Math 302 - Problem Set # 3 - Spring 2011

Homework Problems: 1, 2, 9, 10, 12.

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function satisfying $\lim_{h\to 0} [f(x+h) f(x-h)] = 0$ for every $x \in \mathbb{R}$. Does this imply that f is continuous?
- 2. Let $A = \mathbb{R} \setminus \{0\}$ and $f : A \to \mathbb{R}$ be defined by $f(x) = \sin(1/x)$ for every $x \in A$. Prove that $\lim_{x\to 0} f(x)$ does not exist.
- 3. Let $A = [-1, 1] \setminus \{0\}$ and $f : A \to \mathbb{R}$ be defined by f(x) = -1 for every $x \in [-1, 0)$ and f(x) = 1 for every $x \in (0, 1]$. Prove that $\lim_{x\to 0} f(x)$ does not exist.
- 4. Let $A = \mathbb{R}^2 \setminus \{(0,0)\}$ and $f : A \to \mathbb{R}$ be defined by $f(x,y) = \frac{xy}{x^2+y^2}$ for every $(x,y) \in A$. Prove that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.
- 5. Let A be a bounded subset of \mathbb{R} and $f : A \to \mathbb{R}$. Prove that if $\lim_{x \to \bar{x}} f(x)$ exists for every $\bar{x} \in A$, then f is a bounded function on A, i.e. f(A) is a bounded subset of \mathbb{R} .
- 6. Let A be a subset of \mathbb{R} and $f : A \to \mathbb{R}$. Prove that if $\lim_{x \to \bar{x}} f(x)$ exists for every $\bar{x} \in \bar{A}$, then f is a locally bounded function, i.e. every point in A has a neighborhood on which f is bounded.
- 7. Let f be a function on R defined by f(x) = 1/x if $x \neq 0$ and f(0) = 0. Does 0 have a neighborhood on which f is bounded? Does $\lim_{x\to 0} f(x)$ exist?
- 8. For each real number x let [x] denote the greatest integer less than x and define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = x [x]. Determine whether f(x+) and f(x-) exist for each real number x and calculate whenever they exist.
- 9. Let a, b be real numbers, $f : [a, b] \to \mathbb{R}$, and $y \in (a, b)$. Prove the following.
 - (a) f is continuous at y if and only if for every monotone sequence (y_n) in [a, b] converging to y, the sequence $(f(y_n))$ converges to f(y).
 - (b) f is continuous at y from the right if and only if for every decreasing sequence (y_n) in [a, b] converging to y, the sequence $(f(y_n))$ converges to f(y).
 - (c) f is continuous at y from the left if and only if for every increasing sequence (y_n) in [a, b] converging to y, the sequence $(f(y_n))$ converges to f(y).
- 10. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that for any two rational numbers a and b, f(a+b) = f(a) + f(b). Prove that if $\lim_{x\to 0} f(x)$ exists, then $\lim_{x\to 0} f(x) = 0$.
- 11. For a given real number x, prove that the sequence $(\sin^2 nx)$ is convergent if and only if $(\cos^2 nx)$ is convergent. Prove or disprove the following statement: For any real number x, the sequence $(\sin nx)$ is convergent if and only if $(\cos nx)$ is convergent. Determine the set of all $x \in \mathbb{R}$ for which the sequence $(\sin nx)$ is convergent.
- 12. Let $a, b \in \mathbb{R}$ and $f : (a, b) \to \mathbb{R}$ be a uniformly continuous function. Prove that both $\lim_{x\to a} f(x)$ and $\lim_{x\to b} f(x)$ exist.