Math 301 - Homework # 6 - Fall 2010

Homework Problems: 4, 6, 11, 17, 21, 22, 23.

In the following problems (X, d), (Y, ρ) and (Z, u) are assumed to be metric spaces, $A, B \subseteq X$ and x_n, y_n are sequences in X.

- 1. Prove that a sequence in a metric space cannot converge to two distinct elements.
- 2. Prove that every convergent sequence in a metric space is bounded.
- 3. Prove that A is closed iff $\lim a_n$ belongs to A whenever (a_n) is a convergent sequence in X with $a_n \in A$ for every $n \in \mathbb{N}$.
- 4. Prove that if $\lim x_n = x$ and $\lim y_n = y$, then $\lim d(x_n, y_n) = d(x, y)$.
- 5. Prove that every subsequence of a convergent sequence (x_n) converges to $\lim x_n$.
- 6. Generalizing the notion of a cluster point of a sequence of real numbers, c ∈ X is called a *cluster point of* (x_n) if for every ε > 0 there exists infinitely many n ∈ N with x_n ∈ B_ε(c). Prove that c is a cluster point of (x_n) iff (x_n) has a subsequence that converges to c.
- 7. Prove that if (x_n) is convergent, then its limit is its only cluster point.
- 8. Prove that a Cauchy sequence in X either has no cluster point and divergent or has a single cluster point and convergent.
- 9. Prove that C[a, b], the set of all continuous functions on the interval [a, b], is complete when considered with the sup-metric.
- 10. Choose a subset S of \mathbb{R} which is not closed and then give an example of a Cauchy sequence in S which doesn't converge to any number in S.
- 11. Is \mathbb{Q} with the absolute value metric complete? How about $\mathbb{R} \setminus \mathbb{Q}$, \mathbb{Z} , [a, b], (a, b] and (a, b), where a and b are real numbers ?
- 12. Prove that if d is the discrete metric on X, then (X, d) is complete.
- 13. Prove that \mathbb{R}^m is complete with each of the metrics d_1 , d_2 and d_{∞} .
- 14. Consider \mathbb{R} with the metric d' defined by $d'(a, b) = |\arctan a \arctan b|$ for all $a, b \in \mathbb{R}$. Prove that (\mathbb{R}, d') is incomplete, i.e. give an example of a Cauchy sequence in (\mathbb{R}, d') which is not convergent.
- 15. Let S be the set of all sequences of real numbers which converge to 0 and let $\underline{d} : S \times S \to \mathbb{R}$ be defined by $\underline{d}((a_n), (b_n)) = \sup\{|a_n - b_n| : n \in \mathbb{N}\}$ for all (a_n) and $(b_n) \in S$. Prove that \underline{d} is a metric and in fact a complete one.

- 16. Let *d* be the discrete metric on *X*. Prove that any mapping from *X* to *Y* is continuous. Also prove that if $g: Y \to X$ is continuous at an element $y \in Y$, then there exists $\delta > 0$ such that g(y) = g(z) whenever $\rho(y, z) < \delta$.
- 17. Let $f : X \to \mathbb{R}$ be a continuous function. Prove that if f(x) = 0 for every $x \in A$, then f(x) = 0 for every $x \in \overline{A}$.
- 18. Let $f : X \to Y$ and $g : Y \to Z$ be continuous mappings. Prove that $g \circ f : X \to Z$ is continuous. Also prove that $g \circ f$ is uniformly continuous if both f and g are uniformly continuous.
- 19. Let d₁ and d₂ be two equivalent metrics on a nonempty set S. Show that if a sequence in S is convergent with respect to the metric d₁, then it is convergent with respect to the metric d₂. Conclude that a continuous function f : (X; d) → (Y; ρ) remains continuous if d and ρ are replaced by equivalent metrics.
- 20. Let f and g be continuous (real-valued) functions on X. Prove that f + g and $f \cdot g$ are also continuous.
- 21. For each continuous function $f: [0,1] \to \mathbb{R}$ define $\psi_f: [0,1] \to \mathbb{R}$ by

$$\psi_f(x) = \int_0^x f(t)dt$$
 for every $x \in [0,1]$.

Prove that ψ_f is continuous. Define $\psi : C[0,1] \to C[0,1]$ by $\psi(f) = \psi_f$. Prove that ψ is uniformly continuous with respect to the sup-metric on C[0,1].

- 22. Give an example of a mapping f between two metric spaces which is continuous but not uniformly continuous on its domain.
- 23. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & , x \neq 0\\ a & , x = 0 \end{cases}$$

where *a* is a constant. Is there any value *a* which makes *f* continuous at 0? *Hint: Use the fact that* $\lim_{n \to +\frac{\pi}{2}} = 0$.