MATH 102 FINAL EXAM SPRING 2008

Problem 1 (10 pts) Find the following limit.

$$\lim_{n \to \infty} \frac{\ln(n+1)}{\sqrt{n}}$$

Problem 2 (10 pts) Find the equation of the tangent line of the curve at (0, 2).

$$y = \frac{\ln(\cos x) + 2}{e^x}$$

Problem 3 (15 pts) Let $f(x) = x \cdot e^x$

a) Find all critical points, and intervals on which f is increasing & decreasing.

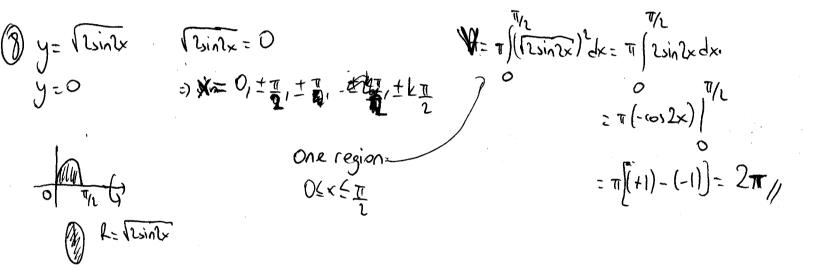
- b) Find inflection points, and intervals on which f is concave up & concave down.
- c) Find the asymptotes, if exist.
- d) Sketch the graph of f.

Problem 4 (15 pts) Compute the following improper integral.

$$\int_{1}^{\infty} x \cdot e^{-x} dx$$

Problem 5 (10 pts) Find two numbers such that their difference is 18 and their product is minimum.

Problem 6 (15 pts) Compute the following integral.


$$\int_0^1 \ln(x^2 + 1) \, dx$$

Problem 7 (10 pts) Find the area of the region between the curves $y = \sqrt{8x}$ and $y = x^2$.

Problem 8 (15 pts) Find the volume of the solid obtained by rotating only one region between $y = \sqrt{2\sin(2x)}$ and y = 0 about x-axis.

MATH 102 FINAL SOLUTIONS:
(1)
$$\lim_{n \to \infty} \frac{\ln(n+1)}{\ln} = \lim_{n \to \infty} \frac{1}{\ln n} \frac{2\ln}{n+1} = \lim_{n \to \infty} \frac{2\ln}{n} = \lim_{n \to \infty} \frac{2\ln}{n} = \frac{1}{\ln n} = 0$$

(2) $y = \frac{\ln(\cos x) + 2}{e^x}$ $y' = \frac{\sin x}{\cos x} \cdot e^x - (\ln \cos x + 2) \cdot e^x$ $\ln e^x = 0 \cdot 1 - 2 \cdot 1 = -2$
 $\frac{y - 2}{x - 0} = 2$ $y = -2x + 2$
(3) a. $p'(x) = e^x + x \cdot e^x = (k+1)e^x$ $y' = -1$ $p' = 0$ $(-1 - 2) \cdot 1 = -2$
 $\frac{y - 2}{x - 0} = 2$ $y = -2x + 2$
(3) a. $p'(x) = e^x + (x + 1)e^x = (x + 1)e^x$ $p' = -1$ $p' = -1$ $p' = 0$ $(-1 - 2) \cdot 1 = -2$
 $\frac{y - 2}{x - 0} = 1$ $y = -2x + 2$
(3) a. $p'(x) = e^x + (x + 2x)e^x = (k + 1)e^x$ $p' = -1$ $p' = -1$ $p' = 0$ $(-1 - 2) \cdot 1 = -2$
 $\frac{y - 2}{x - 0} = 1$ $y = -2x + 2$
(4) $\frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$

$$\int \left[\ln(x^{1}+1) dx = x \cdot \ln(x^{1}+1) - \int \frac{2x^{1}}{x^{1}+1} dx = x \cdot \ln(x^{1}+1) - 2(x - \arctan x) \right]^{1} = (\ln 2 - 2(1 - \arctan x))^{1} = (\ln 2 - 2(1 - \ln x))$$

