Math 302 - Problem Set # 7 - Spring 2011

Homework Problems: 1, 3, 6, 11.

1. Let (f_n) be a sequence of functions defined on $[-\pi/2, \pi/2]$ by $f_n(x) = \begin{cases} \frac{\sin^2 nx}{n \sin x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$.

- (a) Prove that each f_n is continuous and (f_n) converges to the constant 0 function pointwise.
- (b) Prove that (f_n) converges to the constant 0 function uniformly on [a, π/2] for any a ∈ (0, π/2).
- (c) Find $\lim_{n\to\infty} f_n(\pi/2n)$ and using this prove that (f_n) does not converge to the constant 0 function uniformly on $[-\pi/2, \pi/2]$.
- 2. Let (f_n) be a sequence of functions defined on $[0, 2\pi]$ by $f_n(x) = n^2 \sin(x/n^2)$.
 - (a) Prove that the sequence (f'_n) converges uniformly to a function g on $[0, 2\pi]$.
 - (b) Prove that (f_n) converges uniformly to a function f on $[0, 2\pi]$ with f' = g.
- 3. Let (f_n) be a sequence of differentiable functions with $|f'_n| \leq 1$ on an interval [a, b]. Prove that (f_n) converges uniformly if it converges pointwise.
- 4. Let (f_n) be a sequence of functions defined on \mathbb{R} by $f_n(x) = \frac{e^{-n^2x^2}}{n}$.
 - (a) Prove that (f_n) converges uniformly on \mathbb{R} to a function f.
 - (b) Prove that (f'_n) converges f' pointwise on \mathbb{R} but not uniformly on [-a, a] for any a > 0.
- 5. Let (f_n) be a sequence of functions defined on [0,1] by $f_n(x) = nx(1-x)^n$. Compare

$$\lim_{n \to \infty} \left(\int_0^1 f_n(x) \, dx \right) \text{ and } \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) \, dx$$

6. Let (f_n) be a sequence of functions defined on [-1,1] by $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$. Compare

$$\lim_{n \to \infty} \left(\int_0^1 f_n(x) \, dx \right) \text{ and } \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) \, dx$$

7. Let (f_n) be a sequence of functions defined on $[0, \pi/2]$ by $f_n(x) = n \cos^n x \sin x$. Compare

$$\lim_{n \to \infty} \left(\int_0^{\pi/2} f_n(x) \, dx \right) \text{ and } \int_0^{\pi/2} \left(\lim_{n \to \infty} f_n(x) \right) \, dx$$

8. Let (f_n) be a sequence of functions defined on $[0,\infty)$ by $f_n(x) = nxe^{-nx}$. Compare

$$\lim_{n \to \infty} \lim_{b \to \infty} \int_0^b f_n(x) \, dx \quad \text{and} \quad \lim_{b \to \infty} \lim_{n \to \infty} \int_0^b f_n(x) \, dx \, dx$$

- 9. Let (f_n) be a sequence of functions defined on $[0,\infty)$ by $f_n(x) = \frac{xe^{-x/n}}{n}$.
 - (a) Find the pointwise limit of (f_n) on $[0, \infty)$.
 - (b) Prove that (f_n) converges uniformly on [0, b] for any b > 0.
 - (c) Compare

$$\lim_{n \to \infty} \lim_{b \to \infty} \int_0^b f_n(x) \, dx \quad \text{and} \quad \lim_{b \to \infty} \lim_{n \to \infty} \int_0^b f_n(x) \, dx$$

- 10. For each of the following sequences of functions, study the convergence (pointwise or uniform) on the given sets.
 - (a) $f_n(x) = x^n (1-x)^n$, $x \in [0,1]$. (b) $f_n(x) = \frac{1}{1+nx^2}$, $x \in \mathbb{R}$. (c) $f_n(x) = \frac{(1+x)^n - 1}{(1+x)^n + 1}$, $x \in \mathbb{R} \setminus \{-2\}$. (d) $f_n(x) = \begin{cases} n, & \text{if } 0 \le x \le 1/n \\ 0, & \text{if } 1/n < x \le 1 \end{cases}$, $x \in (0,1]$. (e) $f_n(x) = \frac{\sin nx}{1+n^2x}$, $x \in \mathbb{R}$. (f) $f_n(x) = \begin{cases} 1, & \text{if } x \in \{\alpha(0), \alpha(1), \dots, \alpha(n)\} \\ 0, & \text{otherwise} \end{cases}$, $x \in [0,1]$, where $\alpha : \mathbb{N} \to [0,1] \cap \mathbb{Q}$
 - is a given bijection.
- 11. For each of the following sequences of functions, study the convergence (pointwise or uniform) on the given sets.
 - (a) $f_n(x) = a_n x^2$, $x \in \mathbb{R}$, where (a_n) is a sequence of real numbers converging to 1.

(b)
$$f_n(x) = \frac{nx}{1+n^2x^2}, x \in [0,\infty)$$

- (c) $f_n(x) = \frac{nx}{1+n^2x^2}, x \in [a, \infty)$, where a is a positive real number.
- (d) $f_n(x) = nx^r e^{-nx}, x \in [0, \infty)$, where r is a given real number in (0, 1].
- (e) $f_n(x) = nx^r e^{-nx}$, $x \in [a, \infty)$, where r is a given real number in (0, 1] and a is a positive real number.
- (f) $f_n(x) = \frac{x^n}{1+x^n}, x \in [0,\infty).$