
ptb/dkb 2013 1 EE 3320

Digital Circuit Design Using Xilinx ISE Tools

Table of Contents

1. Introduction

2. Programmable logic devices: FPGA

3. Creating a new project in Xilinx ISE

 3.1 Opening a project

 3.2 Creating an Verilog input file for a combinational logic design

 3.3 Editing the Verilog source file

4. Compilation and Implementation of the Design

5. Functional Simulation of Combinational Designs

 5.1 Adding the test vectors

 5.2 Simulating and viewing the simulation result waveforms

 5.3 Saving the simulation results

6. Preparing and downloading bitstream for the Spartan FPGA

7. Testing a Digital logic circuit

 7.1 Observing the outputs using the on-board LEDs and Seven Segment Display

8. Design and Simulation of sequential circuits using Verilog

 9.1 Design of Sequential Circuits

 9.2 Simulation of Sequential Circuits

9. Design and Simulation of Finite State machines in Verilog

10. Hierarchical circuit design using Modules

11. Post synthesis Timing simulation with Modelsim.

Appendix:

A. Verilog Hardware Modeling – Introduction to the Verilog Language.

B. Digilent BASYS board.

ptb/dkb 2013 2 EE 3320

1. Introduction

Xilinx Tools is a suite of software tools used for the design of digital circuits implemented

using Xilinx Field Programmable Gate Array (FPGA) or Complex Programmable Logic

Device (CPLD). The design procedure consists of (a) design entry, (b) compilation and

implementation of the design, (c) functional simulation and (d) testing and verification. Digital

designs can be entered in various ways using the above CAD tools: using a schematic entry tool,

using a hardware description language (HDL) – Verilog or VHDL or a combination of both. In

this lab we will only use the design flow that involves the use of Verilog HDL.

The CAD tools enable you to design combinational and sequential circuits starting with Verilog

HDL design specifications. The steps of this design procedure are listed below:

1. Create Verilog design input file(s) using template driven editor.

2. Compile and implement the Verilog design file(s).

3. Create the test-vectors and simulate the design (functional simulation) without using a

PLD (FPGA or CPLD).

4. Assign input/output pins to implement the design on a target device.

5. Download bitstream to an FPGA or CPLD device.

6. Test design on FPGA/CPLD device

A Verilog input file in the Xilinx software environment consists of the following segments:

 Header: module name, list of input and output ports.

 Declarations: input and output ports, registers and wires.

 Logic Descriptions: equations, state machines and logic functions.

 End: endmodule

All your designs for this lab must be specified in the above Verilog input format. Note that the

state diagram segment does not exist for combinational logic designs.

Software used: We will use Xilinix Tools (v13.3) and Digilent Adept.(v2.2.0) in this lab.

Hardware : We will use a BASYS2 kit from Digilent Inc. (with a Spartan FPGA from Xilinx) to

implement the designs.

2. Programmable Logic Device: FPGA

In this lab digital designs will be implemented in the Pegasus board which has a Xilinx Spartan

3E FPGA XC3S250E. This FPGA part belongs to the Spartan family of FPGAs. These devices

come in a variety of packages. We will be using devices that are packaged in 208 pin package

with the following part number: XC2S50-PQ208. This FPGA is a device with about 250K gates.

Detailed information on this device is available at the Xilinx website.

http://www.xilinx.com/products/products.htm

ptb/dkb 2013 3 EE 3320

3. Creating a New Project

Xilinx Tools can be started by clicking on the Project Navigator Icon on the Windows desktop.

This should open up the Project Navigator window on your screen. This window shows (see

Figure 1) the last accessed project.

Figure 1: Xilinx ISE Project Navigator window (snapshot from Xilinx ISE software)

Summary window Process

window

ptb/dkb 2013 4 EE 3320

3.1 Opening a project

Select File->New Project to create a new project. This will launch the New Project Wizard

(Figure 2) on the desktop. Fill up the necessary entries as follows:

Figure 2: New Project Wizard (snapshot from Xilinx ISE software)

 Name: Write the name of your new project (E.g.: or_gate)

 Location: The directory where you want to store the new project

 Working Directory: The directory where all your project related files will be saved.

 Description: (Optional) A brief description of your project

Leave the top level module type as “HDL”.

Example: If the project name were “or_gate”, enter “or_gate” as the project name and then click

“Next”.

ptb/dkb 2013 5 EE 3320

Clicking on NEXT should bring up the Project Settings window:

Figure 3: New Project Wizard- Project settings

For each of the properties given below, click on the ‘value’ area and select from the list of values

that appear.

o Device Family: Family of the FPGA used. In this laboratory we will be using the

Spartan3E FPGAs

Ensure that these values are correct!

ptb/dkb 2013 6 EE 3320

o Device: The number of the FPGA device. Note the device number on the FPGA

on the Digilent board! If you are unsure –ask the TA!

Check your board for the device number

o Package: The type of package with the number of pins. The Spartan FPGA used

in this lab is packaged in C6DGQ (which is equivalent to CPG132) package. If

you are unsure, ask the T.A!

o Speed : The Speed grade is “-4”.

ptb/dkb 2013 7 EE 3320

o Synthesis Tool: XST [VHDL/Verilog]

o Simulator: The tool used to simulate and verify the functionality of the design.

Choose ISim as the simulator.

Then click on NEXT to save the entries. The Project Summary window (Figure 4) will show you

a summary of your project details. In this example we have used the project name “or_gate”.

Pay attention to the highlighted details in particular!

Figure 4: New Project Wizard- Project Summary (snapshot from Xilinx ISE software)

Click on ‘Finish’.

All project files such as schematics, netlists, Verilog files, VHDL files, etc., will be stored in a

subdirectory with the project name. A project can only have one top level HDL source file (or

schematic). Modules can be added to the project to create a modular, hierarchical design (see

Section 9).

