Math 301 - Problem Set \# 3 - Fall 2010

Homework Problems: 2, 8, 10, 12, 17, 21
In the following exercises all sequences are assumed to be in \mathbb{R} and $\left(a_{n}\right)$ denote a sequence of real numbers. As usual, you should justify your answers.

1. Prove that any subsequence of a convergent sequence is convergent and has the same limit as the sequence.
2. Find all the cluster points of the following sequences if they exist.
(a) $a_{n}=5$ for every natural number n.
(b) $a_{n}=(-1)^{n}$ for every natural number n.
(c) For every natural number n, a_{n} is the remainder when n is divided by 3 .
(d) $a_{n}=n$ for every natural number n.
(e) $a_{n}=f(n)$ for every natural number n, where f is any bijection from \mathbb{N} to $\mathbb{Q} \cap[0,1]$. (How do we know that there is such a bijection?)
3. Prove that the limit of a convergent sequence is a cluster point and in fact the only cluster point of that sequence. If possible, find a sequence which diverges even though it has a unique cluster point.
4. If possible, give an example of a set which has a maximum,i.e. a greatest element, and an example of a bounded set which does not have a maximum.
5. If possible, find a convergent sequence with more than one cluster point.
6. Prove that any bounded sequence has at least one cluster point.
7. Prove that $\left(a_{n}\right)$ converges iff both $\left(a_{2 n}\right)$ and $\left(a_{2 n+1}\right)$ converges to the same limit.
8. If possible, give an example of a Cauchy sequence which isn't convergent and an example of a sequence which isn't Cauchy. What would change if we had considered sequences in \mathbb{Z} or \mathbb{Q} ?
9. Prove that if $\left(a_{n}\right)$ is monotone and unbounded, then $\lim \frac{1}{a_{n}}=0$.

Definition. Let S be a subset of \mathbb{R}. A real number a is called an accumulation point of S if for every $\epsilon>0$ the interval ($a-\epsilon, a+\epsilon$) contains infinitely many points of S.
10. Given a sequence $\left(a_{n}\right)$, what can you say about the accumulation points of the set $\left\{a_{n}: n \in\right.$ $\mathbb{N}\}$?
11. (a) Prove that \mathbb{N} has no accumulation points.
(b) Find the accumulation points of $S=(0,1) \cup\{2\}$.
(c) Prove that any real number is an accumulation point of \mathbb{Q}.
12. Prove that a is an accumulation point of S iff there is a sequence $\left(a_{n}\right)$ in S such that $\lim a_{n}=$ a and $a_{n} \neq a_{m}$ whenever $n \neq m$.
13. Prove that if S is a bounded subset of \mathbb{R} with infinitely many elements, then S has at least one accumulation point.
14. Find a sequence $\left(A_{n}\right)$ of non-empty subsets of \mathbb{R} such that A_{0} is bounded, $A_{n+1} \subseteq A_{n}$ for every $n \in \mathbb{N}$ and the intersection $\cap_{n \in \mathbb{N}} A_{n}$ is empty.
15. Let $\left[a_{0}, b_{0}\right] \supseteq\left[a_{1}, b_{1}\right] \supseteq \cdots \supseteq\left[a_{n}, b_{n}\right] \supseteq \cdots$ be a sequence of closed and bounded intervals in \mathbb{R}. Prove that the intersection $\cap_{n \in \mathbb{N}}\left[a_{n}, b_{n}\right]$ contains only one element iff for every $\epsilon>0$ there exists $n \in \mathbb{N}$ such that $b_{n}-a_{n}<\epsilon$.
16. If possible, find an unbounded sequence whose limit inferior and limit superior both exist.
17. Find limit superior and limit inferior of each of the following sequences, if they exist.
(a) $a_{n}=(-1)^{n}$ for every natural number n.
(b) For every natural number n, a_{n} is the remainder when n is divided by 4 .
(c) $a_{n}=\frac{1}{n+1}$ for every natural number n.
(d) $a_{n}=(-1)^{n} \frac{2 n}{n+1}$ for every natural number n.
(e) $a_{n}=\frac{\sin ((n+1) \pi)}{n+1}$ for every natural number n.
(f) $a_{n}=f(n)$ for every natural number n, where f is any bijection from \mathbb{N} to $\mathbb{Q} \cap[0,1]$.
(g) $a_{n}=n$ for every natural number n.
(h) $a_{0}=0, a_{2 n+1}=\frac{1}{3}+a_{2 n}$ and $a_{2 n+2}=\frac{1}{3} a_{2 n+1}$ for every natural number n.
18. Prove that if $\lim \inf a_{n}=\lim \sup a_{n}$, then $\left(a_{n}\right)$ is convergent.
19. Prove that if $\left(a_{n}\right)$ is convergent, then $\lim \sup a_{n}=\lim \inf a_{n}=\lim a_{n}$.
20. In each of the following, either give an example of a sequence $\left(a_{n}\right)$ in \mathbb{R} satisfying the given condition or prove that there is no such sequence.
(a) $\limsup a_{n} \leq a_{m}$ for every $m \in \mathbb{N}$
(b) $\left(\lim \sup a_{n}\right)^{2}<\left(\lim \inf a_{n}\right)^{2}$
(c) $\lim \inf a_{n}<\limsup a_{n}$ and $\lim a_{n}=2$.
21. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two bounded sequences. Prove that
(a) $\liminf a_{n}+\liminf b_{n} \leq \liminf \left(a_{n}+b_{n}\right)$
(b) $\limsup \left(a_{n}+b_{n}\right) \leq \limsup a_{n}+\limsup b_{n}$.

