MATH 102 - 2. MIDTERM QUESTIONS & SOLUTIONS

Problem 1 (10 pts) Let $g(x) = \int_{e^x}^{x^3} \cos^3(\ln t) dt$. Find g'(x).

Problem 2 Find the area of the region between the following curves.

2a (10 pts) $y = 9 - x^2$ and *x*-axis.

2b (10 pts) $y = x^3 - 4x$ and y = 5x.

Problem 3 (15 pts) Find the following limit: $\lim_{x\to 0^+} x^{\sin x}$

Problem 4 Consider the region between the curves $y = \sqrt{12x}$, x-axis, and x = 3.

4a (10 pts) Rotate the region about x-axis. Find the volume of the solid.

4b (15 pts) Rotate the region about the vertical line x = -2. Find the volume of the solid.

Problem 5 (15 pts) Find the following integral: $\int \frac{dx}{e^x+1}$

Problem 6 Find the following integrals.

- **6a (6 pts)** $\int e^{2x} . \sin(3x) dx$
- **6b (6 pts)** $\int x^2 \sqrt{4x^2 9} \, dx$
- 6c (8 pts) $\int x \operatorname{arcsin}(2x) dx$

$$6c \int x \cdot \operatorname{arcsin} 2x \, dx = \frac{x^{2}}{2} \operatorname{arcsin} 2x - \frac{2}{2} \int \frac{x^{2} \, dx}{\sqrt{1 - 4x^{2}}} \, dx$$

$$99 \int_{q=2}^{n=1} = \frac{x^{2}}{2} \operatorname{arcsin} 2x - \frac{1}{2} \int \frac{x^{2} \, dx}{\sqrt{1 - x^{2}}}$$

$$133 \int_{q=\frac{1}{2}}^{q=\frac{1}{2}} = \frac{x^{2}}{2} \operatorname{arcsin} 2x - \frac{1}{2} \left[\frac{1}{8} \operatorname{arcsin} 2x - \frac{1}{2} \times \frac{1 - x^{2}}{4} \right] + C$$

^.**n**