Math 302 - Problem Set #1 - Spring 2011

Homework Problems: 1, 2, 5, 8, 12.

- 1. Prove that the terms of the partial sum sequence (s_n) of the geometric series $\sum_{n=0}^{\infty} ar^n$ are $s_n = a \frac{1-r^{n+1}}{1-r}$.
- 2. Prove that the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ is convergent and its sum is an irrational number between 2 and 3.
- 3. Prove that the sum of the series in the previous problem is the same as $\lim_{n \to \infty} (1 + \frac{1}{n})^n$.
- 4. Find the sum of the series $\sum_{n=3}^{\infty} \frac{1}{n(n+1)}$.
- 5. Prove that the harmonic series $\sum \frac{1}{n}$ is divergent.
- 6. Prove that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent and its sum is less than 1.
- 7. Prove that for each $p \ge 2$, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent and its sum is less than 2.
- 8. Prove the following.
 - (a) If p > 0, then $\lim \frac{1}{n^p} = 0$.
 - (b) If p > 0, then $\lim \sqrt[n]{p} = 1$.
 - (c) $\lim \sqrt[n]{n} = 1$.
 - (d) If p > 0 and α is real, then $\lim \frac{n^{\alpha}}{(1+p)^n} = 0$.
 - (e) If |x| < 1, then $\lim x^n = 0$.
- 9. Let $\sum a_n$ and $\sum b_n$ be two positive series such that $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for all but finitely many $n \in \mathbb{N}$. Prove that the series $\sum a_n$ converges provided that $\sum b_n$ converges.
- 10. Let (a_n) be a positive bounded sequence and x be a real number with |x| < 1. Prove that $\sum a_n x^n$ converges.
- 11. Let (a_n) be a positive sequence. Prove that $\sum a_n$ converges iff $\sum \frac{a_n}{1+a_n}$ converges.
- 12. Prove that a sequence (a_n) converges if the series $\sum |a_{n+1} a_n|$ converges. Give a counterexample to the converse of this statement.
- 13. Let (a_n) be a positive sequence. Prove that if $\lim \frac{a_{n+1}}{a_n} = L$, then $\lim \sqrt[n]{a_n} = L$.