Math 302 - Problem Set # 4 - Spring 2011

Homework Problems: 1, 3, 9, 15, 17.

- 1. Let (Y, ρ) be a metric space and $f : [a, \infty) \to Y$. Prove that $\lim_{x\to\infty} f(x) = L$ if and only if $(f(x_n))$ converges to L for every increasing unbounded sequence (x_n) in $[a, \infty)$.
- 2. Let (X, d) be a metric space, $A \subseteq X$, $p \in A$, and $f : X \to \mathbb{R}$. Prove that $\lim_{x \to p} f(x) = \infty$ if and only if $(f(x_n))$ diverges to ∞ for every sequence (x_n) in A converging to p.
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that the following are equivalent.
 - (a) $\lim_{|x| \to \infty} |f(x)| = 0.$
 - (b) For each $\epsilon > 0$ there is a compact subset K of \mathbb{R} such that $|f(x)| < \epsilon$ whenever $x \in K^c$.
 - (c) For each $\epsilon > 0$ there is a continuous function $\varphi : \mathbb{R} \to \mathbb{R}$ with compact support (support of φ is the closure of the set $\varphi^{-1}(\mathbb{R} \setminus \{0\})$) such that $\sup\{|f(x) \varphi(x)| : x \in \mathbb{R}\} < \epsilon$.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{x}{1+x^2}$ for every $x \in \mathbb{R}$. Prove that $\lim_{|x|\to\infty} |f(x)| = 0$. Let $\epsilon > 0$ be given and find a continuous function $\varphi : \mathbb{R} \to \mathbb{R}$ with compact support such that $\sup\{|f(x) \varphi(x)| : x \in \mathbb{R}\} < \epsilon$.
- 5. Let *a* be a positive real number, $f : [a, \infty) \to \mathbb{R}$ and $g : (0, 1/a] \to \mathbb{R}$ be defined by g(x) = f(1/x) for every $x \in (0, 1/a]$. Prove that $\lim_{x\to\infty} f(x) = L$ if and only if g(0+) = L.
- 6. Let $f:[0,\infty)\to\mathbb{R}$. Prove that if $\lim_{x\to\infty}f(x)=L$, then $\lim_{x\to\infty}[f(x+1)-f(x)]=0$.
- 7. Let $f:(a,b) \to \mathbb{R}$ be a continuous function. Prove that f is one-to-one if and only if it is strictly monotone.
- 8. Let f be a continuous strictly increasing function on a nonempty open interval I. Prove that f is an open mapping. Also prove that J = f(I) is an open interval and f^{-1} is defined and continuous on J.
- 9. Let $f : [a, b] \to \mathbb{R}$ be a continuous function and define $g : [a, b] \to \mathbb{R}$ by g(a) = f(a) and $g(x) = \sup\{f(y) : y \in [a, x]\}$ for every $x \in (a, b]$. Prove that g is increasing and continuous.
- 10. Let $f : [a, b] \to \mathbb{R}$ be a decreasing function. Prove the following.
 - (a) For every $p \in (a, b)$, $f(p+) = \sup\{f(x) : x \in (p, b]\}$, $f(p-) = \inf\{f(x) : x \in [a, p)\}$, and $f(p-) \ge f(p) \ge f(p+)$.
 - (b) $f(a+) = \sup\{f(x) : x \in (a,b]\}$ and $f(b-) = \inf\{f(x) : x \in [a,b)\}.$
 - (c) For any $p, q \in [a, b]$ with p < q we have $f(p+) \ge f(q-)$.
- 11. Prove that the set of all points of discontinuity of a decreasing function on a closed interval is a countable set.
- 12. Prove that the function f defined by f(0) = 0 and $f(x) = x^2 \sin(1/x)$ if $x \neq 0$ is of bounded variation on [0, 1].
- 13. Let f be a function of bounded variation on [a, b]. Prove that f is constant on [a, b] if and only if V(f, [a, b]) = 0.
- 14. Let f be a function of bounded variation on [a, b]. Prove that f = 0 on [a, b] if and only if V(f, [a, b]) + |f(a)| = 0.
- 15. Prove that every function of bounded variation on a closed interval is bounded on that interval.
- 16. Prove that the product of two functions of bounded variation on a closed interval is also of bounded variation on that interval.
- 17. Let f be defined by $f(x) = x^4 + x^3 3x^2 x + 2$. Prove that f is of bounded variation on [-3, 3] and express f as the difference of two increasing functions on [-3, 3].