Modeling Supercritical Systems With Tough2: Investigating The Onset of Boiling at The Geysers *

> Tom H. Brikowski The University of Texas at Dallas

> > August 27, 2001

*The work upon which this report is based was supported by DOE contract DE-FG07-98ID13677 to The University of Texas at Dallas. All rights reserved, T. Brikowski 2001.

Project Summary

- Project goal: investigate the nature and evolution of The Geysers from the time of magma emplacement, using detailed heat and water and chemical mass balances (natural state models)
- Main issues:
 - \star nature of the liquid-dominated system, as discernible from the rock alteration record (fluid inclusions and $\delta^{18}{\rm O}$)
 - nature of the boiling "event" (transition to vapor dominated conditions)
 - nature of interaction between geologic events (e.g. reintrusion, faulting), fluid properties, and hydrologic events (e.g. permeability evolution)

Today's Talk

- Progress prior to May (described in various papers):
 - \star development and preliminary testing of supercritical equation of state for Tough2 EOS1sc
 - \star liquid-only supercritical flow and $\delta^{18}O$ -alteration models
- Recent progress:
 - ★ EOS1sc redesigned to incorporate NIST-standard numerical equation of state [NIST(1999)], currently the only flow simulator with this feature
 - ★ relatively robust in testing
 - * preliminary models of the onset of boiling at The Geysers

Why Supercritical?

after [Muraoka et al.(2000)]

 Deep drilling magmatic geothermal systems encounters these conditions

 Models of non-magmatic systems often encounter these conditions at depth in conductive zones, e.g. the Basin and Range
 [Wision (2000)]

Critical Fluid Properties

- Fluid flow and transport properties reach strong extrema at the critical point, profoundly influencing convection
- Isobaric heat capacity $(C_p \frac{1}{\circ C})$ and isothermal compressibility $(\beta \frac{1}{Pa}) \rightarrow +\infty$ at critical point.
- Extrema extend beyond critical point along the critical isochore $(\rho = \rho_{\text{critical}})$

Why Tough2?

• Flexible (irregular) gridding

- Variety of choices for matrix solution
- Other capabilities needed for history matching, reactive transport modeling, etc.
- As-shipped equation of state (EOS1) limited to subcritical, needs revised EOS (EOS1sc) with extended range

Subcritical Tests of *EOS1sc*

 Comparison of *TOUGH2* test problem results using EOS1 and *EOS1sc* show excellent match; however *EOS1sc* run times are 5-50 times longer.

Geothermal 5-Spot

Fracture Heat Sweep

Extensional Geothermal Systems

Dixie Valley Observed and Modeled T–z Profiles

 Fluid conditions approach critical at the base of current models, model design limited by capabilities of the reservoir simulator [Wisian(2000)]

 Application of EOS1sc allows realistic treatment of the deep parts of the system, and simplifies matching of shallow observations

Geysers Models: Location of Cross-Section

Geology and Alteration

after [Moore and Gunderson (1995), Hulen and Moore (1986)]

Permeability zones

★ caprock

- reservoir (lower greywacke and upper felsite)
- * hot intrusive (deep felsite)
- Alteration zones
 - ★ minimal in caprock
 - widespread moderate
 depletion (6-8‰) in reservoir
 - concentrated strong (8-10‰)
 along low felsite flank

Geysers Supercritical Models

 Hydrothermal flow models that accurately treat critical fluid properties tend to show strong control by these properties on the deep system [Brikowski(2001)]

Fluid Velocity

Fluid Cp

Principal Liquid-Phase Model Results

- Zone of critical conditions "drives" the pre-boiling flow system at The Geysers
- System cools in approximately 500 Kyr, despite low reservoir permeability (10⁻¹⁷m²)
- Alteration distribution indicates persistent deep horizontal permeability throughout liquid-dominated stage

Model Grid

- Coarse grid, 43x21 elements sized 150m x 250 m
- Assume very high permeability reservoir (k = 1 md)
- Seek to encourage boiling by developing isothermal low pressure zone throughout reservoir, similar to present-day conditions

Liquid-Dominated Stage

- Model begins with intrusion of felsite at $890^{\circ}C$
- Reservoir rapidly develops several vigorous convection cells
- Strongest cell upwells over the apex of the felsite, near the location of well SB-15d
- red line is location of P-T section on next slide

Liquid PT Path

Points in the upflow zone (and near the felsite contact elsewhere) migrate rapidly toward the two-phase boundary, critical point, or critical isochore

 Fluid packets follow a path down the critical isochore, past critical point and then alongside the 2-phase boundary (liquid-stable)

Formation of Steam "Bubbles"

- Take closeup view of reservoir above apex of felsite intrusion
- Base of upflow zone moves onto 2-phase boundary, forming a steam packet (10% saturation "bubble", shown in green)
- This causes large P perturbation (owing to steam expansion), disrupting upflow zone
- Eventually steam packets advect upward to top of reservoir

Steady Boiling

- To force continuous boiling, system must suddenly lose pressure (fracturing or drilling), or be reheated (reintrusion)
- Preliminary tests show extreme fracturing required, else metastable "simmering" conditions persist
- To date only unnatural pressure reduction using wells successfully drives upflow column to full steam saturation

Implications for Geysers

- Deep reservoir behaves much like the roots of a true geyser
- Episodic boiling occurs over extended period, potentially advecting with the flow field
- These episodes initiated at felsite contact by perturbations toward the fluid critical point
- During the metastable period, profound oscillations in flow and fracturing will occur
- These oscillations are recorded in the rock record at The Geysers, including mineral and alteration zoning, paragenetic sequences, and episodic fracturing
- System requires a significant "kick" to break out of this metastable state

Summary

- Is "simmering" a long-lived transition state to traditional boiling?
 - Base of upflow zones in magmatic systems likely to be at critical point conditions
 - Near-critical fluid properties encourage this behavior in high-permeability systems
- Tools like EOS1sc are now available to investigate such high P-T phenomena

References

- [Brikowski(2001)] Brikowski, T. H., 2001. Deep fluid circulation and isotopic alteration in The Geysers geothermal system: Profile models. Geothermics 30 (2-3), 333–47.
- [Hulen and Moore(1996)] Hulen, J. B., Moore, J. N., 1996. A Comparison of Geothermometers for The Geysers Coring Project, California -Implications for Paleotemperature Mapping and Evolution of The Geysers Hydrothermal System. Geotherm. Resour. Council Transact. 20, 307–314.
- [Moore and Gunderson(1995)] Moore, J. N., Gunderson, R. P., 1995. Fluid inclusion and isotopic systematics of an evolving magmatichydrothermal system. Geochim. et Cosmo. Acta 59 (19), 3887–3908.
- [Muraoka *et al.*(2000)] Muraoka, H., Yasukawa, K., Kimbara, K., 2000. Current state of development of deep geothermal resources in the world and implications to the future. In: Iglesias, E., Blackwell, D., Hunt, T., Lund, J., Tmanyu, S. (eds.), Proceedings of the World Geothermal Congress 2000, International Geothermal Association, pp. 1479–1484.
- [NIST(1999)] NIST, 1999. NIST/ASME STEAM PROPERTIES DATABASE: VERSION 2.2. NIST Standard Reference Database 10, U.S. National Institute of Standards and Testing, URL http://www.nist.gov/srd/nist10.htm.
- [Wisian(2000)] Wisian, K. W., 2000. Insights into Extensional Geothermal Systems from Numerical Modeling. Geotherm. Resour. Council Transact. 24, 281–286.