MATH 102 Midterm 1 Spring 2008

Problem 1 Find the following limits. Show all your work.
1a (6 pts) $\lim _{x \rightarrow \infty} \frac{5 x^{3}+2 x^{2}-1}{6 x^{3}+4 x}$
1b (7 pts) $\lim _{x \rightarrow 0} \frac{x^{2}-3 \sin x}{2 x+\cos x^{2}}$
1c (7 pts) $\lim _{x \rightarrow \infty} x-\frac{1}{\sin \frac{1}{x}}$

Problem 2 (15 pts) Two positive numbers are such that the sum of the first number and the square of the second number is 10 . Find such numbers whose sum is the largest.

Problem 3 (25 pts) Let $f(x)=x .(x-3)^{2}$
a) Find all critical points, and intervals on which f is increasing \& decreasing.
b) Find inflection points, and intervals on which f is concave up \& concave down.
c) Find the asymptotes, if exist.
e) Sketch the graph of f.

Problem 4 (20 pts) If f is differentiable everywhere, find a and b.

$$
f(x)= \begin{cases}x^{3}-a x^{2}+b & x>2 \\ b x-3 a & x \leq 2\end{cases}
$$

Problem 5a (10 pts) Find the derivative of $f(x)=\cos \left(\frac{\sqrt{x}}{x^{2}+3}\right)$
$\mathbf{5 b}$ ($\mathbf{1 0} \mathbf{~ p t s)}$) Find the points on the curve $x^{2}+x y+y^{2}=3$ where the tangent line is horizontal.
$\mathbf{5 c}(5 \mathrm{pts})$ Find the points on the curve $x^{2}+x y+y^{2}=3$ where the tangent line is vertical.

MATH 102 MIDTEEM I SOLITIONSI
1.9. $\lim _{x \rightarrow \infty} \frac{5 x^{3}+2 x^{2}+1}{6 x^{3}+4 x}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(5+\frac{2}{x}-\frac{1}{x^{3}}\right)}{x^{3}\left(6+\frac{4}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{5 x^{3}}{6 x^{3}}=\frac{5}{6}$
b. $\lim _{x \rightarrow 0} \frac{x^{2}-3 \sin x}{2 x+\cos x^{2}}=\lim _{x \rightarrow 0} \frac{0-0}{0+1}=\lim _{x \rightarrow 0} \frac{0}{1}=0$
c. $\lim _{x \rightarrow \infty} x-\frac{1}{\sin \frac{1}{x}}=\lim _{h \rightarrow 0^{+}} \frac{1}{h}-\frac{1}{\sinh }=\lim _{h \rightarrow 0^{+}} \frac{\sinh -h}{h \cdot \sinh }=\lim _{h \rightarrow 0^{+}} \frac{\cosh h-1}{\sin h+h}$

$$
\underset{\text { Llop}^{\prime} \text { litd }}{=}=\lim _{h \rightarrow 0^{+}} \frac{-\sin h}{\cosh h+\cos h-h \sin h}=\lim _{h \rightarrow 0^{+}} \frac{-0}{1+1-0}=\lim _{h \rightarrow 0^{+}} \frac{0}{2}=0
$$

2.

$$
\begin{aligned}
& x+y^{2}=10 \Rightarrow x=10-y^{2} \\
& S=x+y \Rightarrow S(y)=10-y^{2}+y \quad \Rightarrow S^{\prime}(y)=-2 y+1 \Rightarrow S^{\prime}(y)=0 \Rightarrow \frac{y=\frac{1}{2}}{x=10-\frac{1}{4}}=\frac{39}{4}
\end{aligned}
$$

3. $f(x)=x \cdot(x-3)^{2}=x \cdot\left(x^{2}-6 x+9\right)=x^{3}-6 x^{2}+9 x$
a. $f^{\prime}(x): 3 x^{2}-12 x+9=3\left(x^{2}-4 x+3\right)=3(x-1)(x-3)$

$$
f^{\prime}>0 \quad(-\infty, 1) \cup(3, \infty) \lambda
$$

f'<o $(1,3)$ y
b. $f^{\prime \prime}(x)=6 x-12 \quad f^{\prime \prime} \quad+\quad+\quad f^{\prime \prime}<0 \quad(-\infty, 2)$ concave dorn $=6(x-2) \quad$ (2), infletion $f^{\prime \prime}>0(2, \infty)$ concave p.
c. $\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty$ No hor. aigrble, No vetiol aigretote
d.

4. $\quad f(x)= \begin{cases}x^{3}-a x^{2}+b & x \geqslant 2 \\ b x-7 a & x \leqslant 2\end{cases}$
continuity at 2: $\quad 8-4 a+b=2 b-3 a$
diff. at 2: $x=2 \quad 3 x^{2}-2 a x=b$

$$
12-4 a=b \quad \Rightarrow \quad 4 a+b=12
$$

$$
\begin{aligned}
& \Rightarrow \quad a+b=8 \\
& \Rightarrow \quad 4 a+b=12 \quad b=\frac{4}{3} \\
& \Rightarrow \quad b=\frac{20}{3}
\end{aligned}
$$

5. a. $\left(\cos \left(\frac{\sqrt{x}}{x^{2}+3}\right)\right)=-\sin \left(\frac{\sqrt{x}}{x^{2}+3}\right) \cdot\left(\frac{\left.\frac{1}{2 \sqrt{x}} \cdot\left(x^{2}+\right)\right)-\sqrt{x} \cdot 2 x}{\left(x^{2}+3\right)^{2}}\right)$.
b. $x^{2}+x y+y^{2}=3 \quad$ horizontal teat line $x^{2}+x \cdot-4 x+(-2 x)^{2}=1$

$$
\begin{array}{lll}
2 x+y+x y^{\prime}+2 y y^{\prime}=0 & y^{\prime}=0 \Rightarrow 2 x+y=0 & 3 x^{2}=3 \\
\Rightarrow y^{\prime}=-\frac{(2 x+y)}{x+2 y} & & x^{2}=1 \\
& & = \pm 1 \quad y=z 2 \\
& & (1,-2) \\
& & (-1,2)
\end{array}
$$

C. Vertiod teat line $y^{\prime}=\infty$ (or $x^{\prime}=0$)

$$
\begin{aligned}
& y^{2}=1 \\
& y= \pm 1 \quad \Rightarrow x=\mp 2
\end{aligned}
$$

