Math 301-Problem Set \# 10 - Fall 2010

Homework Problems: 1, 3, 10, 17, 19, 26.
In the following problems $(X, d),(Y, \rho)$ are assumed to be metric spaces, A, B are subsets of X, f is a mapping from X to Y.

1. Suppose that X is compact and $\left(A_{n}\right)$ is a sequence of non-empty closed subsets of X with $A_{n+1} \subseteq A_{n}$. Prove that $\cap_{n=0}^{\infty} A_{n}$ is non-empty.
2. The diameter $\delta(A)$ of a non-empty bounded set A is defined to be $\sup \left\{d\left(a, a^{\prime}\right): a, a^{\prime} \in A\right\}$. Prove Cantor Nested Sets Theorem: Suppose that X is complete and $\left(A_{n}\right)$ is a sequence of non-empty closed subsets of X with $A_{n+1} \subseteq A_{n}$ and $\lim \delta\left(A_{n}\right)=0$. Then $\cap_{n=0}^{\infty} A_{n}$ consists of a single point.
3. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=x^{n}$ for each $n \in \mathbb{Z}_{+}$and $f_{0}:[0,1] \rightarrow \mathbb{R}$ be defined by $f_{0}(x)=1$. Prove that $\left(f_{n}(x)\right)$ is convergent for each $x \in[0,1]$, and find this limit for every x. Is the sequence (f_{n}) uniformly convergent, i.e. is it convergent in $B[0,1]$ with the uniform convergence metric (sup-metric)?
4. For two subsets E and F of $\mathbb{R}, E+F$ is defined to be $\{e+f: e \in E, f \in F\}$. Prove that $E+F$ is compact if E and F are compact. Prove that $E+F$ is closed if E is compact and F is closed.
5. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\phi(x)=0$ if $x \notin \mathbb{Q}$ and $\phi(m / n)=1 / n$ whenever m and n are relatively prime integers and $n>0$. Prove that ϕ is continuous at irrational numbers and discontinuous at rational numbers.
6. Prove that X is connected iff it has no nonempty, proper subset that is both open and closed.
7. Prove that X is connected iff every non-empty proper subset of X has non-empty boundary.
8. Prove that a discrete metric space is connected iff it consists of a single point.
9. Suppose that A and B are nonempty, closed and disjoint. Prove that $A \cup B$ is disconnected.
10. Suppose that A and B are connected.
(a) Prove that if $\bar{A} \cap B \neq \emptyset$, then $A \cup B$ is connected.
(b) Prove or disprove: if $\bar{A} \cap \bar{B} \neq \emptyset$, then $A \cup B$ is connected.
11. Prove that either the interior or the exterior of A is empty if $X \backslash \partial(A)$ is connected.
12. Prove that any convex set in \mathbb{R}^{k}, in particular any ball in \mathbb{R}^{k} and \mathbb{R}^{k} itself are all connected.
13. Prove that $\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4\right\}$ is a compact connected subset of \mathbb{R}^{2}.
14. Prove that if $\phi: X \rightarrow \mathbb{R}$ is continuous, $0,2 \in \phi(A)$ and $1 \notin \phi(A)$, then A is disconnected.
15. Suppose that X is disconnected. Prove that there is a continuous function $\phi: X \rightarrow \mathbb{R}$ such that $\phi(X)$ consists of two real numbers.
16. Let \sim be a relation on X defined by $x \sim y$ if the connected component of x is the same as that of y. Prove that this is an equivalence relation. What is the equivalence class of an element x ?
17. Suppose that X is connected and not bounded, and $x_{0} \in X$. Prove that for every $r>0$ there exists $x \in X$ with $d\left(x_{0}, x\right)=r$.
18. Let $X=[0,1], Y=\{1,2,3\}, d$ be the absolute value metric and ρ be the discrete metric. Considering ρ_{∞} metric on the cartesian product $\mathcal{X}=X \times Y$, give examples of compact, non-compact, connected and disconnected subsets of \mathcal{X}.
19. Check whether the following sets are compact or connected. Justify your claim.
(a) $\left\{\sin (1 / n): n \in \mathbb{Z}_{+}\right\} \subseteq \mathbb{R}$.
(b) $\left\{\left(x, e^{x}\right): 0<x<1\right\} \subseteq \mathbb{R}^{2}$.
(c) $\left\{(x, y, z): x^{2}+y^{2} \leq 1\right\} \cap\left\{(x, y, z): z^{2}+y^{2} \leq 4\right\} \subseteq \mathbb{R}^{3}$.
(d) $\left\{z: z=x^{2} \sin y, x^{2}+y^{2} \leq 1\right\} \subseteq \mathbb{R}$.
20. Prove that every open subset of \mathbb{R} is the union of countably many disjoint open intervals.
21. Suppose that X is path-connected and f is continuous. Prove that $f(X)$ is path-connected.
22. Let \sim be the relation defined on X by $x \sim y$ if there is a path from x to y. Prove that \sim is an equivalence relation.
23. Suppose that A_{i} is connected for $i=1,2,3$. Prove that $A_{1} \cup A_{2} \cup A_{3}$ is connected if $A_{1} \cap A_{2}$ and $A_{2} \cap A_{3}$ are non-empty.
24. Let $\phi: X \rightarrow \mathbb{R}$ be continuous, X be compact, $x \in X$ and E_{x} be the connected component of x in X. Prove that $f\left(E_{x}\right)$ is a closed and bounded interval.
25. Let K be a convex subset of R^{k} and $\phi: K \rightarrow X$ be continuous. Prove that the connected components of any two points in $\phi(K)$ are the same, i.e. $\phi(K)$ is contained in a single connected component.
26. Let A be the compact subset of \mathbb{R}^{2} consisting of the vertical line segment

$$
E=\{(0, y):-1 \leq y \leq 1\}
$$

together with the portion of the graph of $\sin (1 / x)$ given by

$$
F=\{(x, \sin (1 / x)): 0<x \leq 1\} .
$$

Prove that A is connected. Is it path-connected?

