings of the arrangement
of all bisectors of the sites, which itself has complexity O(n2d). Hence by choosing β > 4d
we can bound the second term of the above expectation as: E[|A| g(C(z)) | z ∈ bad] /nβ =
O(n4d/nβ) = O(1). Combining the bounds on each term of the sum we get:

E[|A| g(C(z))] ≤ g(α logn) E[|A|] +O(1) = O(E[|A|] g(logn)).

We now argue that for any fixed z ∈ Z, the corresponding complexity of M(S) is
O(|A| g(C(z))), which combined with the above bound on the expectation will complete the
proof. First decompose all faces (of all dimensions) of A into constant complexity simplices.
(Note that the simplices are constant complexity since d is constant). This can be done by
computing a bottom vertex triangulation (see for example [23]). Again since d is assumed
to be constant, this triangulation has the same asymptotic complexity as |A|.

Now we have a partition of space into O(|A|) constant complexity simplices, and by
Lemma 5 within each such simplex the candidate set is fixed. So consider such a simplex
∆, and let L be its candidate set. Lemma 2 implies that the only sites whose most likely
Voronoi cells can have non-zero area in ∆ are the sites in L. That is, the most likely Voronoi
diagram restricted to ∆ is the intersection of ∆ with the most likely Voronoi diagram of
some subset of L. Now the most likely Voronoi diagram of ≤ |L| points has worst case
complexity g(|L|). Since ∆ is a constant complexity region this implies that the complexity
of the most likely Voronoi diagram in ∆ is O(g(|L|)). By definition, no candidate set has
size more than C(z), and hence for any simplex ∆, O(g(|L|)) = O(g(C(z))). Hence the total
complexity over all simplices is O(|A| g(C(z))). J

A naive bound on the worst case complexity is g(m) = O(m2d). Kaplan et al. [19]
showed that for a random permutation of n points (as is the case here) the expected total
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p0 p1 pn−1 p′0 p′1 p′3

α0 α1 αn−1 ε ε ε

m(n−1)0 m01 m11

p1 is MLNN

Figure 1 The lower bound example in 1-d with Ω(n2) complexity.

complexity of A is O(ndd/2e logn) when d is even, and O(ndd/2e) when d is odd. We therefore
readily have the following result.

I Theorem 7. Let π1 ≥ . . . ≥ πn be a set of n probabilities in (0, 1). Let S be a set of n
points in IRd, and let T = 〈s1, . . . , sn〉 be a random permutation of S, where probability πi
is assigned to si, for all i.

Then the expected complexity of the most likely Voronoi diagram is O(ndd/2e log2d+1 n)
when d is even, and O(ndd/2e log2d n) when d is odd.

I Corollary 8. Let S be a set of n points in IRd, where independently for each site s we
sample a probability value from a single fixed distribution over (0, 1). Then the expected
complexity of the most likely Voronoi diagram is O(ndd/2e log2d+1 n) when d is even, and
O(ndd/2e log2d n) when d is odd.

Proof. The distribution induced by choosing the πi from a fixed distribution over (0, 1) is
the same as would be induced by first choosing π1 then, choosing π2 ≤ π1 and so on, and
then permuting them randomly. Under every random permutation for any fixed choice of
the πi the complexity of the most likely Voronoi diagram is bounded by Theorem 7, and
this expression is independent of the choice of the πi. As such in expectation over the πi we
have the same bound. J

Notice that the regular Voronoi diagram of any set of sites is a special case of the MLVD
since if all the probabilities are equal, the MLNN is always the nearest neighbor. Our
bound above holds for any set of sites and a random assignment of probability values from
an arbitrary set, while it is known that the worst case complexity of the regular Voronoi
diagram is Ω(ndd/2e) [13], hence it follows that the bound we establish is tight up to polylog
factors in the worst case.

4 Worst-case lower bound

In this section we show that g(n) = Ω(n2d). Since the construction is a generalization and
uses part of the construction for the lower bound in d = 1 dimensions from [24], we briefly
recall it here.

