Math 302 - Problem Set \# 1 - Spring 2011

Homework Problems: 1, 2, 5, 8, 12.

1. Prove that the terms of the partial sum sequence $\left(s_{n}\right)$ of the geometric series $\sum_{n=0}^{\infty} a r^{n}$ are $s_{n}=a \frac{1-r^{n+1}}{1-r}$.
2. Prove that the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ is convergent and its sum is an irrational number between 2 and 3.
3. Prove that the sum of the series in the previous problem is the same as $\lim \left(1+\frac{1}{n}\right)^{n}$.
4. Find the sum of the series $\sum_{n=3}^{\infty} \frac{1}{n(n+1)}$.
5. Prove that the harmonic series $\sum \frac{1}{n}$ is divergent.
6. Prove that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent and its sum is less than 1 .
7. Prove that for each $p \geq 2, \sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent and its sum is less than 2 .
8. Prove the following.
(a) If $p>0$, then $\lim \frac{1}{n^{p}}=0$.
(b) If $p>0$, then $\lim \sqrt[n]{p}=1$.
(c) $\lim \sqrt[n]{n}=1$.
(d) If $p>0$ and α is real, then $\lim \frac{n^{\alpha}}{(1+p)^{n}}=0$.
(e) If $|x|<1$, then $\lim x^{n}=0$.
9. Let $\sum a_{n}$ and $\sum b_{n}$ be two positive series such that $\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}}$ for all but finitely many $n \in \mathbb{N}$. Prove that the series $\sum a_{n}$ converges provided that $\sum b_{n}$ converges.
10. Let $\left(a_{n}\right)$ be a positive bounded sequence and x be a real number with $|x|<1$. Prove that $\sum a_{n} x^{n}$ converges.
11. Let $\left(a_{n}\right)$ be a positive sequence. Prove that $\sum a_{n}$ converges iff $\sum \frac{a_{n}}{1+a_{n}}$ converges.
12. Prove that a sequence $\left(a_{n}\right)$ converges if the series $\sum\left|a_{n+1}-a_{n}\right|$ converges. Give a counterexample to the converse of this statement.
13. Let $\left(a_{n}\right)$ be a positive sequence. Prove that if $\lim \frac{a_{n+1}}{a_{n}}=L$, then $\lim \sqrt[n]{a_{n}}=L$.
