Math 301 - Problem Set # 10 - Fall 2010

Homework Problems: 1, 3, 10, 17, 19, 26.

In the following problems (X, d), (Y, ρ) are assumed to be metric spaces, A, B are subsets of X, f is a mapping from X to Y.

- 1. Suppose that X is compact and (A_n) is a sequence of non-empty closed subsets of X with $A_{n+1} \subseteq A_n$. Prove that $\bigcap_{n=0}^{\infty} A_n$ is non-empty.
- 2. The diameter $\delta(A)$ of a non-empty bounded set A is defined to be $\sup\{d(a, a') : a, a' \in A\}$. Prove Cantor Nested Sets Theorem: Suppose that X is complete and (A_n) is a sequence of non-empty closed subsets of X with $A_{n+1} \subseteq A_n$ and $\lim \delta(A_n) = 0$. Then $\bigcap_{n=0}^{\infty} A_n$ consists of a single point.
- 3. Let $f_n : [0,1] \to \mathbb{R}$ be defined by $f_n(x) = x^n$ for each $n \in \mathbb{Z}_+$ and $f_0 : [0,1] \to \mathbb{R}$ be defined by $f_0(x) = 1$. Prove that $(f_n(x))$ is convergent for each $x \in [0,1]$, and find this limit for every x. Is the sequence (f_n) uniformly convergent, i.e. is it convergent in B[0,1] with the uniform convergence metric (sup-metric)?
- 4. For two subsets E and F of \mathbb{R} , E + F is defined to be $\{e + f : e \in E, f \in F\}$. Prove that E + F is compact if E and F are compact. Prove that E + F is closed if E is compact and F is closed.
- 5. Let $\phi : \mathbb{R} \to \mathbb{R}$ be defined by $\phi(x) = 0$ if $x \notin \mathbb{Q}$ and $\phi(m/n) = 1/n$ whenever m and n are relatively prime integers and n > 0. Prove that ϕ is continuous at irrational numbers and discontinuous at rational numbers.
- 6. Prove that X is connected iff it has no nonempty, proper subset that is both open and closed.
- 7. Prove that X is connected iff every non-empty proper subset of X has non-empty boundary.
- 8. Prove that a discrete metric space is connected iff it consists of a single point.
- 9. Suppose that A and B are nonempty, closed and disjoint. Prove that $A \cup B$ is disconnected.
- 10. Suppose that A and B are connected.
 - (a) Prove that if $\overline{A} \cap B \neq \emptyset$, then $A \cup B$ is connected.
 - (b) Prove or disprove: if $\overline{A} \cap \overline{B} \neq \emptyset$, then $A \cup B$ is connected.
- 11. Prove that either the interior or the exterior of A is empty if $X \setminus \partial(A)$ is connected.
- 12. Prove that any convex set in \mathbb{R}^k , in particular any ball in \mathbb{R}^k and \mathbb{R}^k itself are all connected.
- 13. Prove that $\{(x, y) : 1 \le x^2 + y^2 \le 4\}$ is a compact connected subset of \mathbb{R}^2 .

- 14. Prove that if $\phi: X \to \mathbb{R}$ is continuous, $0, 2 \in \phi(A)$ and $1 \notin \phi(A)$, then A is disconnected.
- 15. Suppose that X is disconnected. Prove that there is a continuous function $\phi : X \to \mathbb{R}$ such that $\phi(X)$ consists of two real numbers.
- 16. Let \sim be a relation on X defined by $x \sim y$ if the connected component of x is the same as that of y. Prove that this is an equivalence relation. What is the equivalence class of an element x?
- 17. Suppose that X is connected and not bounded, and $x_0 \in X$. Prove that for every r > 0 there exists $x \in X$ with $d(x_0, x) = r$.
- 18. Let X = [0, 1], $Y = \{1, 2, 3\}$, d be the absolute value metric and ρ be the discrete metric. Considering ρ_{∞} metric on the cartesian product $\mathcal{X} = X \times Y$, give examples of compact, non-compact, connected and disconnected subsets of \mathcal{X} .
- 19. Check whether the following sets are compact or connected. Justify your claim.
 - (a) $\{\sin(1/n) : n \in \mathbb{Z}_+\} \subseteq \mathbb{R}.$
 - (b) $\{(x, e^x) : 0 < x < 1\} \subseteq \mathbb{R}^2$.
 - (c) $\{(x, y, z) : x^2 + y^2 \le 1\} \cap \{(x, y, z) : z^2 + y^2 \le 4\} \subseteq \mathbb{R}^3$.
 - (d) $\{z : z = x^2 \sin y, x^2 + y^2 \le 1\} \subseteq \mathbb{R}.$
- 20. Prove that every open subset of \mathbb{R} is the union of countably many disjoint open intervals.
- 21. Suppose that X is path-connected and f is continuous. Prove that f(X) is path-connected.
- 22. Let \sim be the relation defined on X by $x \sim y$ if there is a path from x to y. Prove that \sim is an equivalence relation.
- 23. Suppose that A_i is connected for i = 1, 2, 3. Prove that $A_1 \cup A_2 \cup A_3$ is connected if $A_1 \cap A_2$ and $A_2 \cap A_3$ are non-empty.
- 24. Let $\phi : X \to \mathbb{R}$ be continuous, X be compact, $x \in X$ and E_x be the connected component of x in X. Prove that $f(E_x)$ is a closed and bounded interval.
- 25. Let K be a convex subset of R^k and $\phi : K \to X$ be continuous. Prove that the connected components of any two points in $\phi(K)$ are the same, i.e. $\phi(K)$ is contained in a single connected component.
- 26. Let A be the compact subset of \mathbb{R}^2 consisting of the vertical line segment

$$E = \{(0, y) : -1 \le y \le 1\}$$

together with the portion of the graph of sin(1/x) given by

$$F = \{ (x, \sin(1/x)) : 0 < x \le 1 \} .$$

Prove that A is connected. Is it path-connected?