The construction of [24] uses two groups of stochastic points each with n points. In
the first group S the stochastic points are pi = ((i + 1)/n, αi) for i = 0, 1, . . . , n − 1,
where in [24] they choose αi = 1/(i + 1), but as we show different sets of values also
work. In the second group T the stochastic points are p′i = (2 + j, ε) for ε sufficiently
small, for j = 0, 1, . . . , n − 1. They also follow the convention that if two points have
the same minimum probability of being the MLNN at a point the one with the smaller
index is designated as the MLNN. With this convention they basically show that the
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MLNN changes across each of the bisector points of S and T . The Ω(n2) bisection points
mij are mij = i/(2n) + j/2 + (1 + 1/(2n)) and these are ordered as per the sequence
m00,m10, . . . ,m(n−1)0,m01,m11, . . . ,m(n−1)1, . . . ,m0(n−1),m1(n−1), . . . ,m(n−1)(n−1), i.e. in
lexicographical order first by j and then by i, see Figure 1 for an illustration. They choose
ε so small that a probabilistic point in T can never be the MLNN. For their choice of the
αi = 1/(i+ 1), it turns out it is sufficient to have ε be so small as to satisfy (1− ε)n/n > ε

which is achieved for ε ≤ 1/n2. Next, observe that, for the choice αi = 1/(i+ 1), at a point
infinitesimally to the left of mij the probability of pk being the MLNN is precisely (1−ε)j/n
for k ≥ i and it is (1− ε)j+1/n for 0 ≤ k < i. Thus, to the left of midpoint mij the MLNN
is pi and therefore it assumes n values before j increments by 1 at which point it cycles
through all of pi again for i = 0, . . . , n− 1.

We need a small modification of the above construction for our proof. Notice that the
probabilities for being the MLNN are always of the form (1−ε)j

n . However, as we show for any
p sufficiently small (depending on a function of n) we can choose probabilities for the points
in S and T so that the probabilities of the MLNN are always of the form (1−ε)jp. This can
be seen from the following lemma, and by choosing ε small enough, so that a probabilistic
point in T is never the MLNN. Intuitively, we can use the αi for the probabilities of the sites
in S in the construction outlined above.

I Lemma 9. For any n ≥ 1 and 0 < α0 ≤ 1/n, there exist numbers α1, . . . , αn−1 ∈ (0, 1]
such that

α0 = α1(1− α0) = α2(1− α1)(1− α0) = . . . = αn−1(1− αn−2) . . . (1− α0).

Proof. Given α0 ∈ (0, 1/n] we can define α1 = α0/(1 − α0) and then continue inductively
by αi = αi−1/(1− αi−1). This ensures that,

α0 = α1(1− α0) = α2(1− α1)(1− α0) = . . . = αn−1(1− αn−2) . . . (1− α0).

It can be verified that, αi = α0/(1− iα0) and clearly α0 ≤ α1 ≤ . . . ≤ αn−1. The condition
αn−1 ≤ 1 implies α0 ≤ 1/n, and moreover, any such α0 leads to a valid sequence. J

We need another lemma for the proof below.

I Lemma 10. For any δ small enough, there exist numbers π0, . . . , πn−1 and α0, . . . , αn−1
all in (0, 1), such that for any ε small enough the following are satisfied:

(A) α0 = α1(1− α0) = α2(1− α1)(1− α0) = . . . = αn−1(1− αn−2) . . . (1− α0).
(B) π0 = π1(1 − π0)(1 − δ) = π2(1 − π1)(1 − π0)(1 − δ)2 = . . . = πn−1(1 − πn−2) . . . (1 −

π0)(1− δ)n−1.
(C) ε < (1−ε)nα0, δ < π0(1−δ), π0 > α0, and π0(1−δ) < (1−ε)nα0, i.e., [(1−ε)nα0, α0] ⊆

((1− δ)π0, π0).

