Math 302 - Problem Set # 5 - Spring 2011

Homework Problems: 3, 5, 8, 9, 10.

- 1. Prove that any function of bounded variation on [a, b] is R-integrable on [a, b].
- 2. Let $t_0 \in [a, b]$ and $f : [a, b] \to \mathbb{R}$ be defined by $f(t_0) = 1$ and f(x) = 0 for every $x \in [a, b] \setminus \{t_0\}$. Prove that f is R-integrable and $\int_a^b f(x) dx = 0$.
- 3. Let f be a continuous, nonnegative function on [a, b] with $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for every $x \in [a, b]$.
- 4. Let f be a continuous function on [a, b]. Prove that f(x) = 0 for every $x \in [a, b]$ if and only if $\int_{c}^{d} f(x) dx = 0$ for every $c, d \in [a, b]$.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 0 if $x \in \mathbb{Q}$ and f(x) = 1 if $x \notin \mathbb{Q}$. Prove that f is not R-integrable on any interval [a, b] with a < b.
- 6. Let f : [a, b] → ℝ be a bounded function with the property that given any ε > 0, the set D_f of all points of discontinuity of f can be covered by finitely many intervals whose total length is less than ε. Prove that f is R-integrable on [a, b].
- 7. Let f be a continuous function on [a, b]. For each positive integer n let 𝔅 be the partition of [a, b] into n subintervals of equal length, σ_n be the Riemann sum of f with respect to 𝔅 with the choice of ξ_i as the left endpoint of the ith subinterval, and Σ_n be the Riemann sum of f with respect to 𝔅 with the choice of ξ_i as the right endpoint of the ith subinterval. Prove that lim_{n→∞} σ_n = lim_{n→∞} Σ_n = ∫_a^b f(x) dx.
- 8. Evaluate $\int_0^1 x \, dx$ first by definition of the Riemann integral and then by using the previous problem.
- 9. Let f be a continuous function on [0, 1]. Prove that $\lim_{n\to\infty} \int_0^1 f(x^n) dx = f(0)$.
- 10. Let $f:[0,1] \to [0,1]$ be a continuous bijection. Prove that f^{-1} is R-integrable and

$$\int_0^1 f(x) \, dx + \int_0^1 f^{-1}(x) \, dx = 1 \, .$$