In order to open an existing project in Xilinx Tools, select File->Open Project to show the list

of projects on the machine. Choose the project you want and click OK.

ptb/dkb 2013 8 EE 3320

Figure 5: Create New source window (snapshot from Xilinx ISE software)

If you would like to create a new source file, from the ISE window, right click on the project

name and choose ‘New source’ or click on the New source button on the toolbar as shown in

Figure 5. You may also choose Project-->New Source from the menu.

3.2 Creating a Verilog HDL input file for a combinational logic design

In this lab we will enter a design using a structural or RTL description using the Verilog HDL.

You can create a Verilog HDL input file (.v file) using the HDL Editor available in the Xilinx

ISE Tools (or any text editor).

If adding an already existing source file (.v file) to the project, in the project Navigator window,

select Project -> Add Copy Source and browse through the disk for the source file.

 If creating a new source file, in the Project Navigator window, select Project -> New Source.

A window pops up as shown in Figure 6. (Note: “Add to project” option is selected by default. If

you do not select it then you will have to add the new source file to the project manually.)

ptb/dkb 2013 9 EE 3320

 Figure 6: New Source Wizard -creating Verilog-HDL source file (snapshot from

Xilinx ISE software)

Select Verilog Module and in the “File Name:” area, enter the name of the Verilog source file

you are going to create. Also make sure that the option Add to project is selected so that the

source need not be added to the project again. Then click on Next to accept the entries. This pops

up the following window (Figure 7).

ptb/dkb 2013 10 EE 3320

 Figure 7: Define Verilog module window (snapshot from Xilinx ISE software)

In the Port Name column, enter the names of all input and output pins and specify the Direction

accordingly. A Vector/Bus can be defined by entering appropriate bit numbers in the MSB/LSB

columns. Then click on Next> to get a window showing all the new source information (Figure

8).

ptb/dkb 2013 11 EE 3320

Figure 8: New Source Wizard window(snapshot from Xilinx ISE software)

Once you click on Finish, the source file will be displayed in the sources window in the Project

Navigator (Figure 1).

If a source has to be removed, just right click on the source file in the Sources in Project

window in the Project Navigator and select Remove in that. Then select Project -> Delete

Implementation Data from the Project Navigator menu bar to remove any related files.

3.3 Editing the Verilog source file

The source file will now be displayed in the Project Navigator window (Figure 9). The source

file window can be used as a text editor to make any necessary changes to the source file. All the

input/output pins will be displayed. Save your Verilog program periodically by selecting the

File->Save from the menu. You can also edit Verilog programs in any text editor and add them

to the project directory using “Add Copy Source”.

ptb/dkb 2013 12 EE 3320

Figure 9: Verilog Source code editor window in the Project Navigator (from Xilinx ISE software)

 Adding Logic in the generated Verilog Source code template:

A brief Verilog Tutorial is available in Appendix-A. For the language syntax and for

construction of logic equations please refer to Appendix-A.

The Verilog source code template generated shows the module name, the list of ports and

also the declarations (input/output) for each port. Combinational logic code can be added

to the verilog code after the declarations and before the endmodule line.

For example, an output z in an OR gate with inputs a and b can be described as,

 assign z = a | b;

Remember that the variable names are case sensitive.

 Other constructs for modeling a logic function:

A given logic function can be modeled in many ways in verilog. Verilog offers numerous

constructs to efficiently model designs. Here is an example in which a 4x1 multiplexer, is

implemented using a case statement:

ptb/dkb 2013 13 EE 3320

module mux4x1 (a,b,c,d,sel,y);

 input a, b, c, d;

 input [1:0] sel;

 output y;

 reg y;

 always @ (a or b or c or d or sel)

 case (sel)

 0 : y = a;

 1 : y = b;

 2 : y = c;

 3 : y = d;

 default : y=1’b0; //One bit binary value ‘0’

 endcase

 endmodule

In the example shown, “sel” is the 2 bits wide select input to the multiplxer. The ‘default’

case in the case statement is reached when the variable value does not match any of the

case options.

The 4x1 multiplexer can also be implemented using a set of if-then-else constructs as

follows:

module mux4x1 (a,b,c,d,sel,y);

 input a, b, c, d;

 input [1:0] sel;

 output y;

 reg y;

 always @ (a or b or c or d or sel)

 if(sel == 2'b00)

 y=a;

 else if (sel ==2'b01)

 y=b;

 else if (sel ==2'b10)

 y=c;

 else if (sel ==2'b11)

 y=d;

 else

 y=1'b0;

endmodule

Even though both the code segments shown above realize a 4x1 multiplexer, each one of

them leads to a different hardware implementation for the given logic. Explaining the

hardware implementations for specific Verilog construct is beyond the scope of this

document. Interested readers can refer to the links in the Verilog tutorial available in

Appendix-A.

ptb/dkb 2013 14 EE 3320

4. Compilation and Implementation of the Design

The design has to be compiled and implemented before it can be checked for correctness, by

running functional simulation or downloaded onto the prototyping board. With the top-level

Verilog file opened (can be done by double-clicking that file) in the HDL editor window in the

right half of the Project Navigator, and the view of the project being in the Module view, the

Implement Design option can be seen in the Process Window. Design Entry Utilities and

Generate Programming File options can also be seen in the process view. The former can be

used to include user constraints, if any and the latter will be discussed later.

To compile the design, expand the Implement Top Module (Figure 10) by clicking on Process-

>Implement Top Module OR by right clicking on the design and choosing Implement Top

Module. It will go through steps like Check Syntax, Compile Logic, Interpret Feedbacks,

Reformat Logic and Optimize Hierarchy. If any of these steps could not be done or done with

errors, it will place a mark in front of that, otherwise a tick mark will be placed after

each of them to indicate the successful completion. If everything is done successfully, a

mark will be placed before the Synthesize-XST option. If there are warnings, one can see

mark in front the Console window present at the bottom of the Navigator window. Every time

the design file is saved; all these marks disappear asking for a fresh compilation.

Figure 10: Implement Top Module option in Xilinx ISE

Clicking this is equivalent to

selecting the ‘Implement

Top Module’ option.