Proof. Start with a symbolic δ and π0 and compute π1, . . . , πn−1 iteratively by πi =
πi−1

(1−πi−1)(1−δ) for i = 1, . . . , n − 1. This recursive definition guarantees that π0 = π1(1 −
π0)(1− δ) = π2(1−π1)(1−π0)(1− δ)2 = . . . = πn−1(1−πn−2) . . . (1−π0)(1− δ)n−1. It can
be verified that,

πi = π0

(1− π0)(1− δ)i −
(
π0
∑i−1
j=1(1− δ)j

)
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It can be seen that π0 < π1 < . . . < πn−1. The constraint πn−1 ≤ 1 gives us,

π0 ≤
(1− δ)n−1

1 + (1− δ) + . . .+ (1− δ)n−1

When δ → 0 the upper bound for π0 goes to 1/n and when δ increases the upper bound
decreases. By choosing a very small δ and π0 to be the upper bound we get for it, we
can ensure 1/n > π0(1 − δ) > δ. The first condition can be satisfied for any small enough
α0 ≤ 1/n by Lemma 9. In particular we choose α0 such that α0 lies in ((1 − δ)π0, π0) and
then choose ε small enough so that π0(1− δ) < α0(1− ε)n as well as ε < (1− ε)nα0. Thus,
all the desired conditions can be satisfied, and moreover they are satisfied for every small
enough ε. Also, any starting choice of δ which is small enough will work. J

I Theorem 11. There is a set of (3d − 1)n probabilistic points in IRd whose MLVD has
complexity at least Ω(n2d).

Proof. The proof is an inductive argument. The base case, the result for d = 1 was already
shown in [24], and is sketched above. We show how the induction step works for d = 2
dimensions; the general case is similar and we sketch the details later.

We consider four sets of sites P,Q,Ql, andQr, where |P | = 2n and |Q| = |Ql| = |Qr| = n.
We first explain how we place the sites in Ql ∪ Qr ∪ Q. To understand how the sites are
placed we need to understand how the distance to them varies from a point (x, 0) on the
x-axis. Since it is equivalent to consider squared distance functions we will work with them
instead. Consider the function f(a,b)(x) which is the square of the distance function of point
(a, b) to point (x, 0) on the x-axis. We have f(a,b)(x) = (a − x)2 + b2. The graph of each
such function is a parabola but when x is small the graph is approximately a straight line.
In order to define the placement of sites in Ql ∪ Qr ∪ Q we will choose sites such that the
graphs of the corresponding distance functions are approximately the lines of the grid we de-
fine below. We let Ql = {(a0, b0), . . . , (an−1, bn−1)}, Qr = {(c0, d0), . . . , (cn−1, dn−1)}, Q =
{(e0, f0), . . . , (en−1, fn−1)} and let the corresponding distance functions be Fi, Gj , Hk i.e.,
Fi(x) = f(ai,bi)(x), Gj(x) = f(cj ,dj)(x), Hk(x) = f(ek,fk)(x) for i, j, k ∈ [n]. It will be clear
towards the end of the proof what the values of the coordinates are.

To define the grid, consider the lines Ai, Bj , Ck for i, j, k ∈ {0, . . . , n − 1}, where Ai
has the equation: y = x + ci/n + ci/n2 + M where c > 0 is a number depending on n

we define later, and M > 0 is some constant we fix later. The line Bj has the equation
y = −x+ cj/n+M . Notice that the lines A0, . . . , An−1 are parallel and equally spaced; so
are the lines Bj , though they have a different spacing. The intersection point of Ai, Bj is
the point (xij , yij) where,

xij = c(j − i)
2n − ci

2n2 , yij = c(j + i)
2n + ci

2n2 +M.

