Math 302-Problem Set \# 6 - Spring 2011

Homework Problems: 2, 4, 7, 11, 12.

1. Let A and B be two nonempty subsets of \mathbb{R}. Suppose that for every $a \in A$ and $b \in B$, $a \leq b$. Prove that $\sup (A)=\inf (B)$ if and only if for every $\epsilon>0$ there exist $a_{\epsilon} \in A$ and $b_{\epsilon} \in B$ such that $b_{\epsilon}-a_{\epsilon}<\epsilon$.
2. Let A be a nonempty bounded subset of \mathbb{R}. Prove that $\sup (A)-\inf (A)=\sup \{a-b: a, b \in A\}=\sup \{|a-b|: a, b \in A\}=-\inf \{a-b: a, b \in A\}$.
3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Prove that f is R -integrable if and only if for every $\epsilon>0$ there exist a partition \mathfrak{P}_{ϵ} of $[a, b]$ such that $U(f, \mathfrak{P})-L(f, \mathfrak{P})<\epsilon$ whenever \mathfrak{P} is a partition of $[a, b]$ with $\mathfrak{P}_{\epsilon} \subseteq \mathfrak{P}$.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
(a) Prove that if f is R-integrable, then for every $\epsilon>0$ there exist a partition \mathfrak{P}_{ϵ} of $[a, b]$ for which $\left|R(f, \mathfrak{P})-\int_{a}^{b} f(x) d x\right|<\epsilon$ whenever \mathfrak{P} is a partition of $[a, b]$ with $\mathfrak{P}_{\epsilon} \subseteq \mathfrak{P}$ for any choice of ξ_{i} 's in the definition of a Riemann sum $R(f, \mathfrak{P})$.
(b) Prove that if there is a real number I such that for every $\epsilon>0$ there exist a partition \mathfrak{P}_{ϵ} of $[a, b]$ for which $|R(f, \mathfrak{P})-I|<\epsilon$ whenever \mathfrak{P} is a partition of $[a, b]$ with $\mathfrak{P} \epsilon \subseteq \mathfrak{P}$ for any choice of ξ_{i} 's in the definition of a Riemann sum $R(f, \mathfrak{P})$, then f is R-integrable and $I=\int_{a}^{b} f(x) d x$.
5. Let $f \in R([a, b])$ and $c \in \mathbb{R}$. Prove that $c f \in R([a, b])$ and $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$.
6. Let $f, g \in R([a, b])$. By using only the definition of the Riemann integral, prove that if $f(x) \geq g(x)$ for every $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(0)=0$ and $f(x)=\sin (1 / x)$ if $x \neq 0$. Prove that f is R-integrable on $[0,1]$.
8. Give an example of a bounded function f which is not R -integrable even though f^{2} is.
9. Let $f \in R([a, b])$. Suppose that $g:[a, b] \rightarrow \mathbb{R}$ is different from f only at finitely many points in $[a, b]$. Prove that $g \in R([a, b])$ and $\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x) d x$.
10. Let $[c, d] \subseteq[a, b]$. Prove that $\chi_{[c, d]} \in R([a, b])$ and moreover $\int_{a}^{b} \chi_{[c, d]}(x) d x=d-c$.
11. Let $f \in R([a, b])$ and $c \in(a, b)$. Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$.
12. Consider Riemann's zeta function $\zeta:(1, \infty) \rightarrow \mathbb{R}$ defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

(a) Prove that ζ is well-defined, i.e. prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ converges for every $s \in(1, \infty)$.
(b) Prove that $\zeta(s)=s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} d x$, where $[x]$ denotes the greatest integer less than or equal to x. (Hint: Look at the difference between the integral over $[1, N]$ and the N th partial sum of the series in the definition of $\zeta(s)$.)
(c) Prove that $\zeta(s)=\frac{s}{s-1}-s \int_{1}^{\infty} \frac{x-[x]}{x^{s+1}} d x$.