Active process list

ptb/dkb 2013 15 EE 3320

Figure 12 : Implementing the Design (snapshot from Xilinx ISE software)

If there are no errors then the tool shows that the design has been synthesized successfully as in

Figure 12.

ptb/dkb 2013 16 EE 3320

5. Functional Simulation of Combinational Designs

 5.1 Creating a Testbench

 To check the functionality of a design, we have to apply test vectors and simulate the circuit. In

order to apply test vectors, a testbench file is written. Essentially it will supply all the inputs to

the module designed and can check the outputs of the module. Example: For the 2 input OR

Gate, the test bench is created as follows:

1. Right click on the design (or_gate) and select New Source

Figure 13 : Adding a test bench to your design-step1

2. From the new source wizard pop up, select Verilog Test Fixture and enter a

name for the test bench (eg: or_tb) in the File name field as shown in the Figure

and click Next.

ptb/dkb 2013 17 EE 3320

Figure 14 : Adding a test bench to your design-step 2

3. The New source wizard will show the design that the test bench is associated with

(this should be the design that you wish to simulate- in this case, or_gate). Click

Next and then Finish.

ptb/dkb 2013 18 EE 3320

Figure 15 : Adding a test bench to your design-step 3

4. The ISE project navigator will generate some boilerplate test bench code for you

– you may either modify this code or replace it with the following code. Refer to

the Figure

module or_tb ;

// Notice that these automatic definitions are opposite of

// a user defined module.

reg a; //declaration that a and b are registers. State

reg b; // must be assigned

wire z; // must be a wire so output can change state freely

// Instantiate the Unit Under Test (UUT)

or_gate uut (

 .a(a),

 .b(b),

 .z(z)

);

initial

begin

ptb/dkb 2013 19 EE 3320

//test stimuli

 a <= 1’b0;

 b <= 1’b0;

 #100;

 a <= 1’b0;

 b <= 1’b1;

 #100;

 a <= 1’b1;

 b <= 1’b0;

 #100;

 a <= 1’b1;

 b <= 1’b1;

 #100;

end

endmodule

Figure 16: Simulation window in ISE showing the newly created test bench.

ptb/dkb 2013 20 EE 3320

5.2 Simulating and Viewing the Output Waveforms

In the process window right click on Simulate Behavioral Model and click on Run.

Figure 17 : Launching the iSIM simulator from Project Navigator

If the code is free of syntax errors, this will launch the ISim simulator window as shown in figure

(Note; In case you encounter an error when trying to launch the simulator, right click on the

design and ensure that “manual compile order’ is not checked). Also make sure that the test

bench passes the syntax checks. You will be able to observe the simulation waveforms as per the

test stimulus in this window.

ptb/dkb 2013 21 EE 3320

Figure 18 : The iSIM simulator window- behavorial simulation for or_gate design

ptb/dkb 2013 22 EE 3320

6. Preparing and downloading bitstream file for the Spartan

FPGA:

A bitstream file needs to be prepared for each design and downloaded onto the Digilent

prototyping board.

6.1 Generating a User Constraint File

In order to test the design in the Digilent board, the inputs need to be connected to the

switches/buttons on the board and the outputs need to be connected to the onboard LED’s. This

is specified by a “User Constraint File (ucf file). To create a UCF for your design do the

following:

Figure 19: Launching XilinxPlanAhead from Xilinx ISE

Double click on the Floorplan Area/IO/Logic(Plan Ahead) option in the process window. This

will launch the Xilinx Plan Ahead tool.

ptb/dkb 2013 23 EE 3320

Figure 20: Assigning pins to inputs/outputs in Xilinx PlanAhead.

In the PlanAhead window shown in Figure 20, click on the nets that are assigned to the design

(in this case a, b, z) and in the I/O ports window assign the pin number aliases as specified on the

Digilent board.

Refer to I/O pin mapping information for the Digilent board.

o For the OR_GATE example, the user constraints may be specified as follows:

We can use switches SW0 and SW1 on the Digilent board as inputs (a and b) and

LED0 as the output (z). Note that:

Pin P11 and L3 are FPGA pins connected to SW0 and SW1 on the Digilent Board

Pin M5 of the FPGA is connected to LED0 on the Digilent Board.

NET "a" LOC = P11;

NET "b" LOC = L3;

NET "z" LOC = M5;

Input a connects to SW0 (pin P11 on FPGA)

Input b connects to SW1 (pin L3 on the

FPGA)

Output z connects to LED0 (pin M5 on the

FPGA)

Setting switches (SW0, SW1) as inputs and

LED0 as output.

ptb/dkb 2013 24 EE 3320

Figure 21: User Constraint File (snapshot from Xilinx ISE software)

You may verify the generated UCF file by clicking on or_gate.ucf in the Design window in ISE.

If you would like to modify the UCF file manually (to change the switches etc.) you may do so

by clicking on the Edit Constraints(Text) option in the Process window (Figure 15)

6.2 Generating a Bit Stream file (.bit)

In order to program the FPGA, you will need to generate a bit stream file of your design. In the

Xilinix ISE process window:

a. Right click on Generate Programming File and select Process Properties.

You can use this option to manually

edit the ucf file

ptb/dkb 2013 25 EE 3320

Figure 22: Setting the Process Properties in Xilinx ISE.

b. In ‘Startup options’ select JTAG Clock and click “Apply” and then “OK”.

Figure 23: Setting CLK option on Xilinx ISE.

ptb/dkb 2013 26 EE 3320

c. Double click on ‘Generate Programming file’ (or right click and choose Run).

Figure 24: Generating a bistream file for your design.

This will generate a bitstream file that you can use to program the FPGA.

6.2 Programming the Digilent Board using Adept:

To program the FPGA on the Digilent board, do the following:

 Connect the Digilent board to the USB cable (make sure the switch is set to ‘ON’

position).

 Launch the Digilent Adept tool (Start->All Programs->Digilent->Adept)

http://www.digilentinc.com/Products/Detail.cfm?Prod=ADEPT2

ptb/dkb 2013 27 EE 3320

Figure 25: The USB connector and Power switch on the Digilent BASYS board.

