Math 402/571 Topology

Midterm 1

October 30, 2013

1a) (5 pts) Define topology.

1b) (5 pts) Define metric, and metric space.

1c) (5 pts) Define topological equivalence between two topological spaces.

1d) (5 pts) Define connectedness.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let (X, τ) be a topological space. If A is compact in X, then it is closed. **2b**) Let Y be a closed set in X. If Z is closed in Y, then Z is closed in X. **2c**) Any indiscrete space is path connected.

2d) If $X \times Y$ compact, then both X and Y are compact.

3) Prove or give a counterexample for the following statements:

3a) (7 pts) Every metric space is Hausdorff.

3b) (13 pts) Let (X, d) be a metric space, and $A \subset X$. Then,

d(x, A) = 0 if and only if $x \in \overline{A}$.

4) Prove or give a counterexample for the following statements:4a) (10 pts) Every closed subset of a metric space is the intersection of countable number of open sets.

4b) (10 pts) If every function $f : X \to \mathbf{R}$ is continuous, then X has discrete topology.

5) (20 pts) Let S^1 be the circle. Let CS^1 be the cone on circle. Let D^2 be the closed unit disk in \mathbb{R}^2 . Show that $CS^1 \simeq D^2$.

Bonus) (20 pts) Prove or give a counterexample for the following statement: Let (X, τ) be a topological space, and $A \subset X$.

If A is compact in X, then \overline{A} is compact in X.

Math 402/571 Topology

Midterm 1

October 30, 2013

1a) (5 pts) Define topology.

chick lettre rotes ad textbook.

1b) (5 pts) Define metric, and metric space.

1c) (5 pts) Define topological equivalence between two topological spaces.

1d) (5 pts) Define connectedness.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let (X, τ) be a topological space. If A is compact in X, then it is closed.

2b) Let Y be a closed set in X. If Z is closed in Y, then Z is closed in X.

2c) Any indiscrete space is path connected.

The:
$$x_{ij} \in X$$
 on $p f: [o_{1}] \rightarrow X$
 $f(o) = x$
 $f(i) = y$
 $f(i) = y$

2d) If $X \times Y$ compact, then both X and Y are compact.

3) Prove or give a counterexample for the following statements:

3a) (7 pts) Every metric space is Hausdorff.

(X,d). $x_{1y} \in x \quad x \neq y \quad = |a_{2}d(x_{1y}) > 0$ $B_{a}(x) \cap B_{a}(y) = \emptyset$

3b) (13 pts) Let (X, d) be a metric space, and $A \subset X$. Then,

d(x, A) = 0 if and only if $x \in \overline{A}$.

see HW soltins.

4) Prove or give a counterexample for the following statements:

4a) (10 pts) Every closed subset of a metric space is the intersection of countable number of open sets.

4b) (10 pts) If every function $f : X \to \mathbf{R}$ is continuous, then X has discrete topology.

5) (20 pts) Let S^1 be the circle. Let CS^1 be the cone on circle. Let D^2 be the closed unit disk in \mathbb{R}^2 . Show that $CS^1 \simeq D^2$.

$$C_{s}^{1}: S^{1} \times [0,1] / S^{1} \times (1)$$

$$(e_{1} \quad f_{1}: S^{1} \times [0,1] \longrightarrow D^{2}$$

$$(e_{1} \quad f_{1}: f_{2} \times [0,1] \longrightarrow D^{2}$$

$$(e_{1} \quad f_{1}: f_{2} \times [0,1] \times ((1-t)\cosh(t-1)\sinh(1))$$

$$f_{1}: C_{2} \times [0,1] \times (orgen), \quad D^{1} \quad hausdeff.$$

$$f_{1}: identification \quad e_{1}: f_{2}: f_{2}: f_{2} \times [0,1] \times (e^{1})$$

$$f_{1}: f_{2}: f_{$$

Bonus) (20 pts) Prove or give a counterexample for the following statement:

Let (X, τ) be a topological space, and $A \subset X$.

If A is compact in X, then \overline{A} is compact in X.

$$V_{t} = \{ 0 \in X \mid 1 \in 0 \}$$

 $T_{t} = \{ 0 \in X \mid 1 \in 0 \}$

A: (1) is compad.

A=[D]] not compart.
since
$$D_{X:}(I|X)$$
 is open in the open cover
let U= (D_{X} | $X \in [D,I]$) is an open cover
of (D,I)
with no finite where.