Math 301 - Problem Set # 4 - Fall 2010

Homework Problems: 1, 6, 14, 15, 23, 24, 27, 30, 34, 35.

In the following exercises all sequences are assumed to be in \mathbb{R} , (a_n) denote a sequence of real numbers, A denotes a subset of \mathbb{R} . As usual, you should justify your answers.

- 1. Prove that neither (x, y] nor [x, y) is closed in \mathbb{R} for $x, y \in \mathbb{R}$ with x < y. Are they open?
- 2. Prove that the infimum of a nonempty, closed and bounded subset A of \mathbb{R} belongs to A.
- 3. Give an example of a subset *A* of ℝ which is not closed even though both sup(*A*) and inf(*A*) belong to *A*.
- 4. Let x, y ∈ R with x < y. Find the closure, interior, accumulation and isolated points of (x, y), [x, y], (x, y], [x, y), (-∞, x), (x, ∞), Ø, R, Z, Q, R \ Q and {1/(n+1) : n ∈ N}. Which one of these sets are open? Which of them are closed? Which ones are discrete? Which ones are perfect?
- 5. Suppose that A is open and bounded. Prove that neither the supremum nor the infimum of A belongs to A.
- 6. Are there any subsets of \mathbb{R} which are both open and closed? If yes, find all of them.
- 7. Prove that the union of finite number of closed subsets of \mathbb{R} is closed in \mathbb{R} .
- 8. Prove that the intersection of any family of closed subsets of \mathbb{R} is closed in \mathbb{R} .
- 9. Prove that the union of any family of open subsets of \mathbb{R} is open in \mathbb{R} .
- 10. Prove that the intersection of finite number of open sets in \mathbb{R} is open in \mathbb{R} .
- 11. Prove that $A = \overline{A}$ iff A is closed.
- 12. Prove that $\overline{A} = A \cup A'$.
- 13. Prove that A is open iff it is the union of a family of open intervals.
- 14. Find the closure, interior, derived set and the isolated points of $A = \{0\} \cup (1, 2] \cup \{4\}$. Is this set open? Is it closed? Is it perfect? Is it discrete?
- 15. Prove that A' is closed.
- 16. Prove that $A \subseteq A$.
- 17. Prove that the following two definitions of an accumulation point are equivalent.

- (a) $x \in \mathbb{R}$ is an accumulation point of A if for every $\epsilon > 0$, $(x \epsilon, x + \epsilon) \cap (A \setminus \{x\}) \neq \emptyset$.
- (b) $x \in \mathbb{R}$ is an *accumulation point of* A if for every $\epsilon > 0$, $(x \epsilon, x + \epsilon) \cap A$ contains infinitely many elements.
- 18. Prove that if x is an isolated point of A, then x is an accumulation point of $\mathbb{R} \setminus A$.
- 19. Suppose that $x \in \overline{A}$. Prove that $x \in A'$ iff there is a sequence (a_n) in A with $a_n \neq a_m$ for $n \neq m$ that converges to x.
- 20. Let $A = \{a_n : n \in \mathbb{N}\}$ and C be the set of cluster points of (a_n) . Prove that $\overline{A} = A \cup C$. Prove that $A' \subseteq C$.
- 21. Give an example of a sequence (a_n) which has a cluster point that is not an accumulation point of $\{a_n : n \in \mathbb{N}\}$.
- 22. Let $a_n \neq a_m$ for $n \neq m$, $A = \{a_n : n \in \mathbb{N}\}$ and (a_n) converges to L. Prove that $A' = \{L\}$ and each element of A is an isolated point.
- 23. Let (a_n) be a strictly increasing sequence and $A = \{a_n : n \in \mathbb{N}\}$. Prove that A is discrete. Also prove that A is closed iff (a_n) is unbounded.
- 24. Prove the following.
 - (a) A^o is open.
 - (b) $A^o \subseteq A$.
 - (c) A^o is the largest open set contained in A.
 - (d) $A^o = A$ iff A is open.
- 25. Let d be a real-valued function on $X \times X$ for a nonempty set X. Prove that d is a metric on X iff d satisfies the following conditions
 - (a) d(x, y) = 0 iff x = y
 - (b) $d(x,z) \le d(y,x) + d(y,z)$ for every x, y and $z \in X$
- 26. Let X be a nonempty set. Prove that the function d on $X \times X$ defined by

$$d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

is a metric on X.

27. Let (X, d) be a metric space and Y be a nonempty subset of X. Prove that the restriction of d to $Y \times Y$ is a metric on Y.

28. Let (X, d) be a metric space and ρ be defined by

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$$
 for every $x, y \in X$.

Prove that ρ is a metric on X.

29. Let (X, d) be a metric space and ρ be defined by

$$\rho(x, y) = \min\{1, d(x, y)\}$$
 for every $x, y \in X$.

Prove that ρ is a metric on X.

- 30. Let $f : X \to \mathbb{R}$ be a one-to-one function on a nonempty set X. Prove that d defined by d(x, y) = |f(x) f(y)| for every $x, y \in X$ is a metric on X.
- 31. Prove that the function $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

$$d(x, y) = |\arctan x - \arctan y|$$

is a metric on \mathbb{R} .

- 32. Let (X, d) be a metric space and $x, y, z, w \in X$. Prove the following.
 - (a) $|d(x,z) d(y,w)| \le d(x,y) + d(z,w)$
 - (b) $|d(x,z) d(y,z)| \le d(x,y)$
- 33. Let X be a nonempty set and \sim be the relation on the set of all metrics on X defined by $d \sim \rho$ iff d and ρ are equivalent metrics on X. Prove that \sim is an equivalence relation.
- 34. Let m be a positive integer and the functions d_1, d_2 and d_∞ on $\mathbb{R}^m \times \mathbb{R}^m$ be defined by

$$d_1(x, y) = \sum_{i=1}^m |x_i - y_i|$$
$$d_2(x, y) = \sqrt{\sum_{i=1}^m |x_i - y_i|^2}$$
$$d_{\infty}(x, y) = \max\{|x_i - y_i| : 1 \le i \le m\}$$

for all vectors $x = (x_1, x_2, ..., x_m)$ and $y = (y_1, y_2, ..., y_m)$ in \mathbb{R}^m . Prove that d_1, d_2 and d_{∞} are metrics on \mathbb{R}^m .

35. Let S be any nonempty set. A function $f : S \to \mathbb{R}$ is called *bounded* if f(S) is a bounded subset of \mathbb{R} . Let B(S) be the set of all bounded real-valued functions on S. Prove that the function $\rho : B(S) \times B(S) \to \mathbb{R}$ defined by

$$\rho(f,g) = \sup\{|f(s) - g(s)| : s \in S\}$$

is a metric on B(S) (ρ is called the *uniform convergence metric* or the *sup metric*).

36. Let $C^1[0,1]$ be the set of all differentiable functions $f:[0,1] \to \mathbb{R}$ which have continuous derivatives. Prove that the function d defined by

$$d(f,g) = |f(0) - g(0)| + \sup\{|f'(t) - g'(t)| : 0 \le t \le 1\}$$

is a metric on $C^1[0,1]$. Also prove that $\rho(f,g) \leq d(f,g)$ for every $f,g \in C^1[0,1]$, where ρ is the uniform convergence metric on the set of all bounded functions on [0,1].

37. Let C[0,1] be the set of all continuous functions $f:[0,1] \to \mathbb{R}$. Prove that the function d defined by

$$d(f,g) = \int_0^1 |f(t) - g(t)| \, dt$$

is a metric on C[0, 1].