Figure 26: The Digilent Adept window

This shows the FPGA version

automatically - this should match

the version on your board

ptb/dkb 2013 28 EE 3320

 Click on Browse and select the bitfile that you generated in step 6.1 (or_gate.bit) and

click on “Program”

Figure 27: Programming the FPGA using Adept

Now you can test the functional behavior of your design on the FPGA using the switches and

LEDS on the BASYS board. Ensure that the “Programming Successful” message appears in the

message window. If you face problems please ensure:

 The USB cable is connected to the board.

 The board is powered ON. Check the switch settings as shown in Figure 19.

 The FPGA device on the board matches the one that you specified in your design

properties. Eg. XC3S250E or XC3S100E. Note that if there is a mismatch you will

usually encounter an error stating “Unable to associate file with device due to

IDCODE conflict”. If this occurs, re check your design properties.

ptb/dkb 2013 29 EE 3320

7. Testing a Digital Logic Circuit (using the Digilent BASYS

board)

Testing a downloaded design requires connecting the inputs of the design to switches or ports

and the outputs of the design to LEDs or 7-segment displays. In case of sequential circuits, the

clock input(s) must also be connected to clock sources. These inputs and outputs can be

connected to appropriately on the Digital Lab workbench.

The Digilent BASYS board used in the Digital Circuits lab has the following features, which

can be used to test the digital logic in the design:

1. 8 Switches -- which can be used to drive up to 8 inputs

2. 4 Buttons -- which can be used as reset signals (or) input switches

3. 8 LEDs -- which can be used to display up to 8 design outputs

4. 4 Seven segment displays -- which can be used to display four digits of

information on the board

5. Mini USB interface

6. Power on switch

Figure 28: The Digilent BASYS board with Spartan 3 FPGA

1 2

3

4

5

6

ptb/dkb 2013 30 EE 3320

Figure 29: Digilent BASYS Board Architecture (www.digilentinc.com)

In order to use the respective input/output device on the board, the pin number of the device must

be connected properly to the design’s input/output. On the Digilent board, the pin number of

these inputs/outputs is as follows:

 Input

FPGA Pin

(To be used in the ucf

file)

Switches

 SW0 pin# P11

 SW1 pin# L3

 SW2 pin# K3

 SW3 pin# B4

 SW4 pin# G3

 SW5 pin# F3

SW6 pin# E2

 SW7 pin# N3

Button

BTN0 pin# G12

BTN1 pin# C11

BTN2 pin# M4

BTN3 pin# A7

ptb/dkb 2013 31 EE 3320

Output

FPGA Pin

(To be used in the ucf

file)

LED

 LD0 pin# M5

 LD1 pin# M11

 LD2 pin# P7

 LD3 pin# P6

 LD4 pin# N5

 LD5 pin# N4

LD6 pin# P4

 LD7 pin# G1

Table 1: Pin mapping on the Digilent BASYS board

7.1 Observing outputs using the on-board LEDs and Seven Segment Displays

The Digilent board has four on-board 7-segment displays (see Figure 22) that are connected to

the corresponding on-board Spartan 3E FPGA chip. This display can be used to observe the

outputs of your design without using any additional wires if the design conforms to the pin

assignments for the on-board 7-segment display. Figure 22 shows the 7-segment display with the

conventional labeling of individual segments.

ptb/dkb 2013 32 EE 3320

Figure 30: 7-segment display (source: Basys user’s manual)

The Digilent board contains a 4-digit common anode seven-segment LED display. The display is

multiplexed, so only seven cathode signals (CA,CB,CC,CD,CE,CF,CG) exist to drive all 28

segments in the display. Four digit-enable signals (AN0, AN1, AN2, AN3) drive the common

anodes, as shown in Figure 22 and these signals determine which digit the cathode signals

illuminate.

Output

FPGA Pin

(To be used in the ucf

file)

LED Anode

(To be used to

Multiplex between

Four Displays)

AN0 pin# F12

AN1 pin# J12

AN2 pin# M13

AN3 pin# K14

LED Cathode CA pin# L14

 CB pin# H12

 CC pin# N14

 CD pin# N11

 CE pin# P12

 CF pin# L13

CG pin# M12

Table 2: Seven segment display LED mapping on the Digilent board

ptb/dkb 2013 33 EE 3320

This connection scheme creates a multiplexed display, where driving the anode signals and

corresponding cathode patterns of each digit in a repeating, continuous succession can create the

appearance of a 4-digit display. Each of the four digits will appear bright and continuously

illuminated if the digit enable signals are driven low once every 1 to 16ms (for a refresh

frequency of 1KHz to 60Hz).

The Seven segment display timing to drive all the four displays is shown below:

Figure 31: Timing diagram for Multiplexed Seven Segment Displays

ptb/dkb 2013 34 EE 3320

8. Design and Simulation of Sequential Circuits using

Verilog HDL

The procedure to create Verilog design files for sequential circuits in Xilinx ISE is the same as

that for combinational circuits. The main difference between combinational and sequential

designs is the presence of flip-flops (registered outputs or nodes in the Declaration section of a

sequential design).

8.1 Design of Sequential Circuits

For large, complex state machines it is easier to specify them as programs. A sequential circuit

can be described either as a procedural block or a state machine in Verilog.

1. A D-flip with asynchronous reset can be modeled as a Procedural block as follows:

module dff_async (data, clock, reset, q);
 input data, clock, reset;
 output q;

 reg q;

 // logic begins here

 always @(posedge clock or reset)

 if(reset == 1'b0)
 q <= 1'b0;
 else
 q <= data;
endmodule

ptb/dkb 2013 35 EE 3320

2. A D-flip with synchronous reset can be modeled as a Procedural block as follows:

module dff_sync (data, clock, reset, q);
 input data, clock, reset;
 output q;

 reg q;

 // logic begins here
 always @(posedge clock)
 if(reset == 1'b0)
 q <= 1'b0;
 else
 q <= data;
endmodule

8.2 Simulation of sequential designs

Except for the additional clock signal, simulation of sequential designs can be done using

test_bench in the same way it was done for combinatorial circuits. The clock signal can be

generated in the test bench using a simple initial block as follows:

module test_bench(clk)

output clk;

reg clk;

initial begin

 clk = 0;

 forever begin

 #5 clk = ~clk; //Time period of the clock is 10 time units.

 end

// rest of the logic

endmodule

ptb/dkb 2013 36 EE 3320

9. Design and Simulation of Finite State machines in

Verilog.

