Math 301 - Problem Set # 5 - Fall 2010

Homework Problems: 5, 6, 13, 15, 20, 22.

In the following problems (X, d) is assumed to be a metric space, $A \subseteq X$ and $B \subseteq X$.

- 1. Prove that A is bounded iff the subset $\{d(x, y) : x, y \in A\}$ of \mathbb{R} is bounded from above.
- 2. Prove that the subset of a bounded set is bounded.
- 3. Prove that the closure of a bounded set is bounded.
- 4. Prove that the union of a finite number of bounded sets is bounded. Find an infinite family of bounded sets whose union is not bounded.
- 5. Give a counterexample to this statement: for every $x \in X$ and r > 0, the closure of the open ball $B_r(x)$ is the closed ball $\overline{B}_r(x)$.
- 6. Prove that if A is open and $A \cap B = \emptyset$, then $A \cap \overline{B} = \emptyset$.
- 7. Prove that A is closed iff for every $x \in X \setminus A$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \cap A = \emptyset$.
- 8. Let τ_d , also called the topology on X induced by the metric d, denote the collection of all the open sets in X. Prove the following.
 - (a) X and \emptyset are both in τ_d .
 - (b) If U and V are in τ_d , then so is $U \cap V$.
 - (c) If $\{U_{\alpha}\}_{\alpha \in I}$ is a family of sets in τ_d , then $\bigcup_{\alpha \in I} U_{\alpha} \in \tau_d$.
- 9. If A is open, then it is the union of some open balls.
- 10. Give an example of a metric space with a family of open sets such that the intersection of these open sets is not open. For the same metric space find a family of closed sets such that the union of these closed sets is not closed.
- 11. Give an example of a metric space which contains a subset that is neither open nor closed.
- 12. Give an example of a metric space which contains a proper nonempty subset that is both open and closed.
- 13. Prove that $x \in \overline{A}$ iff $\inf\{d(x, a) : a \in A\} = 0$.
- 14. Consider a subset S of \mathbb{R} . We have defined the interior, closure, openness and closedness of S in Section 1.7. Verify that these definitions are consistent with those for S when it is considered as a subset of the metric space (\mathbb{R}, d) , where d is the absolute value metric.

- 15. Consider \mathbb{R} as a metric space with the absolute value metric. What are the interior, closure, exterior and boundary of \mathbb{Q} ? What are the interior, closure, exterior and boundary of \mathbb{N} ? What are the interior, closure, exterior and boundary of a finite interval? Does it matter what kind of an interval we consider?
- 16. Prove the following.
 - (a) A^o is open.
 - (b) $A^o \subseteq A$.
 - (c) A^o is the largest open set contained in A.
 - (d) $A^o = A$ iff A is open.
 - (e) $(A^0)^0 = A^0$
- 17. Prove the following.
 - (a) \overline{A} is closed.
 - (b) $A \subseteq \overline{A}$.
 - (c) \overline{A} is the smallest closed set containing A.
 - (d) $\overline{A} = A$ iff A is closed.
 - (e) $\overline{\overline{A}} = \overline{A}$.
- 18. Prove the following.
 - (a) $A^0 \cup B^0 \subseteq (A \cup B)^0$
 - (b) $A^0 \cap B^0 = (A \cap B)^0$
 - (c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (d) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
- 19. Prove that $\partial A = \{x \in X : \text{for every } r > 0, B_r(x) \cap A \neq \emptyset \text{ and } B_r(x) \cap (X \setminus A) \neq \emptyset\}.$
- 20. Prove that $\partial A \subseteq \overline{A}$, in fact $\overline{A} = A \cup \partial A$.
- 21. Prove that $\partial A = \overline{A} \cap \overline{X \setminus A} = \partial(X \setminus A)$.
- 22. Prove that ∂A is closed.
- 23. Prove that A is open iff $A \cap \partial A = \emptyset$.
- 24. Prove that A is closed iff $\partial A \subseteq A$.
- 25. Prove that A^0 is the same as the exterior of $X \setminus A$.
- 26. Prove or disprove: for every $x \in X$ and r > 0 we have $\partial B_r(x) = \{y \in X : d(x, y) = r\}$.