All of the xij lie within [−c, c]. Moreover, all the xij are distinct. We can number the point
(xij , yij) by (i, j) (see Figure 2). The points (xij , yij) for a fixed value of j − i lie on a
line with large negative slope. It turns out that the points for the same value of (i+ j) for
0 ≤ i+j ≤ n−1 also lie on lines with small negative slope. These are defined by lines Ck for
k = 0, 1, . . . , n− 1 where Ck is defined by the equation: y = −1

2n+1x+ kc n+1
n(2n+1) +M . It can

be verified easily that Ck passes through all the intersection points (xij , yij) with i+ j = k.
See Figure 2.

We now slightly push down the lines Ck to C ′k where C ′k is defined by the equation
y = −1

2n+1x+kc n+1
n(2n+1) +M − c′ where c′ = O(c/n3). Notice that for each intersection point
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A0

A1

B0

B1

−c c0

C1

C0

(0, 1)

Figure 2 The grid of lines Ai, Bj , Ck.

Ai

Bj

C ′i+j

xlij xhij
xij

Figure 3 The grid with Ck pushed down to C′
k. In [xl

ij , x
h
ij ] the line C′

k where k = i + j lies
above k of the Ai, Bj otherwise, not near an intersection point it lies strictly above k + 1 of them.

(i, j) there is an interval on the line C ′k cut off by the lines Ai, Bj - this interval is also of
length O(c/n3). Consider the projection of this interval onto the x-axis and denote it by
[xlij , xhij ]. This interval contains xij , see Figure 3. It can be verified that the xij are all
separated by at least c/2n2, as such the intervals corresponding to all the xij are disjoint if
c′ is chosen O(c/n3). This property is crucial to us. This grid structure defined by the lines
Ai, Bj , C

′
k is what we need for the remainder of the proof, and the crucial properties are the

following: (i) the intervals for each xij where 0 ≤ i+ j ≤ n− 1, i.e., [xlij , xhij ] are all disjoint,
and, (ii) for x ∈ [xlij , xhij ] there are k lines strictly below C ′k where k = i + j, while if x is
not in such an interval then there are at least k + 1 lines among the Ai, Bj strictly below
C ′k. We want the following correspondence between the distance functions Fi, Gj , Hk and
the set of lines Ai, Bj , C ′k: Fi ↔ Ai, Gj ↔ Bj , Hk ↔ C ′k. Intuitively we assume that the
distance functions look like the lines as per the correspondence. The rest of the proof uses
precisely the above two properties of the lines, and so we continue the proof assuming these
two properties of the distance functions. Unfortunately, distance functions are parabolas
and we cannot assume that they will behave like the lines. Fortunately, we can show that if
c is small enough, within the interval [−c, c] the distance functions can be made to behave
precisely like the lines as desired. Since this issue is somewhat of a technicality we defer the
formal demonstration of it to the end of the proof. Thus, in what follows, we assume that
the distance functions Fi, Gj , Hk for the points of Ql ∪Qr ∪Q behave like the grid of lines
Ai, Bj , C

′
k and have the properties as desired. We continue calling the intersection points of

Fi, Gj as xij and the intervals around them as [xlij , xhij ], where 0 ≤ i+ j ≤ n− 1.
Recall that as we move from −c to c on the x-axis the graphs of Fi, Gj , Hk indicate the
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-c c

P ......
.

QQl Qr

distance functions

− 1
2

1
2

ζ ′

1
4n+2

Figure 4 The main construction of the 2d worst case example.

square of distances from sites of Ql∪Qr∪Q to (x, 0). We will now describe how to place the
sites of P – this depends on having the sites of Ql ∪Qr ∪Q placed as described. Consider
the x-coordinates of all intersections among Fi, Gj , Hk for x ∈ [−c, c] – this includes all the
xij , x

l
ij , x

h
ij , for 0 ≤ i + j ≤ n − 1. Call this set I. By the properties above of the distance

