Math 302-Problem Set \# 4-Spring 2011

Homework Problems: 1, 3, 9, 15, 17.

1. Let (Y, ρ) be a metric space and $f:[a, \infty) \rightarrow Y$. Prove that $\lim _{x \rightarrow \infty} f(x)=L$ if and only if $\left(f\left(x_{n}\right)\right)$ converges to L for every increasing unbounded sequence $\left(x_{n}\right)$ in $[a, \infty)$.
2. Let (X, d) be a metric space, $A \subseteq X, p \in A$, and $f: X \rightarrow \mathbb{R}$. Prove that $\lim _{x \rightarrow p} f(x)=\infty$ if and only if $\left(f\left(x_{n}\right)\right)$ diverges to ∞ for every sequence $\left(x_{n}\right)$ in A converging to p.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that the following are equivalent.
(a) $\lim _{|x| \rightarrow \infty}|f(x)|=0$.
(b) For each $\epsilon>0$ there is a compact subset K of \mathbb{R} such that $|f(x)|<\epsilon$ whenever $x \in K^{c}$.
(c) For each $\epsilon>0$ there is a continuous function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with compact support (support of φ is the closure of the set $\varphi^{-1}(\mathbb{R} \backslash\{0\})$) such that $\sup \{|f(x)-\varphi(x)|: x \in \mathbb{R}\}<\epsilon$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{x}{1+x^{2}}$ for every $x \in \mathbb{R}$. Prove that $\lim _{|x| \rightarrow \infty}|f(x)|=0$. Let $\epsilon>0$ be given and find a continuous function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with compact support such that $\sup \{|f(x)-\varphi(x)|: x \in \mathbb{R}\}<\epsilon$.
5. Let a be a positive real number, $f:[a, \infty) \rightarrow \mathbb{R}$ and $g:(0,1 / a] \rightarrow \mathbb{R}$ be defined by $g(x)=f(1 / x)$ for every $x \in(0,1 / a]$. Prove that $\lim _{x \rightarrow \infty} f(x)=L$ if and only if $g(0+)=L$.
6. Let $f:[0, \infty) \rightarrow \mathbb{R}$. Prove that if $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{x \rightarrow \infty}[f(x+1)-f(x)]=0$.
7. Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function. Prove that f is one-to-one if and only if it is strictly monotone.
8. Let f be a continuous strictly increasing function on a nonempty open interval I. Prove that f is an open mapping. Also prove that $J=f(I)$ is an open interval and f^{-1} is defined and continuous on J.
9. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function and define $g:[a, b] \rightarrow \mathbb{R}$ by $g(a)=f(a)$ and $g(x)=\sup \{f(y):$ $y \in[a, x]\}$ for every $x \in(a, b]$. Prove that g is increasing and continuous.
10. Let $f:[a, b] \rightarrow \mathbb{R}$ be a decreasing function. Prove the following.
(a) For every $p \in(a, b), f(p+)=\sup \{f(x): x \in(p, b]\}, f(p-)=\inf \{f(x): x \in[a, p)\}$, and $f(p-) \geq$ $f(p) \geq f(p+)$.
(b) $f(a+)=\sup \{f(x): x \in(a, b]\}$ and $f(b-)=\inf \{f(x): x \in[a, b)\}$.
(c) For any $p, q \in[a, b]$ with $p<q$ we have $f(p+) \geq f(q-)$.
11. Prove that the set of all points of discontinuity of a decreasing function on a closed interval is a countable set.
12. Prove that the function f defined by $f(0)=0$ and $f(x)=x^{2} \sin (1 / x)$ if $x \neq 0$ is of bounded variation on $[0,1]$.
13. Let f be a function of bounded variation on $[a, b]$. Prove that f is constant on $[a, b]$ if and only if $V(f,[a, b])=0$.
14. Let f be a function of bounded variation on $[a, b]$. Prove that $f=0$ on $[a, b]$ if and only if $V(f,[a, b])+|f(a)|=$ 0.
15. Prove that every function of bounded variation on a closed interval is bounded on that interval.
16. Prove that the product of two functions of bounded variation on a closed interval is also of bounded variation on that interval.
17. Let f be defined by $f(x)=x^{4}+x^{3}-3 x^{2}-x+2$. Prove that f is of bounded variation on $[-3,3]$ and express f as the difference of two increasing functions on $[-3,3]$.
