Math 301 - Problem Set \# 4 - Fall 2010

Homework Problems: 1, 6, 14, 15, 23, 24, 27, 30, 34, 35.

In the following exercises all sequences are assumed to be in $\mathbb{R},\left(a_{n}\right)$ denote a sequence of real numbers, A denotes a subset of \mathbb{R}. As usual, you should justify your answers.

1. Prove that neither $(x, y]$ nor $[x, y)$ is closed in \mathbb{R} for $x, y \in \mathbb{R}$ with $x<y$. Are they open?
2. Prove that the infimum of a nonempty, closed and bounded subset A of \mathbb{R} belongs to A.
3. Give an example of a subset A of \mathbb{R} which is not closed even though both $\sup (A)$ and $\inf (A)$ belong to A.
4. Let $x, y \in \mathbb{R}$ with $x<y$. Find the closure, interior, accumulation and isolated points of $(x, y),[x, y],(x, y],[x, y),(-\infty, x),(x, \infty), \varnothing, \mathbb{R}, \mathbb{Z}, \mathbb{Q}, \mathbb{R} \backslash \mathbb{Q}$ and $\left\{\frac{1}{n+1}: n \in \mathbb{N}\right\}$. Which one of these sets are open? Which of them are closed? Which ones are discrete? Which ones are perfect?
5. Suppose that A is open and bounded. Prove that neither the supremum nor the infimum of A belongs to A.
6. Are there any subsets of \mathbb{R} which are both open and closed? If yes, find all of them.
7. Prove that the union of finite number of closed subsets of \mathbb{R} is closed in \mathbb{R}.
8. Prove that the intersection of any family of closed subsets of \mathbb{R} is closed in \mathbb{R}.
9. Prove that the union of any family of open subsets of \mathbb{R} is open in \mathbb{R}.
10. Prove that the intersection of finite number of open sets in \mathbb{R} is open in \mathbb{R}.
11. Prove that $A=\bar{A}$ iff A is closed.
12. Prove that $\bar{A}=A \cup A^{\prime}$.
13. Prove that A is open iff it is the union of a family of open intervals.
14. Find the closure, interior, derived set and the isolated points of $A=\{0\} \cup(1,2] \cup\{4\}$. Is this set open? Is it closed? Is it perfect? Is it discrete?
15. Prove that A^{\prime} is closed.
16. Prove that $A \subseteq \bar{A}$.
17. Prove that the following two definitions of an accumulation point are equivalent.
(a) $x \in \mathbb{R}$ is an accumulation point of A if for every $\epsilon>0,(x-\epsilon, x+\epsilon) \cap(A \backslash\{x\}) \neq \varnothing$.
(b) $x \in \mathbb{R}$ is an accumulation point of A if for every $\epsilon>0,(x-\epsilon, x+\epsilon) \cap A$ contains infinitely many elements.
18. Prove that if x is an isolated point of A, then x is an accumulation point of $\mathbb{R} \backslash A$.
19. Suppose that $x \in \bar{A}$. Prove that $x \in A^{\prime}$ iff there is a sequence $\left(a_{n}\right)$ in A with $a_{n} \neq a_{m}$ for $n \neq m$ that converges to x.
20. Let $A=\left\{a_{n}: n \in \mathbb{N}\right\}$ and C be the set of cluster points of $\left(a_{n}\right)$. Prove that $\bar{A}=A \cup C$. Prove that $A^{\prime} \subseteq C$.
21. Give an example of a sequence $\left(a_{n}\right)$ which has a cluster point that is not an accumulation point of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
22. Let $a_{n} \neq a_{m}$ for $n \neq m, A=\left\{a_{n}: n \in \mathbb{N}\right\}$ and $\left(a_{n}\right)$ converges to L. Prove that $A^{\prime}=\{L\}$ and each element of A is an isolated point.
23. Let $\left(a_{n}\right)$ be a strictly increasing sequence and $A=\left\{a_{n}: n \in \mathbb{N}\right\}$. Prove that A is discrete. Also prove that A is closed iff $\left(a_{n}\right)$ is unbounded.
24. Prove the following.
(a) A^{o} is open.
(b) $A^{o} \subseteq A$.
(c) A^{o} is the largest open set contained in A.
(d) $A^{o}=A$ iff A is open.
25. Let d be a real-valued function on $X \times X$ for a nonempty set X. Prove that d is a metric on X iff d satisfies the following conditions
(a) $d(x, y)=0$ iff $x=y$
(b) $d(x, z) \leq d(y, x)+d(y, z)$ for every x, y and $z \in X$
26. Let X be a nonempty set. Prove that the function d on $X \times X$ defined by

