Math 301 - Problem Set # 8 - Fall 2010

Homework Problems: 2, 5, 6, 8, 9, 11.

In the following problems (X, d), (Y, ρ) are assumed to be metric spaces, f is a mapping from X to Y, and (x_n) is a sequence in X.

- 1. Prove that if f is uniformly continuous and (x_n) is Cauchy, then $(f(x_n))$ is also Cauchy.
- 2. Give an example of a continuous function on a subset of \mathbb{R} which sends a Cauchy sequence to a "non-Cauchy" sequence.
- 3. Let A be closed in X and $\varphi : A \to \mathbb{R}$ be a continuous function. Prove that φ can be extended to a continuous function from X to \mathbb{R} . *Hint: Use Tietze Extension Theorem, Problem 8 in HW9 and Urysohn's Lemma*.
- 4. Prove that any Lipschitz mapping is uniformly continuous.
- 5. Prove that the square-root function is uniformly continuous on $(0, \infty)$, but Lipschitz on (a, ∞) only when a > 0.
- 6. Prove that any real-valued differentiable function φ on \mathbb{R} with bounded derivative is a Lipschitz mapping. Moreover, if the supremum of $|\varphi'(x)|$ is less than 1, then φ is a contraction mapping. *Hint: Use the Mean Value Theorem.*
- 7. Suppose that (X, d) is complete and $\varphi : X \to X$ is a mapping. Prove that if φ^n is a contraction mapping for a positive integer n, then φ has a unique fixed point.
- 8. Using Banach Fixed Point Theorem, prove that the following initial-value problem has a unique solution y on the interval [0, 1]

$$y' = F(x, y)$$
 and $y(0) = 0$,

if $F : [0, 1] \times \mathbb{R} \to \mathbb{R}$ is a continuous function whose partial derivative F_2 with respect to the second variable is between -1/2 and 1/2.

- 9. Give an example of a mapping $\varphi : X \to X$ such that $d(\varphi(x), \varphi(x')) < d(x, x')$ for every $x \neq x' \in X$ which has no fixed points.
- 10. Let \mathcal{X} be the cartesian product of X_1, \ldots, X_k , where $(X_1, d_1), \ldots, (X_k, d_k)$ are metric spaces. Let ρ_{∞} and ρ_p be functions on $\mathcal{X} \times \mathcal{X}$ for $p \ge 1$ as defined in class.
 - (a) Prove that ρ_{∞} is a metric on \mathcal{X} .
 - (b) Prove that ρ_1 is a metric on \mathcal{X} .

- (c) Prove that for each $p > 1 \rho_p$ satisfies the first two conditions in the definition of a metric.
- (d) Prove the following inequalities.

$$\rho_1(x, y) \le k\rho_\infty(x, y)$$
$$\rho_p(x, y) \le \rho_1(x, y)$$
$$\rho_\infty(x, y) \le \rho_p(x, y)$$

for every $x, y \in \mathcal{X}$, where $p \geq 1$.

- (e) Prove that the metric ρ_{∞} is equivalent to ρ_p for every $p \ge 1$.
- (f) Prove that, for each $i \in \{1, ..., k\}$, the projection $\pi_i : \mathcal{X} \to X_i$ defined by $\pi_i(x) = x_i$ for every $x = (x_1, ..., x_k) \in \mathcal{X}$ is uniformly continuous.
- (g) Prove that a mapping $\varphi: Y \to \mathcal{X}$ is continuous iff $\pi_i \circ \varphi$ is continuous for every *i*.
- (h) Let \mathcal{A} be a subset of \mathcal{X} . Prove that \mathcal{A} is bounded iff $\pi_i(\mathcal{A})$ is bounded in X_i for every i.
- 11. A metric space is called *separable* if it has a countable dense subset. Prove that the cartesian product of finitely many separable metric spaces is also separable.
- 12. Considering the absolute value metric on \mathbb{R} and any of the metrics ρ_p , prove that \mathbb{R}^k is complete.