Basically a Finite State Machine (FSM) consists of a combinational logic, sequential logic and

output logic. Where combinational logic is used to decide the next state of the FSM, sequential

logic is used to store the current state of the FSM.

Types of State Machines There are many ways to code finite state machines, but before we get

into the coding styles, it is important to understand the basics.

There are two types of state machines, Mealy and Moore:

Source: EE3320 – Digital Circuits course slides

Depending on the need, either type of state machine can be used.

Encoding Style Since the state machine needs to be represented as a digital circuit, the states

can be represented by the following ways:

 Binary encoding : In this each of the state is represented in binary code (i.e. 000, 001,

010....)

 Gray encoding : In this each of the state is represented in gray code (i.e 000, 001, 011,...)

 One Hot : In this only one bit is high and rest are low(i.e. 0001, 0010, 0100, 1000)

 One Cold : In this only one bit is low, rest are high (i.e. 1110,1101,1011,0111)

9.1 State Machine Design in Verilog

State machine design in Verilog is illustrated with the following example.

Example: Use Verilog HDL to design a sequence detector with one input X and one output Z.

The detector should recognize the input sequence “101”. The detector should keep checking for

the appropriate sequence and should not reset to the initial state after it has recognized the

sequence. The detector initializes to a reset state when input, RESET is activated.

For example, for input X = “…110110101…”,

FSM output Z = “…000100101…”

ptb/dkb 2013 37 EE 3320

9.1.1 Moore State Machine Example:

The state machine diagram of the Moore State machine for sequence detector example is shown

below:

`define CK2Q 5 // Defines the Clock-to-Q Delay of the flip-flop

module moore_fsm(reset,clk,in_seq,out_seq);

input reset;

input clk;

input in_seq;

output out_seq;

reg out_seq;

//-------------Parameters defining State machine States------------------------------------

parameter SIZE = 4;

parameter S0 = 4'b0001 , S1 = 4'b0010 , S2 = 4'b0100, S3 = 4'b1000;

//-------------Internal Variables--

reg [SIZE-1:0] state ;// Seq part of the FSM

reg [SIZE-1:0] next_state ;// combo part of FSM

//----------Moore State machine Code starts Here--

// Determine the next state for each state in the state machine using the input

// sequence given to it. The output next_state is combinatorial in nature.

//--

always @ (state or in_seq)

begin : FSM_COMBO

next_state = 4'b0001;

case(state)

 S0 : if (in_seq == 1'b1) begin

 next_state = S1;

 end

 else begin

 next_state = S0;

 end

 S1 : if (in_seq == 1'b0) begin

 next_state = S2;

 end

 else begin

 next_state = S1;

 end

 S2 : if (in_seq == 1'b1) begin

 next_state = S3;

 end

 else begin

 next_state = S0;

 end

 S3 : if (in_seq == 1'b1) begin

 next_state = S1;

 end

 else begin

 next_state = S2;

ptb/dkb 2013 38 EE 3320

 end

 // Always include a Default state in your state machine.

 default : next_state = S0;

endcase

end

//--

// Register the combinatorial next_state output.

//--

always @ (posedge clk)

begin : FSM_SEQ

 if (reset == 1'b0) begin

 state <= #`CK2Q S0;

 end

 else begin

 state <= #`CK2Q next_state;

 end

end

//--

// Based on the current state only, determine the output “out_seq”

//--

always @ (state or reset)

begin : OUTPUT_LOGIC

if (reset == 1'b0) begin

 out_seq <= #`CK2Q 1'b0;

end

else begin

 case(state)

 S0 : begin

 out_seq <= 1'b0;

 end

 S1 : begin

 out_seq <= 1'b0;

 end

 S2 : begin

 out_seq <= 1'b0;

 end

 S3 : begin

 out_seq <= 1'b1;

 end

 default : begin

 out_seq <= 1'b0;

 end

 endcase

end

end // End Of Block OUTPUT_LOGIC

endmodule // End of Module Moore state machine

//--

Except for the additional clock signal, simulation of finite state machines can be done using a

test_bench in the same way it was done for combinatorial circuits. The following is a sample

test-bench for the Moore state machine. The same can be used to test the Mealy state machine as

well.

//--

module sm_tb(reset,clk,in_seq,out_seq);

output reset;

output clk;

output in_seq;

input out_seq;

reg clk;

reg reset;

reg [15:0] data;

reg in_seq;

integer i;

ptb/dkb 2013 39 EE 3320

// The input data sequence is defined in the vector “data”

// Each clock one bit of data is sent to the state machine

// which will detect the sequence “101” in this data.

initial

begin

 data = 16'b0010100110101010;

 i = 0;

 reset = 1'b0;

 #1200 ;

 reset = 1'b1;

 #60000;

 $finish;

end

// Clock Generation

initial

begin

 clk = 0;

 forever begin

 #600 ;

 clk = ~clk;

 end

end

// Right shifting of data to generate the input sequence

always @(posedge clk)

begin

 #50;

 in_seq = data >> i;

 i = i+1;

end

endmodule

//--

A top level module is required to stitch the state machine to the test bench.
//--

module top();

wire clk,reset;

wire in_seq,out_seq;

 moore_fsm fsm0(reset,clk,in_seq,out_seq);

 sm_tb fsm_tb(reset,clk,in_seq,out_seq);

endmodule

//--

The operation of the Moore state machine is shown in the waveform below:

ptb/dkb 2013 40 EE 3320

9.1.2. Mealy State Machine Example:

The state machine diagram of the Mealy State machine for sequence detector example is shown

below:

`define CK2Q 5 // Defines the Clock-to-Q Delay of the flip flop.