functions in [−c, c] all of these points are distinct. We now want that from a point (x, y)
where x ∈ [−c, c] the ordering of distances to sites among Ql ∪Qr ∪Q is the same as that
for (x, 0). Intuitively, this should be true if y is small enough, but at intersection points of
the distance functions it may not be true. So, consider a number ζ much smaller than (say
it is 1/10 of) the minimum distance between any two of these points in I. Consider the
points of the x-axis between [−c, c] but at least ζ away from all these intersection points 1.
We call this set of points X. Notice that each of [xlij , xhij ] ∩X is still non-empty. For any
such point (x, 0) ∈ X we have the following important property: if (x, 0) /∈ X ∩ [xlij ∩ xhij ]
where i+ j = k then at least k + 1 among the Ql ∪Qr lie strictly closer to it than (ek, fk),
otherwise, if (x, 0) ∈ X ∩ [xlij , xhij ] then only k of them are strictly closer. Moreover, there
is a number ζ ′ depending on ζ such that if we move to a point (x, y) where x ∈ X, and,
−ζ ′ ≤ y ≤ ζ ′ this property is still true. This number ζ ′ > 0 will be used below for placement
of the sites in P .

The sites of P are arranged according to the lower bound example for d = 1 on a vertical
line parallel to the y-axis to the left of the origin, such that the sites in Ql ∪ Qr ∪ Q are
closer for x ∈ [−c, c], see Figure 4 for what the placement of sites looks like. (The assigned
x-coordinates in Figure 4 are derived later on, when we discuss how the grid lines are
approximated by distance functions.) However, they have been “squished” to all lie very
close to the x-axis; the 1-d lower bound construction works for any squishing. In particular,
the squishing ensures all points lie within the strip of width ζ ′ around the x-axis. All
bisectors of the points among P , which are now lines parallel to the x-axis, lie within the
strip as well (these bisector lines are important to the 1-d construction, being the places
where the MLNN among the sites of P changes).

We now indicate the probabilities assigned to the sites. Consider ε, δ, π0, . . . , πn−1, and,
α0, . . . , αn−1 from Lemma 10. We let all sites in Ql ∪ Qr have associated probability δ.
With the site (ek, fk) ∈ Q we associate πk, for k ∈ [n], and to the sites in P we assign the

1 The number ζ is not really significant for this proof, rather a technicality. If we are ζ away from the
intersection points, the distance functions have some gap amongst themselves. Then, as we move away
from the x-axis to (x, y) for small y, the relative ordering of distances to sites in Ql ∪ Qr ∪ Q from
(x, y) remains same as that for (x, 0).
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probabilities αi and ε, for i ∈ [n], see the 1-d construction above. We fix our attention on
x ∈ X. We have the property that if x is within X ∩ [xlij , xhij ], there are k sites among
Ql ∪Qr closer to (x, 0) than (ek, fk) for k = i+ j, otherwise there are at least k+ 1 of them
closer than (ek, fk). By the properties of the numbers from Lemma 10, and the properties
of distances to sites in Ql ∪ Qr ∪ Q we have the following: If x ∈ X ∩ [xlij , xhij ], then the
probability of (ek, fk) being a MLNN where k = i + j is precisely π0 > α0. Otherwise, the
probability of (ek, fk) being a MLNN is at most π0(1− δ). Moreover, for a site in Ql ∪Qr
the probability is δ < π0(1 − δ). Recall from the 1-d construction that the probabilities of
the MLNN are of the form α0(1 − ε)j for 0 ≤ j < n. Therefore, when x ∈ X ∩ [xlij , xhij ]
then (ek, fk) is the MLNN where k = i + j since π0 > α0. If x ∈ X but not within any of
the intervals [xlij , xhij ] then the MLNN will be a site in P , since π0(1− δ) < α0(1− ε)n and
α0(1 − ε)n is a lower bound on the minimum possible probability for a site in P to be the
MLNN.

