MATH 102 FINAL EXAM SPRING 2008

Problem 1 (10 pts) Find the following limit.

$$
\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\sqrt{n}}
$$

Problem 2 (10 pts) Find the equation of the tangent line of the curve at $(0,2)$.

$$
y=\frac{\ln (\cos x)+2}{e^{x}}
$$

Problem 3 (15 pts) Let $f(x)=x . e^{x}$
a) Find all critical points, and intervals on which f is increasing \& decreasing.
b) Find inflection points, and intervals on which f is concave up \& concave down.
c) Find the asymptotes, if exist.
d) Sketch the graph of f.

Problem 4 (15 pts) Compute the following improper integral.

$$
\int_{1}^{\infty} x . e^{-x} d x
$$

Problem 5 ($\mathbf{1 0} \mathbf{~ p t s) ~ F i n d ~ t w o ~ n u m b e r s ~ s u c h ~ t h a t ~ t h e i r ~ d i f f e r e n c e ~ i s ~} 18$ and their product is minimum.
Problem 6 (15 pts) Compute the following integral.

$$
\int_{0}^{1} \ln \left(x^{2}+1\right) d x
$$

Problem 7 ($\mathbf{1 0} \mathbf{~ p t s)}$) Find the area of the region between the curves $y=\sqrt{8 x}$ and $y=x^{2}$.
Problem 8 (15 pts) Find the volume of the solid obtained by rotating only one region between $y=\sqrt{2 \sin (2 x)}$ and $y=0$ about x-axis.

MATH 102 FINAL SOLUTIONS:
(1) $\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\sqrt{n}}=\lim _{\substack{\text { Llopit-1 }}} \frac{\frac{1}{n+1}}{\frac{1}{2 \sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{n+1}=\lim _{n \rightarrow \infty} \frac{2 r_{n}}{n(1+1+1)}=\lim _{n \rightarrow \infty} \frac{2 / h}{n}=\lim _{n \rightarrow \infty} \frac{2}{r_{n}}=0$
(2)

$$
\begin{aligned}
& y=\frac{\ln (\cos x)+2}{e^{x}} \quad y^{\prime}=\frac{\frac{\sin x}{\cos x} \cdot e^{x}-(\ln \cos x+2) \cdot e^{x}}{e^{2 x}} \quad x=0 \Rightarrow=\frac{0.1-2.1}{1}=-2 \\
& \frac{y-2}{x-0}=-2 \quad y=-2 x+2
\end{aligned}
$$

(3) a. $f^{\prime}(x)=e^{x}+x \cdot e^{x}=(x+1)_{e}^{x} \Rightarrow x=-1 \quad f^{\prime} \frac{+}{Q_{1}} \int_{\text {laal min. }}^{f^{\prime}<0} \begin{array}{lll}f^{\prime}>0 & (-1,0) & \rightarrow\end{array}$
b. $f^{\prime \prime}(x)=e^{x}+(x+1) e^{x}=(x+2) e^{x}$

$f^{\prime \prime}>0 \quad(-2, \infty)$ conave p f" $<0 \quad(-\infty,-2)$ concar darn
c. $\lim _{x \rightarrow \infty} x \cdot e^{x}=\infty \quad \lim _{x \rightarrow-\infty} x \cdot e^{x}=\lim _{x \rightarrow-\infty} \frac{x}{e^{-x}}=\lim _{x \rightarrow-\infty} \frac{1}{\text { (16op, }} \frac{1}{-e^{-x}}=0, \quad y=0 \quad$ hr. ayybte.
d.

(4)

$$
\begin{aligned}
& \int_{1}^{\infty} x \cdot e^{-x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x \cdot e^{-x} d x=\left.\lim _{t \rightarrow \infty}\left(-(x+1) e^{-x}\right)\right|_{t \rightarrow \infty} ^{t}=\lim _{t \rightarrow \infty} \\
& \int_{10 \cdot e^{-x} d x}=-x e^{-x}+\int^{105} e^{-x} d x=-(x+1) e^{-x} \\
& =1 \text { or (104) } a=-1
\end{aligned}
$$

(5)

$$
\begin{aligned}
& x-y=18 \Rightarrow y=x-18 \\
& f(x)=x \cdot y=x \cdot(x-18) \Rightarrow f^{\prime}(x)=2 x-18 \Rightarrow \\
&=x^{-18 x}
\end{aligned} \quad \begin{aligned}
& x=9 \\
& \\
& y=-9
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{1} \ln \left(x^{2}+1\right) d x=x \cdot \ln \left(x^{2}+1\right)-\int \frac{2 x^{2}}{x^{2}+1} d x=x \cdot \ln \left(x^{2}+1\right)-\left.2(x-\operatorname{arcta} x)\right|_{0} ^{1} & =(\ln 2-2(1-\arctan)) \\
0 & -(0-0) \\
& =\ln 2-2+\frac{\pi}{2}
\end{aligned}
$$

$d u=\frac{2 x}{x^{2}+1} d x \quad v=x$
(7)

$$
\begin{array}{rlrl}
y=\sqrt{8 x} & x^{2}=\sqrt{8 x} \\
y=x^{2} & x^{4}=8 x \\
& x^{4}-8 x=0 \Rightarrow \begin{array}{l}
x=0 \\
x\left(x^{2}-8\right)=0
\end{array} \quad A=\int_{0}^{2} \sqrt{8 x}-x^{2} d x=\frac{\sqrt{8} \cdot \frac{x^{2}}{3 / 2}-\left.\frac{x^{3}}{3}\right|_{0} ^{2}}{x=2} & =\frac{4 \sqrt{2} \sqrt{x^{2}}-\left.\frac{x^{3}}{3}\right|_{0} ^{2}=\frac{16}{3}-\frac{8}{3}=\frac{8}{3}}{}
\end{array}
$$

(8)

$$
\begin{aligned}
& y=\sqrt{2 \sin 2 x} \quad \sqrt{2 \sin 2 x}=0 \\
& y=0 \quad \Rightarrow x^{2}=0, \pm \frac{\pi}{2}, \pm \frac{\pi}{2} \\
& W=\pi \int_{0}^{\pi / 2}(\sqrt{2 \sin 2 x})^{2} d x=\pi \int_{0}^{\pi / 2} 2 \sin 2 x d x \text {. } \\
& =\left.\pi(-\cos 2 x)\right|_{0} ^{\pi / 2} \\
& \text { One region= } \\
& 0 \leq x \leq \frac{\pi}{2} \\
& =\pi[(+1)-(-1)]=2 \pi / /
\end{aligned}
$$

(4) $k=\sqrt{2 \sin 1 x}$