module mealy_fsm(reset,clk,in_seq,out_seq);

input reset;

input clk;

input in_seq;

output out_seq;

reg out_seq;

reg in_seq_reg;

//-------------Parameters defining State machine States------------------------------------

parameter SIZE = 3;

parameter S0 = 3'b001 , S1 = 3'b010 , S2 = 3'b100;

//-------------Internal Variables--

reg [SIZE-1:0] state ;// Seq part of the FSM

reg [SIZE-1:0] next_state ;// combo part of FSM

//----------Register the input------------------------

always @ (posedge clk)

begin : REG_INPUT

 if (reset == 1'b0) begin

 in_seq_reg <= #`CK2Q 1'b0;

 end

 else begin

 in_seq_reg <= #`CK2Q in_seq;

 end

end

//----------Mealy State machine Code starts Here---

// Determine the next state for each state in the state machine using the input

// sequence given to it. ‘next_state’ is combinatorial in nature.

//--

always @ (state or in_seq_reg)

begin : FSM_COMBO

next_state = 3'b000;

case(state)

 S0 : if (in_seq_reg == 1'b1) begin

 next_state = S1;

 end

 else begin

 next_state = S0;

 end

ptb/dkb 2013 41 EE 3320

 S1 : if (in_seq_reg == 1'b0) begin

 next_state = S2;

 end

 else begin

 next_state = S1;

 end

 S2 : if (in_seq_reg == 1'b1) begin

 next_state = S1;

 end

 else begin

 next_state = S0;

 end

 default : next_state = S0;

endcase

end

//--

// Register the combinatorial next_state variable.

//--

always @ (posedge clk)

begin : FSM_SEQ

 if (reset == 1'b0) begin

 state <= #`CK2Q S0;

 end

 else begin

 state <= #`CK2Q next_state;

 end

end

//--

// Based on the combinatorial next_state signal and the input sequence, determine the output

// out_seq of the finite state machine.

//--

always @ (state or in_seq_reg or reset)

begin : OUTPUT_LOGIC

if (reset == 1'b0) begin

 out_seq <= 1'b0;

end

else begin

 case(state)

 S0 : begin

 out_seq <= 1'b0;

 end

 S1 : begin

 out_seq <= 1'b0;

 end

 S2 : begin

 if (in_seq_reg == 1'b1)

 out_seq <= 1'b1;

 else

 out_seq <= 1'b0;

 end

 default : begin

 out_seq <= 1'b0;

 end

 endcase

end

end // End Of Block OUTPUT_LOGIC

endmodule // End of Module Mealy state machine

Except for the additional clock signal, simulation of finite state machines can be done using a

test_bench in the same way it was done for combinatorial circuits. The test bench used to test the

Moore State machine can be used to test the Mealy state machine as well.

ptb/dkb 2013 42 EE 3320

The operation of the Mealy state machine is shown in the waveform below:

Finite State machine design is a very efficient and elegant way of designing logic and is widely

used in the industry. It is to be noted that the above examples do not enumerate all the possible

methods and tricks of finite state machine design. Also, the implementation details (how the

Verilog FSM code is translated to combinatorial and sequential logic) are not discussed here.

The following factors are taken into account while designing a state machine:

 Area v/s Delay of the state machine encoding logic and the combinatorial logic.

 Timing of the entire state machine design. If the combinatorial logic leading to a

particular ‘state-change’ takes lot of delay in the hardware logic circuit, it could be split

into multiple states. (Multiple state additions might lead to excessive latency in the finite

state machine).

ptb/dkb 2013 43 EE 3320

 10. Hierarchical Circuit Design Using Modules

It is always a good practice to keep a design modular and hierarchical. This is important for

designs of moderate to high complexity. [Refer to section on hierarchies and Instantiation in the

Verilog tutorial in Appendix-A]. Often, you will use a circuit (module) over and over again.

Instead of creating these modules every time you need them, it would be more efficient to make

a cell or module out of them. You can then use this module every time to need it by instantiating

the module in your circuit. Verilog supports hierarchical design by creating instances of another

modules that can be used in a design. In the example depicted in Figure 24, a 4-bit equivalence

circuit is designed using 1-bit equivalence circuit modules.

Figure 24: Hierarchical circuit design example: 4-bit equivalence circuit

 Module Definition: A module (functional block) definition is specified in a file, separate

from the top-level design file using the module.

module equiv (p,q,r)
input p;

input q;

output r;

assign r = ~(p ^ q); //equivalence function is xnor function.

endmodule

ptb/dkb 2013 44 EE 3320

 Module Usage: A design using a module includes a declaration of module interface and

instantiation of each module in the Declaration section. Instantiation of module “equiv”

in the 4-bit equivalence circuit shown in Figure.21 can be done as follows:

 module equiv4bit(a3,b3,a2,b2,a1,b1,a0,b0,eq4)
 input a3,b3,a2,b2,a1,b1,a0,b0;

 output eq4;

 equiv eq0(a0,b0,r0);

 equiv eq1(a1,b1,r1);

 equiv eq2(a2,b2,r2);

 equiv eq3(a3,b3,r3);

 assign eq4 = r0 & r1 & r2 & r3;

 endmodule

NOTE : For creation of the module, we can either use the design wizard provided by the Xilinx

or create our own.

ptb/dkb 2013 45 EE 3320

 11. Post Synthesis Timing Simulation

The Xilinx ISE contains a simulator called iSIM which can be used to verify the behavior of

your designs. You may also use the Modelsim simulator which can also be invoked directly from

Xilinx in order to perform functional and timing simulations. It has an Integrated Development

environment that can be used to develop and debug Verilog synthesizable and behavioral logic.

Section 5.2 explains usage of the Modelsim simulator from Xilinx ISE to verify the functionality

of a given digital logic circuit using a test bench. This chapter deals with performing post

synthesis timing simulations using the Modelsim simulator.