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}
$$

is a metric on X.
27. Let (X, d) be a metric space and Y be a nonempty subset of X. Prove that the restriction of d to $Y \times Y$ is a metric on Y.
28. Let (X, d) be a metric space and ρ be defined by

$$
\rho(x, y)=\frac{d(x, y)}{1+d(x, y)} \text { for every } x, y \in X .
$$

Prove that ρ is a metric on X.
29. Let (X, d) be a metric space and ρ be defined by

$$
\rho(x, y)=\min \{1, d(x, y)\} \text { for every } x, y \in X
$$

Prove that ρ is a metric on X.
30. Let $f: X \rightarrow \mathbb{R}$ be a one-to-one function on a nonempty set X. Prove that d defined by $d(x, y)=|f(x)-f(y)|$ for every $x, y \in X$ is a metric on X.
31. Prove that the function $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
d(x, y)=|\arctan x-\arctan y|
$$

is a metric on \mathbb{R}.
32. Let (X, d) be a metric space and $x, y, z, w \in X$. Prove the following.
(a) $|d(x, z)-d(y, w)| \leq d(x, y)+d(z, w)$
(b) $|d(x, z)-d(y, z)| \leq d(x, y)$
33. Let X be a nonempty set and \sim be the relation on the set of all metrics on X defined by $d \sim \rho$ iff d and ρ are equivalent metrics on X. Prove that \sim is an equivalence relation.
34. Let m be a positive integer and the functions d_{1}, d_{2} and d_{∞} on $\mathbb{R}^{m} \times \mathbb{R}^{m}$ be defined by

$$
\begin{gathered}
d_{1}(x, y)=\sum_{i=1}^{m}\left|x_{i}-y_{i}\right| \\
d_{2}(x, y)=\sqrt{\sum_{i=1}^{m}\left|x_{i}-y_{i}\right|^{2}} \\
d_{\infty}(x, y)=\max \left\{\left|x_{i}-y_{i}\right|: 1 \leq i \leq m\right\}
\end{gathered}
$$

for all vectors $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ in \mathbb{R}^{m}. Prove that d_{1}, d_{2} and d_{∞} are metrics on \mathbb{R}^{m}.
35. Let S be any nonempty set. A function $f: S \rightarrow \mathbb{R}$ is called bounded if $f(S)$ is a bounded subset of \mathbb{R}. Let $B(S)$ be the set of all bounded real-valued functions on S. Prove that the function $\rho: B(S) \times B(S) \rightarrow \mathbb{R}$ defined by

$$
\rho(f, g)=\sup \{|f(s)-g(s)|: s \in S\}
$$

is a metric on $B(S)$ (ρ is called the uniform convergence metric or the sup metric).
36. Let $C^{1}[0,1]$ be the set of all differentiable functions $f:[0,1] \rightarrow \mathbb{R}$ which have continuous derivatives. Prove that the function d defined by

$$
d(f, g)=|f(0)-g(0)|+\sup \left\{\left|f^{\prime}(t)-g^{\prime}(t)\right|: 0 \leq t \leq 1\right\}
$$

is a metric on $C^{1}[0,1]$. Also prove that $\rho(f, g) \leq d(f, g)$ for every $f, g \in C^{1}[0,1]$, where ρ is the uniform convergence metric on the set of all bounded functions on $[0,1]$.
37. Let $C[0,1]$ be the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$. Prove that the function d defined by

$$
d(f, g)=\int_{0}^{1}|f(t)-g(t)| d t
$$

is a metric on $C[0,1]$.

