Math 301 - Problem Set # 9 - Fall 2010

Homework Problems: 2, 3, 5, 6, 8.

In the following problems (X, d), (Y, ρ) are assumed to be metric spaces, A, B are non-empty subsets of X, f is a mapping from X to Y, and (x_n) is a sequence in X. Remember that, for each $x \in X$ the distance between x and A, d(x, A), is defined as $\inf\{d(x, a) : a \in A\}$, and the distance between A and B, d(A, B), is defined as $\inf\{d(a, B) : a \in A\}$.

- 1. Prove that any completion of (\mathbb{Q}, d) is isometric to (\mathbb{R}, d) , where d is the absolute value metric.
- 2. Find a completion of (0, 1)
 - (a) with the absolute value metric.
 - (b) with the discrete metric.
- 3. Suppose that (X, d) is complete and totally bounded. Prove that if f is continuous, then it is uniformly continuous.
- 4. Suppose that X is compact, f is one-to-one and continuous, and $(f(x_n))$ is convergent. Prove that (x_n) is convergent.
- 5. Suppose that A is compact. Prove that for each $x \in X$ there is $y \in A$ such that d(x, y) = d(x, A).
- 6. (a) Give an example of two disjoint closed sets of a metric space with zero distance between them.
 - (b) Suppose that A and B are disjoint, A is closed, and B is compact. Prove that the distance between A and B is nonzero.
- 7. Prove that C(X), the set of all continuous functions on a compact metric space X with the sup-metric, is a complete metric space.
- 8. Suppose that X is compact and $\phi: X \to X$ is a mapping that satisfies

$$d(\phi(x), \phi(y)) < d(x, y)$$

whenever $x \neq y$. Prove that ϕ has a unique fixed point. *Hint: Prove and use that the function* $\theta : X \to \mathbb{R}$ *defined by* $\theta(x) = d(x, \phi(x))$ *is continuous.*

9. Suppose that $\phi : [0,1] \rightarrow [0,1]$ is continuous. Prove that ϕ has at least one fixed point.