Math 302 - Problem Set # 6 - Spring 2011

Homework Problems: 2, 4, 7, 11, 12.

- 1. Let A and B be two nonempty subsets of \mathbb{R} . Suppose that for every $a \in A$ and $b \in B$, $a \leq b$. Prove that $\sup(A) = \inf(B)$ if and only if for every $\epsilon > 0$ there exist $a_{\epsilon} \in A$ and $b_{\epsilon} \in B$ such that $b_{\epsilon} - a_{\epsilon} < \epsilon$.
- 2. Let A be a nonempty bounded subset of \mathbb{R} . Prove that

 $\sup(A) - \inf(A) = \sup\{a - b : a, b \in A\} = \sup\{|a - b| : a, b \in A\} = -\inf\{a - b : a, b \in A\}.$

- Let f : [a, b] → ℝ be a bounded function. Prove that f is R-integrable if and only if for every ε > 0 there exist a partition 𝔅_ε of [a, b] such that U(f,𝔅) L(f,𝔅) < ε whenever 𝔅 is a partition of [a, b] with 𝔅_ε ⊆ 𝔅.
- 4. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.
 - (a) Prove that if f is R-integrable, then for every $\epsilon > 0$ there exist a partition \mathfrak{P}_{ϵ} of [a, b] for which $|R(f, \mathfrak{P}) \int_{a}^{b} f(x) dx| < \epsilon$ whenever \mathfrak{P} is a partition of [a, b] with $\mathfrak{P}_{\epsilon} \subseteq \mathfrak{P}$ for any choice of ξ_{i} 's in the definition of a Riemann sum $R(f, \mathfrak{P})$.
 - (b) Prove that if there is a real number I such that for every ε > 0 there exist a partition 𝔅_ε of [a, b] for which |R(f,𝔅) I| < ε whenever 𝔅 is a partition of [a, b] with 𝔅_ε ⊆ 𝔅 for any choice of ξ_i's in the definition of a Riemann sum R(f,𝔅), then f is R-integrable and I = ∫^b_a f(x) dx.
- 5. Let $f \in R([a, b])$ and $c \in \mathbb{R}$. Prove that $cf \in R([a, b])$ and $\int_a^b c f(x) dx = c \int_a^b f(x) dx$.
- 6. Let $f, g \in R([a, b])$. By using only the definition of the Riemann integral, prove that if $f(x) \ge g(x)$ for every $x \in [a, b]$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(0) = 0 and $f(x) = \sin(1/x)$ if $x \neq 0$. Prove that f is R-integrable on [0, 1].
- 8. Give an example of a bounded function f which is not R-integrable even though f^2 is.
- 9. Let $f \in R([a, b])$. Suppose that $g : [a, b] \to \mathbb{R}$ is different from f only at finitely many points in [a, b]. Prove that $g \in R([a, b])$ and $\int_a^b g(x) \, dx = \int_a^b f(x) \, dx$.
- 10. Let $[c,d] \subseteq [a,b]$. Prove that $\chi_{[c,d]} \in R([a,b])$ and moreover $\int_a^b \chi_{[c,d]}(x) dx = d c$.
- 11. Let $f \in R([a, b])$ and $c \in (a, b)$. Prove that $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.
- 12. Consider Riemann's zeta function $\zeta : (1, \infty) \to \mathbb{R}$ defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \, .$$

- (a) Prove that ζ is well-defined, i.e. prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converges for every $s \in (1, \infty)$.
- (b) Prove that $\zeta(s) = s \int_1^\infty \frac{[x]}{x^{s+1}} dx$, where [x] denotes the greatest integer less than or equal to x. (*Hint: Look at the difference between the integral over* [1, N] *and the Nth partial sum of the series in the definition of* $\zeta(s)$.)
- (c) Prove that $\zeta(s) = \frac{s}{s-1} s \int_1^\infty \frac{x-[x]}{x^{s+1}} dx$.