Math 302-Problem Set \# 5-Spring 2011

Homework Problems: 3, 5, 8, 9, 10.

1. Prove that any function of bounded variation on $[a, b]$ is R -integrable on $[a, b]$.
2. Let $t_{0} \in[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ be defined by $f\left(t_{0}\right)=1$ and $f(x)=0$ for every $x \in[a, b] \backslash\left\{t_{0}\right\}$. Prove that f is R-integrable and $\int_{a}^{b} f(x) d x=0$.
3. Let f be a continuous, nonnegative function on $[a, b]$ with $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for every $x \in[a, b]$.
4. Let f be a continuous function on $[a, b]$. Prove that $f(x)=0$ for every $x \in[a, b]$ if and only if $\int_{c}^{d} f(x) d x=0$ for every $c, d \in[a, b]$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=0$ if $x \in \mathbb{Q}$ and $f(x)=1$ if $x \notin \mathbb{Q}$. Prove that f is not R-integrable on any interval $[a, b]$ with $a<b$.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function with the property that given any $\epsilon>0$, the set \mathfrak{D}_{f} of all points of discontinuity of f can be covered by finitely many intervals whose total length is less than ϵ. Prove that f is \mathbf{R}-integrable on $[a, b]$.
7. Let f be a continuous function on $[a, b]$. For each positive integer n let \mathfrak{P} be the partition of $[a, b]$ into n subintervals of equal length, σ_{n} be the Riemann sum of f with respect to \mathfrak{P} with the choice of ξ_{i} as the left endpoint of the $i^{\text {th }}$ subinterval, and Σ_{n} be the Riemann sum of f with respect to \mathfrak{P} with the choice of ξ_{i} as the right endpoint of the $i^{\text {th }}$ subinterval. Prove that $\lim _{n \rightarrow \infty} \sigma_{n}=\lim _{n \rightarrow \infty} \Sigma_{n}=\int_{a}^{b} f(x) d x$.
8. Evaluate $\int_{0}^{1} x d x$ first by definition of the Riemann integral and then by using the previous problem.
9. Let f be a continuous function on $[0,1]$. Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right) d x=f(0)$.
10. Let $f:[0,1] \rightarrow[0,1]$ be a continuous bijection. Prove that f^{-1} is R -integrable and

$$
\int_{0}^{1} f(x) d x+\int_{0}^{1} f^{-1}(x) d x=1
$$

