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Project Summary

Project goal: investigate the nature and evolution of The Geysers
from the time of magma emplacement, using detailed heat and
water and chemical mass balances (natural state models)

Main issues:

* nature of the liquid-dominated system, as discernible from the
rock alteration record (fluid inclusions and 620 )

* nature of the boiling “event” (transition to vapor dominated
conditions)

~ nature of interaction between geologic events (e.g. re-
intrusion, faulting), fluid properties, and hydrologic events (e.g.
permeability evolution)



Today’s Talk

Progress prior to May (described in various papers):

* development and preliminary testing of supercritical equation of
state for Tough2 FOS1sc

x liquid-only supercritical flow and 630 -alteration models

Recent progress:

* EOS1sc redesigned to incorporate NIST-standard numerical
equation of state | |, currently the only flow simulator
with this feature

* relatively robust in testing

* preliminary models of the onset of boiling at The Geysers



Why Supercritical?

Deep drilling magmatic
geothermal systems encounters
these conditions

Models of non-magmatic
systems often encounter these
conditions at depth in
conductive zones, e.g. the
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Why Tough2?
Flexible (irregular) gridding

Variety of choices for matrix
solution

Other capabilities needed for

i & Critical Point
history matching, reactive
transport modeling, etc.
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As-shipped equation of state

(EOS1) limited to subcritical,
needs revised EOS (FOS1sc)

with extended range
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Subcritical Tests of EOS1sc

Comparison of TOUGH?2 test problem results using EOS1 and

EOS1sc show excellent match: however EOS1sc run times are
5-50 times longer.

Comparizon of RFP Test Prablem Rasults

Produced Fluid Tempa@ture, RVF Froblam
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Extensional Geothermal Systems

Fluid conditions approach
critical at the base of current
models, model design limited by
capabilities of the reservoir
simulator | ]
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Dixie Valley Observed and Modeled T-z Profiles

; Application of EOS1sc allows
realistic treatment of the deep
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5 parts of the system, and

- simplifies matching of shallow
7 observations
-8

T(°Q



Geysers Models: Location of Cross-Section

¥,

™~ Known boundary of
The Geysers steam Deld

this ma

SB-15-D

Cobb Mountain
F

Felsite at elevation
(-)1524 m




Geology and Alteration

Permeability zones

* caprock

* reservoir (lower greywacke
and upper felsite)

* hot intrusive (deep felsite)

Alteration zones

* minimal in caprock

* widespread moderate

Jer | , ] depletion (6-8%0) in reservoir

* concentrated strong (8-10%)
along low felsite flank
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Geysers Supercritical Models

Hydrothermal flow models that accurately treat critical fluid
properties tend to show strong control by these properties on
the deep system | ]
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Principal Liquid-Phase Model Results
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Zone of critical conditions
“drives” the pre-boiling flow
system at The Geysers

System cools in approximately
500 Kyr, despite low reservoir
permeability (10™1"m?)

Alteration distribution indicates
persistent deep horizontal
permeability throughout
liquid-dominated stage
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Model Grid

Coarse grid, 43x21 elements sized 150m x 250 m
Assume very high permeability reservoir (k = 1 md)

Seek to encourage boiling by developing isothermal low pressure
zone throughout reservoir, similar to present-day conditions
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Liquid-Dominated Stage

Model begins with intrusion of
felsite at 890°C

Reservoir rapidly develops
several vigorous convection cells

Strongest cell upwells over the
apex of the felsite, near the
location of well SB-15d

red line is location of P-T
section on next slide
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Liquid PT Path

Points in the upflow zone (and
near the felsite contact
elsewhere) migrate rapidly
toward the two-phase boundary,
critical point, or critical
iIsochore

Fluid packets follow a path
down the critical isochore, past
critical point and then
alongside the 2-phase boundary
(liquid-stable)
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Formation of Steam “Bubbles”

Take closeup view of reservoir above apex of felsite intrusion

Base of upflow zone moves onto 2-phase boundary, forming a steam packet
(10% saturation “bubble”, shown in green)

This causes large P perturbation (owing to steam expansion), disrupting upflow
zone

Eventually steam packets advect upward to top of reservoir
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Steady Boiling

To force continuous boiling, system must suddenly lose pressure
(fracturing or drilling), or be reheated (reintrusion)

Preliminary tests show extreme fracturing required, else metastable
“simmering’ conditions persist

To date only unnatural pressure reduction using wells successfully
drives upflow column to full steam saturation
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Implications for Geysers

Deep reservoir behaves much like the roots of a true geyser

Episodic boiling occurs over extended period, potentially advecting with the flow
field

These episodes initiated at felsite contact by perturbations toward the fluid
critical point

During the metastable period, profound oscillations in flow and fracturing will
occur

These oscillations are recorded in the rock record at The Geysers, including
mineral and alteration zoning, paragenetic sequences, and episodic fracturing

System requires a significant “kick” to break out of this metastable state
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Summary
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Is “simmering” a long-lived
transition state to traditional
boiling?

* Base of upflow zones in
magmatic systems likely to
be at critical point conditions

* Near-critical fluid properties
encourage this behavior in
high-permeability systems

Tools like EOS1sc are now
available to investigate such
high P-T phenomena
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