Math 302-Problem Set \# 3-Spring 2011

Homework Problems: 1, 2, 9, 10, 12.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0$ for every $x \in \mathbb{R}$. Does this imply that f is continuous?
2. Let $A=\mathbb{R} \backslash\{0\}$ and $f: A \rightarrow \mathbb{R}$ be defined by $f(x)=\sin (1 / x)$ for every $x \in A$. Prove that $\lim _{x \rightarrow 0} f(x)$ does not exist.
3. Let $A=[-1,1] \backslash\{0\}$ and $f: A \rightarrow \mathbb{R}$ be defined by $f(x)=-1$ for every $x \in[-1,0)$ and $f(x)=1$ for every $x \in(0,1]$. Prove that $\lim _{x \rightarrow 0} f(x)$ does not exist.
4. Let $A=\mathbb{R}^{2} \backslash\{(0,0)\}$ and $f: A \rightarrow \mathbb{R}$ be defined by $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ for every $(x, y) \in A$. Prove that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
5. Let A be a bounded subset of \mathbb{R} and $f: A \rightarrow \mathbb{R}$. Prove that if $\lim _{x \rightarrow \bar{x}} f(x)$ exists for every $\bar{x} \in \bar{A}$, then f is a bounded function on A, i.e. $f(A)$ is a bounded subset of \mathbb{R}.
6. Let A be a subset of \mathbb{R} and $f: A \rightarrow \mathbb{R}$. Prove that if $\lim _{x \rightarrow \bar{x}} f(x)$ exists for every $\bar{x} \in \bar{A}$, then f is a locally bounded function, i.e. every point in A has a neighborhood on which f is bounded.
7. Let f be a function on R defined by $f(x)=1 / x$ if $x \neq 0$ and $f(0)=0$. Does 0 have a neighborhood on which f is bounded? Does $\lim _{x \rightarrow 0} f(x)$ exist?
8. For each real number x let $[x]$ denote the greatest integer less than x and define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x-[x]$. Determine whether $f(x+)$ and $f(x-)$ exist for each real number x and calculate whenever they exist.
9. Let a, b be real numbers, $f:[a, b] \rightarrow \mathbb{R}$, and $y \in(a, b)$. Prove the following.
(a) f is continuous at y if and only if for every monotone sequence $\left(y_{n}\right)$ in $[a, b]$ converging to y, the sequence $\left(f\left(y_{n}\right)\right)$ converges to $f(y)$.
(b) f is continuous at y from the right if and only if for every decreasing sequence $\left(y_{n}\right)$ in $[a, b]$ converging to y, the sequence $\left(f\left(y_{n}\right)\right)$ converges to $f(y)$.
(c) f is continuous at y from the left if and only if for every increasing sequence $\left(y_{n}\right)$ in $[a, b]$ converging to y, the sequence $\left(f\left(y_{n}\right)\right)$ converges to $f(y)$.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that for any two rational numbers a and $b, f(a+b)=f(a)+f(b)$. Prove that if $\lim _{x \rightarrow 0} f(x)$ exists, then $\lim _{x \rightarrow 0} f(x)=0$.
11. For a given real number x, prove that the sequence $\left(\sin ^{2} n x\right)$ is convergent if and only if $\left(\cos ^{2} n x\right)$ is convergent. Prove or disprove the following statement: For any real number x, the sequence $(\sin n x)$ is convergent if and only if $(\cos n x)$ is convergent. Determine the set of all $x \in \mathbb{R}$ for which the sequence $(\sin n x)$ is convergent.
12. Let $a, b \in \mathbb{R}$ and $f:(a, b) \rightarrow \mathbb{R}$ be a uniformly continuous function. Prove that both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow b} f(x)$ exist.
