MATH 102-2. MIDTERM QUESTIONS \& SOLUTIONS

Problem $1(10 \mathrm{pts})$ Let $g(x)=\int_{e^{x}}^{x^{3}} \cos ^{3}(\ln t) d t$. Find $g^{\prime}(x)$.
Problem 2 Find the area of the region between the following curves.
2a (10 pts) $y=9-x^{2}$ and x-axis.
2b (10 pts) $y=x^{3}-4 x$ and $y=5 x$.
Problem 3 (15 pts) Find the following limit: $\lim _{x \rightarrow 0^{+}} x^{\sin x}$
Problem 4 Consider the region between the curves $y=\sqrt{12 x}, x$-axis, and $x=3$.
4a ($\mathbf{1 0} \mathbf{~ p t s) ~ R o t a t e ~ t h e ~ r e g i o n ~ a b o u t ~} x$-axis. Find the volume of the solid.
4b ($\mathbf{1 5} \mathbf{~ p t s) ~ R o t a t e ~ t h e ~ r e g i o n ~ a b o u t ~ t h e ~ v e r t i c a l ~ l i n e ~} x=-2$. Find the volume of the solid.

Problem 5 ($\mathbf{1 5} \mathbf{~ p t s)}$ Find the following integral: $\int \frac{d x}{e^{x}+1}$
Problem 6 Find the following integrals.
6a (6 pts) $\int e^{2 x} \cdot \sin (3 x) d x$
6b ($6 \mathbf{p t s}) \int x^{2} \cdot \sqrt{4 x^{2}-9} d x$
6c (8 pts) $\int x \cdot \arcsin (2 x) d x$

MATH 102-2. MIDTERM SOLUTIONS:
(1) Let $\left.G^{\prime}(t)=\cos ^{3}(\ln t) \Rightarrow g(x)=G\left(x^{3}\right)-G\left(e^{x}\right) \Rightarrow g^{\prime}(x)=G^{\prime}\left(x^{3}\right)\right] x^{2}-G^{\prime}\left(e^{x}\right) \cdot e^{x}$

$$
\Rightarrow \quad g^{\prime}(x)=\cos ^{3}\left(\ln x^{3}\right) \cdot 3 x^{2}-\cos ^{3}\left(\ln e^{x}\right) \cdot e^{x}
$$

(2) (2a)
(2b)

$$
\begin{aligned}
x^{3}-4 x & =5 x \Rightarrow x^{3}-9 x=0 \Rightarrow x \cdot(x-3)(x+3)=0 \Rightarrow x=-3,0,3 \\
\text { Area } & =\int_{-3}^{0}\left(x^{3}-4 x\right)-5 x d x+\int_{0}^{3} 5 x-\left(x^{2}-4 x\right) d x=\int_{-1}^{0} x^{3}-9 x d x+\int_{0}^{3} 9 x-x^{3} d x \\
& =\frac{x^{4}}{4}-\left.\frac{9 x^{2}}{2}\right|_{-3} ^{0}+\frac{9 x^{2}}{2}-\left.\frac{x^{4}}{4}\right|_{0} ^{1}=\left\{\frac{81}{4}+\frac{81}{4}=\frac{81}{2}\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
& y=x^{\sin x} \Rightarrow \ln y=\ln x^{\sin x}=\sin x \cdot \ln x \Rightarrow \lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \sin x_{1} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{\sin x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-\cos ^{2} x}{\sin ^{2} x}}=\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2} x}{x \cdot \cos x}=\lim _{x \rightarrow 0^{+}} \frac{2 \sin x \cdot \cos x}{\cos x-x \sin x}=\frac{0}{1}=0 \quad \ln _{x \rightarrow 0} \\
& \quad \text { l'opital } \quad \Rightarrow y \rightarrow 1
\end{aligned}
$$

(4) (4a)

$$
\frac{\sin ^{2} x}{\operatorname{lill}_{3 \rightarrow}^{\sqrt{12 x}} V=\int_{0}^{3} \pi(\sqrt{12}) d x=12 \pi \int_{0}^{3} x d x=\left.6 \pi x^{2}\right|_{0} ^{\text {lopital }}=54 \pi / /}
$$

(4b) $\left.\left.\frac{6+\frac{y^{x}=\frac{y^{2}}{12}}{-2(1)]^{2}}}{=\sqrt{3}}=\pi \int_{0}^{6}\left(5^{2}-\frac{\left(y^{2}\right.}{12}+2\right)^{2}\right) d y=\pi \int_{0}^{6} 25-\frac{\left(y^{4}\right.}{144}+\frac{y^{2}}{3}+4\right) d y=\pi \int_{0}^{6}-y^{4} \frac{y^{4}}{144}+\frac{y^{2}}{3}+21 d y$

$$
y=\sqrt{11 x} \Rightarrow x=\frac{y^{2}}{12}
$$

$$
=\left.\pi\left[\frac{-y^{3}}{720}-\frac{y^{3}}{9}+21 y\right]\right|_{0} ^{6}=\pi\left[\frac{-54}{5}-24+126\right]=\frac{456 \pi}{5} / 1
$$

(5)

$$
\begin{aligned}
& \int \frac{d x}{e^{x}+1}=\int \frac{1}{u+1} \cdot \frac{d u}{u}=\int \frac{d u}{u(u+1)}=\int \frac{1}{u}-\frac{1}{u+1} d u=\ln u-\ln (u+1)=\ln e^{x}-\ln \left(e^{x}+1\right)+C \\
& =x-\ln \left(e^{x}+1\right)+C \\
& u=e^{x} \\
& l u=\frac{e^{x} d x}{u} \Rightarrow d x=\frac{d u}{u} \quad \frac{1}{u \cdot(u+1)}=\frac{1}{u}-\frac{1}{u+1}
\end{aligned}
$$

(6) (6) $\int e^{2 x} \cdot \sin 3 x d x=\frac{e^{2 x}}{13}(2 \sin 3 x-3 \cos 3 x)+C$
$107 \quad \begin{aligned} & a=2 \\ & b=3\end{aligned}$
(6b) $\left.\int x^{2} \cdot \sqrt{4 x^{2}-9} d x=2 \int x^{2} \cdot \sqrt{x^{2}-\frac{9}{4}} d x=2\left[\left.\frac{x}{8}\left(2 x^{2}-\frac{9}{4}\right) \cdot \sqrt{x^{2}-\frac{9}{4}}+\frac{81}{64} \ln \right\rvert\, x+\sqrt{x^{2}-\frac{9}{4}}\right] \right\rvert\,+c$
41 $a=\frac{3}{2}$
(6c)

$$
\begin{aligned}
\int x \cdot \arcsin 2 x d x & =\frac{x^{2}}{2} \arcsin 2 x-\frac{2}{2} \int \frac{x^{2} d x}{\sqrt{1-4 x^{2}}} d x \\
99 \quad n=1 & =\frac{x^{2}}{2} \arcsin 2 x-\frac{1}{2} \int \frac{x^{2} d x}{\sqrt{\frac{1}{4}-x^{2}}} \\
33=2 & =\frac{x^{2}}{2} \arcsin 2 x-\frac{1}{2}\left[\frac{1}{8} \arcsin 2 x-\frac{1}{2} x \sqrt{\frac{1}{4}-x^{2}}\right]+C
\end{aligned}
$$