We will look at simulation and timing synthesis using an example of a 4X1 multiplexer:

In order to perform the simulation, we wil need two files- a design file and a test bench (as

shown below):

The multiplexer design file (mux4x1.v):

module mux4x1 (a,b,c,d,sel,y);

 input a, b, c, d;

 input [1:0] sel;

 output y;

 reg y;

 always @ (a or b or c or d or sel)

 case (sel)

 0 : y = a;

 1 : y = b;

 2 : y = c;

 3 : y = d;

 default : y=1'b0; //One bit binary value '0'

 endcase

 endmodule

A sample test bench for the multiplexer:

module mux4x1_tb ();

 //output a, b, c, d;

 //output [1:0] sel;

 //input y;

 reg a,b,c,d;

 reg [1:0] sel;

initial

begin

 a <= 1'b1;

 b <= 1'b0;

 c <= 1'b1;

 d <= 1'b0;

// Wait 100 ns for global reset to finish

#100;

// Add stimulus here

 sel <= 2'b00;

 #200;

 a<=1'b1;

 b<=1'b1;

ptb/dkb 2013 46 EE 3320

 sel <= 2'b01;

 #400;

 sel <= 2'b10;

 #600;

 sel <= 2'b11;

 #800;

 sel <= 2'b00;end

//mux4x1 mux4x1_inst(a,b,c,d,sel,y);

endmodule

As explained in the previous section, create a new project named mux4X1 and add a new verilog

source (mux4X1.v) with the code shown above.

To add a test bench select the project in the source list and right click to select ‘Add New source”

When the New source wizard pops up, select Verilog Text Fixture and choose an appropriate

name for your test bench (say, mux4X1_tb) and click on Next.

Figure 26: Creating a text fixture in Xilinx ISE

Associate your design with the test bench that you are about to create by selecting mux4x1 as the

source and click on Next and then Finish.

ptb/dkb 2013 47 EE 3320

Figure 27: Associating the testbench with the design

The tool generates a test bench with some boilerplate code as shown in Figure

Figure 28: Adding the verilog testbench to the project

Code automatically generated by Xilinx

ISE. You may edit this by adding your

own test bench or modify it suitably.

Unit under test (UUT)

ptb/dkb 2013 48 EE 3320

Double click on ‘Behavioral Check Syntax’ in the process window to make sure there are mo

syntax errors in your code. A mark will appear if there are no errors as shown in Figure

Figure 29: Checking syntax

Now you are ready to simulate your design!

Behavioral simulation using iSIM:

In order to run the iSIM simulator, double click on the Simulate Behavioral Model in the

process window- this will launch the iSIM window as shown in Figure 29 The output ‘y’ has

been highlighted in red for clarity.

Syntax check successful

Test stimuli added here

ptb/dkb 2013 49 EE 3320

Figure 30: The iSIM window launched from Project Navigator

Behavioral simulation using ModelSim

You can also use ModelSim to simulate your design. To use ModelSim ensure that the Simulator

field is set to Modelsim-PE Verilog in ProjectDesign Properties (you may change it back to

iSIM if you so choose) as shown in Figure.

Design ports

(inputs /outputs)

Output waveforms for

mux4x1_tb.v

ptb/dkb 2013 50 EE 3320

Figure 31: Changing the simulator field in Design Properties

Double clicking on the Simulate Behavioral Model will launch the ModelSim simulator

interface.

In the Library window click on Work directory(all designs are saved in the Work directory)

choose the test bench that you want to simulate (mux4x1_tb), right click and choose ‘Simulate’.

Figure 32: The ModelSim window

ptb/dkb 2013 51 EE 3320

In the Sim window on the left, right click on the test bench name and choose ‘Add wave’

Figure 33: Adding test bench signals to the simulator

Click on Run or Run All to run the simulation.[Simulate RunRun -all]. You may choose to

run the simulation for a specified time by typing the run command in the ModelSim prompt.

ptb/dkb 2013 52 EE 3320

Figure 34: Running the simulation and observing waveforms in ModelSim.

Run all

Simulation

Waveforms for

mux4x1_tb

ptb/dkb 2013 53 EE 3320

Appendix-A:

Verilog Hardware Modeling:

 This is just an introductory level tutorial to the Verilog language. The reader is

encouraged to go through the following Verilog tutorials to understand the language better:

 http://www.asic-world.com/verilog/vbehave.html

 http://www.vol.webnexus.com/ [requires free registration]

1. Module:

A module is the basic building block in Verilog. It is defined as follows:
 module <module_name> (<portlist>);

 .

 . // module components

 .

 endmodule

The <module_name> is the type of this module. The <portlist> is the list of connections, or

ports, which allows data to flow into and out of modules of this type.

Verilog models are made up of modules. Modules, in turn, are made of different types of

components. These include

 Parameters

 Nets

 Registers

 Primitives and Instances

 Continuous Assignments

 Procedural Blocks

 Task/Function definitions

2. Ports:

Ports are Verilog structures that pass data between two or more modules. Thus, ports can be

thought of as wires connecting modules. The connections provided by ports can be either

input, output, or bi-directional (inout).

http://www.asic-world.com/verilog/vbehave.html
http://www.vol.webnexus.com/

ptb/dkb 2013 54 EE 3320

Module instantiations also contain port lists. This is the means of connecting signals in the

parent module with signals in the child module.

3. Nets:

Nets are the things that connect model components together. They are usually thought of as wires

in a circuit. Nets are declared in statements like this:

 net_type [range] [delay3] list_of_net_identifiers ;

Example:

 wire w1, w2;

 tri [31:0] bus32;

 wire wire_number_5 = wire_number_2 & wire_number_3;

4. Registers:

Registers are storage elements. Values are stored in registers in procedural assignment

statements. Registers can be used as the source for a primitive or module instance (i.e. registers

can be connected to input ports), but they cannot be driven in the same way a net can.