We now analyze the complexity of the resulting MLVD. Note that P has n2 bisectors at
which the MLNN in P changes. Furthermore, a site (ek, fk) ∈ Q becomes the MLNN briefly
at k + 1 different “intervals” X ∩ [xlij , xhij ] (we will call this a pseudo-interval, since this set
is not actually an interval but lies within [xlij , xhij ] and all such pseudo-intervals are disjoint
from each other by construction), where i + j = k as argued above. Therefore the most
likely nearest neighbor is in Q for n(n + 1)/2 different pseudo-intervals, corresponding to
the intersection points from the lower half of the grid, see Figure 2. Moreover, between any
two of the pseudo-intervals the MLNN lies in P . Since there are n2 bisectors of P , and each
of these bisectors causes a vertex of the MLVD for each of the n(n+ 1)/2 pseudo-intervals,
the total complexity of the MLVD is Ω(n4).

For d > 2, consider the same construction, but now with P replaced by the lower bound
construction for d − 1. The sites in Ql ∪ Qr ∪ Q can be placed in the x1x2 plane and we
reason with the [−c, c] interval on the x1-axis now. In this case, the strips corresponding to
the MLVD for the sites in P , will be replaced by tubes (or higher dimensional versions of
it), which may lie all “around” the x1-axis. However, moving to a point close to x1-axis in
any direction orthogonal to it, will still preserve the ordering of distances as before to sites
in Q (away from intersection points as before), i.e., if we are within a ζ ′ tube of the x1 axis
within the set X then we are in a similar situation as in the 2-d case. We will need a more
general version of Lemma 10, but the crucial point to observe is that the possible probability
values for a site in P to be MLNN will lie in a very small interval depending on δ, and then
one can choose a π0 and δ such that (π0(1− δ), π0) entirely contains this interval. The rest
of the construction details are tedious but work similar to the 2-d case. This leads to a total
complexity of Ω(n2d) for the MLVD, as by assumption the complexity of the MLVD of P
was Ω(n2d−2). The number of points involved in the construction increase by 3n for each
dimension and start with 2n, thus only (3d− 1)n points are involved.

In order to finish the proof we still need to show how to approximate the lines by
actual distance functions. Consider a line y = Px + Q where Q ≥ P 2/4. Consider the
point (β, γ) = (−P/2,

√
Q− P 2/4). It can be verified that the distance function f(β,γ) is

x2 + Px+Q. As such if x ∈ [−c, c] we have that 0 ≤ f(β,γ)(x)− (Px+Q) ≤ c2 and if c is
“small” the parabolas are approximately lines. In particular, consider the grid of Figure 2.
As we noticed the important intersection points are (xij , yij) for 0 ≤ i+j ≤ n−1. Moreover,
the x-coordinates of any two intersection points are separated by Ω(c/n2). The intervals
[xlij , xhij ] are of length O(c/n3). Consider replacing the lines of the grid by thin strips of
width c2. If c = O(1/n4), then c2 � c/n2, c/n3 and the picture looks like the modified
picture of the grid, see Figure 5. As the distance functions lie inside the corresponding
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c2

Figure 5 Grid of strips each of width c2. The dotted lines show the actual distance functions
trapped in the strip within [−c, c]. The lower strip line in each case is the earlier Ai, Bj or C′

k.

strips, the intersection points lie inside the “diamonds” that occur at the intersection of the
strips. Interestingly, the x coordinates of the intersection points do not change, as can be
verified. Moreover because the width of these strips is O(c2) the intersection points will be
still distinct and the corresponding intervals will be disjoint as well. The distance functions
otherwise behave like lines (i.e., they are continuous and intersect at most once), moreover
all the Fi are “parallel” and equally spaced, as are the Gj and the Hk, as such the grid
induced by them looks like and has the essential properties of the grid of lines Ai, Bj , C ′k
of Figure 2 and will suffice for the proof. To fix the coordinates, notice that we can choose
the constant M large enough so that Q > P 2/4 for each of the lines involved; in particular
M = 1 works. The corresponding points can be computed by the formulas for β, γ above
and it can be easily seen that the x coordinates of all points in Ql is −1/2, in Qr it is 1/2
and it is 1/(4n+ 2) for each point of Q, as shown in Figure 4. This completes the proof. J
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