Math 301 - Problem Set \# 7 - Fall 2010

Homework Problems: 1, 2, 8, 12, 15.
In the following problems $(X, d),(Y, \rho)$ and (Z, u) are assumed to be metric spaces, $A, B \subseteq X$, f, g are mappings from X to Y, and h is a mapping from Y to Z.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q}\end{cases}
$$

Is there a point at which f is continuous?
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Prove that there exists a constant c such that $f(x)=c x$ for every $x \in \mathbb{R}$.
3. Let $f: X \rightarrow \mathbb{R}$ be defined by $f(x)=\inf \{d(x, a): a \in A\}$ for every $x \in X$. Prove that f is continuous. Also prove that f is uniformly continuous if A consists of a single point.
4. Prove that a mapping between metric spaces is continuous iff the preimage of every closed set is closed.
5. Prove that f is continuous iff $f(\bar{A}) \subseteq \overline{f(A)}$ for every subset A of X.
6. Prove that f is continuous iff $f^{-1}\left(E^{o}\right) \subseteq\left(f^{-1}(E)\right)^{o}$ for every subset E of Y.
7. Suppose that f is a bijection. Prove that the following are equivalent.
(a) f is an open mapping.
(b) f is a closed mapping.
(c) f^{-1} is continuous.
8. In each of the following, give an example of a mapping between metric spaces with the given property or explain why no such example exists.
(a) A continuous mapping which is not open.
(b) A continuous mapping which is not closed.
(c) An open mapping which is not continuous.
(d) A closed mapping which is not continuous.
(e) A closed mapping which is not open.
(f) An open mapping which is not closed.
(g) A continuous open mapping which is not a homeomorphism.
(h) A continuous closed mapping which is not a homeomorphism.
(i) A homeomorphism which is not open.
(j) A homeomorphism which is not closed.
(k) A continuous bijection which is not open.
(l) A continuous bijection which is not closed.
(m) A continuous bijection which is not a homeomorphism.
9. Prove that if f and h are homeomorphisms, then so is $h \circ f$, and, as a consequence, if X is homeomorphic to Y and Y is homeomorphic to Z, then X is homeomorphic to Z.
10. Give an example of a subspace of $\left(\mathbb{R}, d_{1}\right)$, where d_{1} is the absolute value metric, which is homeomorphic to $\left(\mathbb{R}, d_{1}\right)$.
11. Prove that any two open intervals in \mathbb{R} are homeomorphic when considered with the absolute value metric.
12. Give an example of a pair of homeomorphic metric spaces such that one is complete and the other is not.
13. Suppose that f is an isometry. Prove the following.
(a) f is one-to-one.
(b) f is uniformly continuous.
(c) $f^{-1}: f(X) \rightarrow X$ is an isometry.
(d) If f is onto, then it is a homeomorphism.
14. Suppose that f and g are continuous and A is dense in X. Prove that if $f(a)=g(a)$ for every $a \in A$, then $f=g$, i.e. $f(x)=g(x)$ for every $x \in X$.
15. Consider the function $f_{A}: X \rightarrow \mathbb{R}$ defined by $f_{A}(x)=\inf \{d(x, a): a \in A\}$ for every $x \in X . f_{B}$ is defined similarly. the distance between A and B is defined to be $\inf \left\{f_{A}(x)\right.$: $x \in B\}=\inf \left\{f_{B}(x): x \in A\right\}$. Prove the following.
(a) f_{A} is uniformly continuous regardless of A.
(b) $\bar{A}=f_{A}^{-1}(0)$.
(c) If $A \cap B \neq \emptyset$, then the distance between A and B is 0 .
(d) There may be disjoint subsets of X with 0 distance between them.
(e) If A and B are disjoint and closed in X, then the function $g: X \rightarrow \mathbb{R}$ defined by $g(x)=f_{A}(x)-f_{B}(x)$ for every $x \in X$ is uniformly continuous and, as a consequence, $g^{-1}(0, \infty)$ and $g^{-1}(-\infty, 0)$ are disjoint open subsets of X containing A and B, respectively.
16. Using the function f_{A} defined in the previous problem, prove that a closed subset A of X is equal to the intersection of a sequence of open sets in X.
17. Prove that any open subset of X is equal to the union of a sequence of closed subsets.
18. Let $p \in[0,1)$. Considering the function $P:[0, \infty) \rightarrow \mathbb{R}$ defined by $P(x)=x^{p}$, prove that $\lim \left((n+1)^{p}-n^{p}\right)=0$.
19. Consider $X=[1, \infty), A=(1, \infty)$ and $Y=(0,1)$ with the absolute value metric and $f: A \rightarrow Y$ be defined by $f(a)=1 / a$ for every $a \in A$. Check that A is dense in X and f is uniformly continuous. Can you find a uniformly continuous extension $\bar{f}: X \rightarrow Y$ of f ? How does your answer relate to the "Uniform Extension Theorem" we proved in class ? Can you find a convergent sequence $\left(a_{n}\right)$ in A such that $\left(f\left(a_{n}\right)\right)$ is not convergent in Y ?