Registers are declared in statements like this:

 reg [range] list_of_register_identifiers ;

 Example:

 reg r1, r2;

 reg [31:0] bus32;

javascript:parent.goGlossHash('#instantiation')
http://www.vol.webnexus.com/VOL/c01/v01078.htm#nettype#nettype
http://www.vol.webnexus.com/VOL/c01/v01078.htm#range#range
http://www.vol.webnexus.com/VOL/c01/v01078.htm#delay#delay
http://www.vol.webnexus.com/VOL/c01/v01078.htm#identifiers#identifiers
javascript:parent.dispWindow('v01090r1.htm','net')

ptb/dkb 2013 55 EE 3320

5. Operators in Verilog:

Logical, arithmetic and relational operators available in Verilog are described in Table 1.

Verilog Unary Operators:

Source: ASIC Design by Smith (http://www-ee.eng.hawaii.edu/~msmith/ASICs/Files/pdf/CH11.3.pdf)

Table 1 Verilog Operators

6. Continuous assignments:

Continuous assignments are sometimes known as data flow statements because they describe

how data moves from one place, either a net or register, to another. They are usually thought of

as representing combinational logic. In general, any logic functionality which can be

implemented by means of a continuous assignment can also be implemented using primitive

instances.

http://www-ee.eng.hawaii.edu/~msmith/ASICs/Files/pdf/CH11.3.pdf

ptb/dkb 2013 56 EE 3320

A continuous assignment looks like this:

 assign [delay3] list_of_net_assignments ;

Examples:

 assign w1 = w2 & w3;

 assign #1 mynet = enable; // mynet is assigned the value after 1 time unit.

7. Procedural Blocks:

Procedural blocks are the part of the language which represents sequential behavior. A module

can have as many procedural blocks as necessary. These blocks are sequences of executable

statements. The statements in each block are executed sequentially, but the blocks themselves are

concurrent and asynchronous to other blocks.

There are two types of procedural blocks, initial blocks and always blocks.

 initial <statement> always <statement>

There may be many initial and always blocks in a module. Since there may be many modules in

a model, there may be many initial and always blocks in the entire model. All initial and always

blocks contain a single statement, which may be a compound statement, e.g.

 initial

 begin statement1 ; statement2 ; ... end

a. Initial Block:

All initial blocks begin at time 0 and execute the initial statement. Because the statement

may be a compound statement, this may entail executing lots of statements. There may be

time or event controls, as well as all of the control constructs in the language. As a result,

an initial block may cause activity to occur throughout the entire simulation of the model.

When the initial statement finishes execution, the initial block terminates. If the initial

statement is a compound statement, then the statement finishes after its last statement

finishes.

Example:

initial x = 0; // a simple initialization

initial begin

 x = 1; // an initialization

 y = f(x);

#1 x = 0; // a value change 1 time unit later

 y = f(x);

end

javascript:parent.dispWindow('v01114r2.htm','delay3')
javascript:parent.goGlossHash('#initial')
javascript:parent.goGlossHash('#always')
javascript:parent.goGlossHash('#event')

ptb/dkb 2013 57 EE 3320

b. Always Block:

Always blocks also begin at time 0. The only difference between an always block and an

initial block is that when the always statement finishes execution, it starts executing

again. Note that if there is no time or event control in the always block, simulation time

can never advance beyond time 0. Example,

always

 #10 clock = ~clock;

8. Behavioral modeling constructs:

 a. Conditional if-else construct:

 The if - else statement controls the execution of other statements in a

procedural block.

Syntax:
if (condition)

 statements;

if (condition)

 statements;

else

 statements;

if (condition)

 statements;

else if (condition)

 statements;

................

................

else

 statements;

 Example:
// Simple if statement

if (enable)

 q <= d;

// One else statement

if (reset == 1'b1)

 q <= 0;;

else

 q <= d;

// Nested if-else-if statements

if (reset == 1'b0)

 counter <= 4'b0000;

else if (enable == 1'b1 && up_en == 1'b1)

 counter <= counter + 1'b1;

else if (enable == 1'b1 && down_en == 1'b1);

 counter <= counter - 1'b0;

else

 counter <= counter; // Redundant code

ptb/dkb 2013 58 EE 3320

 b. Case statement:

The case statement compares an expression to a series of cases and executes the

statement or statement group associated with the first matching case. Case statement

supports single or multiple statements. Multiple statements can be grouped using begin

and end keywords.

Syntax:

case (<expression>)

 <case1> : <statement>

 <case2> : <statement>

 default : <statement>

endcase

 Example:

module mux (a,b,c,d,sel,y);

 input a, b, c, d;

 input [1:0] sel;

 output y;

 reg y;

 always @ (a or b or c or d or sel)

 case (sel)

 0 : y = a;

 1 : y = b;

 2 : y = c;

 3 : y = d;

 default : $display("Error in SEL");

 endcase

endmodule

9. Module instantiations and hierarchies:

Verilog allows you to represent the hierarchy of a design. A more common way of depicting

hierarchical relationships is:

javascript:parent.goGlossHash('#hierarchy')

ptb/dkb 2013 59 EE 3320

We say that a parent instantiates a child module. That is, it creates an instance of it to be a

submodel of the parent. In this example,

system instantiates comp_1, comp_2

comp_2 instantiates sub_3

Modules in a hierarchy have both a type and a name. Module types are defined in Verilog.

There can be many module instances of the same type of module in a single hierarchy. The

module definition by itself does not create a module. Modules are created by being instantiated

in another module, like this:

 module <module_name_1> (<portlist>);

 .

 .

 <module_name_2> <instance_name> (<portlist>);

 .

 .

 endmodule

ptb/dkb 2013 60 EE 3320

Appendix-B:

This section contains some useful information on the Digilent BASYS board that will be used in

this lab. For further details please refer to the Digilent user’s manual.

B.1 Spartan 3E pin definitions

B.2 Testing the Digilent board

The Digilent Adept tool can be used to test the functionality of a BASYS board as follows:

 Connect the board to the USB and set the power switch to ON.

 Run Digilent Adept

 Click on Test Start Test

http://www.digilentinc.com/Data/Products/BASYS/BASYS_E_RM.pdf

ptb/dkb 2013 61 EE 3320

Figure B.1 The Digilent Adept test function

 The tool shows you the current switch configuration and the display counts

00001111FFFF

Figure B.2 Testing the Digilent board

