Math 302 - Problem Set \# 9 - Spring 2011

Homework Problems: 4, 5, 8, 12, 13, 14, 17.
Let (X, d) be a metric space, $B(X)$ and $C(X)$ be the spaces of bounded and continuous realvalued functions on X, respectively, with the supremum metric ρ.

1. Let F be a family of bounded functions on X. Prove that F is a uniformly bounded family iff it is bounded as a subset of $B(X)$.
2. Prove that the union of two equicontinuous families in $C(X)$ is also equicontinuous.
3. Suppose that X is compact and $\left(f_{n}\right)$ is a uniformly convergent sequence of continuous functions on X. Prove that $\left(f_{n}\right)$ is equicontinuous.
4. Prove that the closure of an equicontinuous subset of $C(X)$ is also equicontinuous.
5. Let $\left(f_{n}\right)$ be an equicontinuous sequence of functions on X and f be the pointwise limit of this sequence. Prove that f is continuous.
6. Suppose that X is compact, A is a dense subset of X and $\left(f_{n}\right)$ is an equicontinuous sequence in $C(X)$. Also suppose that $\left(f_{n}\right)$ converges to a continuous function $f: X \rightarrow \mathbb{R}$ pointwise on A. Prove that $\left(f_{n}\right)$ converges uniformly to f on X.
7. Suppose that X is compact, $x \in X$ and define $\delta_{x}: C(X) \rightarrow \mathbb{R}$ by $\delta_{x}(f)=f(x)$ for every $f \in C(X)$. Prove that δ_{x} is continuous.
8. Suppose that X is compact and $F \subseteq C(X)$ is pointwise bounded and equicontinuous. Prove that F is uniformly bounded.
9. Suppose that X is compact and $\left(f_{n}\right)$ is a uniformly bounded equicontinuous sequence in $C(X)$. Prove that $\left(f_{n}\right)$ has a uniformly convergent subsequence.
10. Let $\left(f_{n}\right)$ be a pointwise convergent sequence of differentiable functions on $[0,1]$ such that $\left(f_{n}^{\prime}\right)$ is a uniformly bounded sequence in $B([0,1])$. Prove that $\left(f_{n}\right)$ is uniformly convergent.
11. Suppose that N is a positive integer and F is the family of polynomials of degree at most N with real coefficients of absolute value no more than 1 , restricted to $[0,1]$. Prove that F is compact.
For the follwoing questions, let (X, d) be a compact metric space, $B(X)$ and $C(X)$ be the spaces of bounded and continuous real-valued functions on X, respectively, with the supremum metric ρ.
12. Let A be a subalgebra of $C(X)$. Show that if the interior of A is nonempty, then $A=C(X)$.
13. Let $f \in C([0,1])$. Prove that if $\int_{0}^{1} x^{n} f(x) d x=0$ for every $n \in \mathbb{N}$, then $f=0$.
14. Let $C_{*}([0,2 \pi])=\{f \in C([0,2 \pi]): f(0)=f(2 \pi)\}$ and

$$
A=\left\{\sum_{k=0}^{n}\left(a_{k} \cos (k x)+b_{k} \sin (k x): x \in[0,2 \pi], n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}\right\} .\right.
$$

Prove that A is a subalgebra of $C_{*}([0,2 \pi])$ and A is dense in $C_{*}([0,2 \pi])$.
15. Let $f \in C_{*}([0,2 \pi])$. Suppose that $\int_{0}^{1} f(x) \sin (n x) d x=\int_{0}^{1} f(x) \cos (n x) d x=0$. Prove that $f=0$.
16. Let $A=\left\{\sum_{k=1}^{n} f_{k}(x) g_{k}(y): f_{k}, g_{k} \in C([0,1]), n \in \mathbb{N}\right\}$. Prove that A is dense in $C([0,1] \times$ $[0,1]$).
17. Let $A=\left\{\sum_{k=0}^{n} a_{k} e^{n_{k} x}: x \in[0,1], n, n_{k} \in \mathbb{N}, a_{k} \in \mathbb{R}\right\}$. Prove that A is dense in $C([0,1])$.
18. Prove that $(C(X), \rho)$ is a separable metric space.

In the following problems do not use Weierstrass Approximation Theorem or Stone-Weierstrass Theorem as the goal is to give another proof of the Weierstrass Approximation Theorem.
19. Define a sequence of polynomials on [0, 1] by $P_{0}(x)=0$ and $P_{n+1}(x)=P_{n}(x)+\frac{1}{2}(x-$ $\left.P_{n}^{2}(x)\right)$ for $n \in \mathbb{N}$. Prove that
(a) For every $x \in[0,1] P_{n}(x) \leq P_{n+1}(x) \leq \sqrt{x}$.
(b) $\left(P_{n}(x)\right)$ uniformly converges to \sqrt{x}.
20. Prove that there is a sequence of polynomials which converges uniformly to $|x|$ on $[-1,1]$.
21. Let $f \in C([0,1]), \epsilon>0$, and $0 \leq a<b \leq 1$.
(a) Prove that $\sup \{f(x): x \in[a, b]\}-\inf \{f(x): x \in[a, b]\}=\sup \{|f(x)-f(y)|:$ $x, y \in[a, b]\}$.
(b) Prove that there is a partition $\mathfrak{P}=\left\{\xi_{0}, \ldots, \xi_{n}\right\}$ of $[a, b]$ and real constants α_{i}, β_{i} for each $i \in\{0, \ldots, n-1\}$ such that the function g on $[a, b]$ defined by $g(x)=\alpha_{i} x+\beta_{i}$ for every $x \in\left[\xi_{i}, \xi_{i+1}\right]$ satisfies $\rho(f, g)<\epsilon$.
22. Using the previous problems give a new proof of Weierstrass Approximation Theorem.

