Math 302 - Problem Set \# 7 - Spring 2011

Homework Problems: 1, 3, 6, 11 .

1. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[-\pi / 2, \pi / 2]$ by $f_{n}(x)=\left\{\begin{array}{cl}\frac{\sin ^{2} n x}{n \sin x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{array}\right.$.
(a) Prove that each f_{n} is continuous and $\left(f_{n}\right)$ converges to the constant 0 function pointwise.
(b) Prove that $\left(f_{n}\right)$ converges to the constant 0 function uniformly on $[a, \pi / 2]$ for any $a \in$ $(0, \pi / 2)$.
(c) Find $\lim _{n \rightarrow \infty} f_{n}(\pi / 2 n)$ and using this prove that $\left(f_{n}\right)$ does not converge to the constant 0 function uniformly on $[-\pi / 2, \pi / 2]$.
2. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[0,2 \pi]$ by $f_{n}(x)=n^{2} \sin \left(x / n^{2}\right)$.
(a) Prove that the sequence $\left(f_{n}^{\prime}\right)$ converges uniformly to a function g on $[0,2 \pi]$.
(b) Prove that $\left(f_{n}\right)$ converges uniformly to a function f on $[0,2 \pi]$ with $f^{\prime}=g$.
3. Let $\left(f_{n}\right)$ be a sequence of differentiable functions with $\left|f_{n}^{\prime}\right| \leq 1$ on an interval $[a, b]$. Prove that $\left(f_{n}\right)$ converges uniformly if it converges pointwise.
4. Let $\left(f_{n}\right)$ be a sequence of functions defined on \mathbb{R} by $f_{n}(x)=\frac{e^{-n^{2} x^{2}}}{n}$.
(a) Prove that $\left(f_{n}\right)$ converges uniformly on \mathbb{R} to a function f.
(b) Prove that $\left(f_{n}^{\prime}\right)$ converges f^{\prime} pointwise on \mathbb{R} but not uniformly on $[-a, a]$ for any $a>0$.
5. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[0,1]$ by $f_{n}(x)=n x(1-x)^{n}$. Compare

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right) \text { and } \int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x
$$

6. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[-1,1]$ by $f_{n}(x)=\frac{x^{2 n}}{1+x^{2 n}}$. Compare

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right) \text { and } \int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x
$$

7. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[0, \pi / 2]$ by $f_{n}(x)=n \cos ^{n} x \sin x$. Compare

$$
\lim _{n \rightarrow \infty}\left(\int_{0}^{\pi / 2} f_{n}(x) d x\right) \text { and } \int_{0}^{\pi / 2}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x
$$

8. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[0, \infty)$ by $f_{n}(x)=n x e^{-n x}$. Compare

$$
\lim _{n \rightarrow \infty} \lim _{b \rightarrow \infty} \int_{0}^{b} f_{n}(x) d x \text { and } \lim _{b \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{0}^{b} f_{n}(x) d x
$$

9. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[0, \infty)$ by $f_{n}(x)=\frac{x e^{-x / n}}{n}$.
(a) Find the pointwise limit of $\left(f_{n}\right)$ on $[0, \infty)$.
(b) Prove that $\left(f_{n}\right)$ converges uniformly on $[0, b]$ for any $b>0$.
(c) Compare

$$
\lim _{n \rightarrow \infty} \lim _{b \rightarrow \infty} \int_{0}^{b} f_{n}(x) d x \quad \text { and } \quad \lim _{b \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{0}^{b} f_{n}(x) d x
$$

10. For each of the following sequences of functions, study the convergence (pointwise or uniform) on the given sets.
(a) $f_{n}(x)=x^{n}(1-x)^{n}, x \in[0,1]$.
(b) $f_{n}(x)=\frac{1}{1+n x^{2}}, x \in \mathbb{R}$.
(c) $f_{n}(x)=\frac{(1+x)^{n}-1}{(1+x)^{n}+1}, x \in \mathbb{R} \backslash\{-2\}$.
(d) $f_{n}(x)=\left\{\begin{array}{ll}n, & \text { if } 0 \leq x \leq 1 / n \\ 0, & \text { if } 1 / n<x \leq 1\end{array}, x \in(0,1]\right.$.
(e) $f_{n}(x)=\frac{\sin n x}{1+n^{2} x}, x \in \mathbb{R}$.
(f) $f_{n}(x)=\left\{\begin{array}{ll}1, & \text { if } x \in\{\alpha(0), \alpha(1), \ldots, \alpha(n)\} \\ 0, & \text { otherwise }\end{array}, x \in[0,1]\right.$, where $\alpha: \mathbb{N} \rightarrow[0,1] \cap \mathbb{Q}$ is a given bijection.
11. For each of the following sequences of functions, study the convergence (pointwise or uniform) on the given sets.
(a) $f_{n}(x)=a_{n} x^{2}, x \in \mathbb{R}$, where $\left(a_{n}\right)$ is a sequence of real numbers converging to 1 .
(b) $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, x \in[0, \infty)$.
(c) $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, x \in[a, \infty)$, where a is a positive real number.
(d) $f_{n}(x)=n x^{r} e^{-n x}, x \in[0, \infty)$, where r is a given real number in $(0,1]$.
(e) $f_{n}(x)=n x^{r} e^{-n x}, x \in[a, \infty)$, where r is a given real number in $(0,1]$ and a is a positive real number.
(f) $f_{n}(x)=\frac{x^{n}}{1+x^{n}}, x \in[0, \infty)$.
