Math 302 - Problem Set \# 8 - Spring 2011

Homework Problems: 4, 6, 8.

1. Prove that a function series is uniformly convergent if and only if it is uniformly Cauchy.
2. If $\sum_{n=0}^{\infty} f_{n}$ is uniformly convergent, then $\left(f_{n}\right) \rightarrow 0$ uniformly.
3. Give an example of a pointwise convergent series which is not uniformly convergent.
4. Is the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ uniformly convergent on a compact interval $[a, b]$? Is it uniformly convergent on \mathbb{R} ?
5. Study the convergence (pointwise or uniform) of the series $\sum_{n=0}^{\infty} x^{n}$ on $\mathbb{R},(-1,1)$ and $[-a, a]$, where a is a real number in $(0,1)$.
6. Study the convergence (pointwise or uniform) of the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ on $\mathbb{R},[-1,1)$ and $[-a, a]$, where a is a real number in $(0,1)$.
7. Prove that the series $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n}$ is uniformly convergent on any interval $[a, b] \subseteq(0,2 \pi)$.
8. Let $\left(f_{n}\right)$ be a sequence of functions defined on $[0,1]$ by

$$
f_{n}(x)= \begin{cases}\frac{1}{n}, & \text { if } \frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}} \\ 0, & \text { otherwise }\end{cases}
$$

Prove that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly even though it fails the Weierstrass' M-test.
9. For a given real number a in $(-1,1)$ define $f, g: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\sum_{n=0}^{\infty} a^{n} \cos (n x)$ and $g(x)=-\sum_{n=0}^{\infty} n a^{n} \sin (n x)$. Prove that $g=f^{\prime}$.
10. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{x}}$ converges uniformly on $[p, \infty]$ for any $p>1$.
11. Consider $f(x)=\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x}$. For what values of x does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continuous wherever the series converges ? Is f bounded?
12. Prove that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2}+n}{n^{2}}$ converges uniformly in every bounded interval, but does not converge absolutely for any value of x.
13. Let

$$
\sigma(x)= \begin{cases}0, & \text { if } x \leq 0 \\ 1, & \text { if } x>0\end{cases}
$$

Let $\left(x_{n}\right)$ be a sequence of real numbers and $\sum_{n=0}^{\infty} c_{n}$ be an absolutely convergent series. Prove that the series $\sum_{n=0}^{\infty} c_{n} \sigma\left(x-x_{n}\right)$ converges uniformly and the sum function is continuous at every $x \notin\left\{x_{n}: n \in \mathbb{N}\right\}$.

