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Project Summary

• Project goal: investigate the nature and evolution of The Geysers

from the time of magma emplacement, using detailed heat and

water and chemical mass balances (natural state models)

• Main issues:

? nature of the liquid-dominated system, as discernible from the

rock alteration record (fluid inclusions and δ18O )

? nature of the boiling “event” (transition to vapor dominated

conditions)

? nature of interaction between geologic events (e.g. re-

intrusion, faulting), fluid properties, and hydrologic events (e.g.

permeability evolution)
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Today’s Talk

• Progress prior to May (described in various papers):

? development and preliminary testing of supercritical equation of

state for Tough2 EOS1sc
? liquid-only supercritical flow and δ18O -alteration models

• Recent progress:

? EOS1sc redesigned to incorporate NIST-standard numerical

equation of state [NIST(1999)], currently the only flow simulator

with this feature

? relatively robust in testing

? preliminary models of the onset of boiling at The Geysers
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Why Supercritical?
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• Deep drilling magmatic

geothermal systems encounters

these conditions

• Models of non-magmatic

systems often encounter these

conditions at depth in

conductive zones, e.g. the

Basin and Range

[Wisian(2000)]
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Critical Fluid Properties

• Fluid flow and transport

properties reach strong extrema

at the critical point, profoundly

influencing convection

• Isobaric heat capacity (Cp
1
◦C )

and isothermal compressibility

(β 1
Pa) → +∞ at critical point.

• Extrema extend beyond critical

point along the critical isochore

(ρ = ρcritical)
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Why Tough2?
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• Flexible (irregular) gridding

• Variety of choices for matrix

solution

• Other capabilities needed for

history matching, reactive

transport modeling, etc.

• As-shipped equation of state

(EOS1) limited to subcritical,

needs revised EOS (EOS1sc)

with extended range



6

Subcritical Tests of EOS1sc

• Comparison of TOUGH2 test problem results using EOS1 and

EOS1sc show excellent match; however EOS1sc run times are

5-50 times longer.

Geothermal 5-Spot Fracture Heat Sweep
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Extensional Geothermal Systems
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• Fluid conditions approach

critical at the base of current

models, model design limited by

capabilities of the reservoir

simulator [Wisian(2000)]

• Application of EOS1sc allows

realistic treatment of the deep

parts of the system, and

simplifies matching of shallow

observations
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Geysers Models: Location of Cross-Section
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Geology and Alteration
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• Permeability zones

? caprock

? reservoir (lower greywacke

and upper felsite)

? hot intrusive (deep felsite)

• Alteration zones

? minimal in caprock

? widespread moderate

depletion (6-8h) in reservoir

? concentrated strong (8-10h)

along low felsite flank
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Geysers Supercritical Models

• Hydrothermal flow models that accurately treat critical fluid

properties tend to show strong control by these properties on

the deep system [Brikowski(2001)]

Fluid Velocity Fluid Cp
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Principal Liquid-Phase Model Results
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• Zone of critical conditions

“drives” the pre-boiling flow

system at The Geysers

• System cools in approximately

500 Kyr, despite low reservoir

permeability (10−17m2)

• Alteration distribution indicates

persistent deep horizontal

permeability throughout

liquid-dominated stage

../WGC2K/Figs/gey5a5_alt.gif
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Model Grid

• Coarse grid, 43x21 elements sized 150m x 250 m

• Assume very high permeability reservoir (k = 1 md)

• Seek to encourage boiling by developing isothermal low pressure

zone throughout reservoir, similar to present-day conditions
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Liquid-Dominated Stage

• Model begins with intrusion of

felsite at 890◦C

• Reservoir rapidly develops

several vigorous convection cells

• Strongest cell upwells over the

apex of the felsite, near the

location of well SB-15d

• red line is location of P-T

section on next slide

gey6y7b-e+i_Vmag.gif
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Liquid PT Path
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P−T Profile and Paths, Central Upflow Zone • Points in the upflow zone (and

near the felsite contact

elsewhere) migrate rapidly

toward the two-phase boundary,

critical point, or critical

isochore

• Fluid packets follow a path

down the critical isochore, past

critical point and then

alongside the 2-phase boundary

(liquid-stable)
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Formation of Steam “Bubbles”

• Take closeup view of reservoir above apex of felsite intrusion

• Base of upflow zone moves onto 2-phase boundary, forming a steam packet
(10% saturation “bubble”, shown in green)

• This causes large P perturbation (owing to steam expansion), disrupting upflow
zone

• Eventually steam packets advect upward to top of reservoir

gey6y7o_PvsT+SG_closeup.gif
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Steady Boiling

• To force continuous boiling, system must suddenly lose pressure

(fracturing or drilling), or be reheated (reintrusion)

• Preliminary tests show extreme fracturing required, else metastable

“simmering” conditions persist

• To date only unnatural pressure reduction using wells successfully

drives upflow column to full steam saturation
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Implications for Geysers

• Deep reservoir behaves much like the roots of a true geyser

• Episodic boiling occurs over extended period, potentially advecting with the flow
field

• These episodes initiated at felsite contact by perturbations toward the fluid
critical point

• During the metastable period, profound oscillations in flow and fracturing will
occur

• These oscillations are recorded in the rock record at The Geysers, including
mineral and alteration zoning, paragenetic sequences, and episodic fracturing

• System requires a significant “kick” to break out of this metastable state
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Summary

Critical Point
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P−T Profile and Paths, Central Upflow Zone • Is “simmering” a long-lived

transition state to traditional

boiling?

? Base of upflow zones in

magmatic systems likely to

be at critical point conditions

? Near-critical fluid properties

encourage this behavior in

high-permeability systems

• Tools like EOS1sc are now

available to investigate such

high P-T phenomena
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