Math 402/571 Topology

Midterm 1
October 30, 2013

1a) (5 pts) Define topology.

1b) (5 pts) Define metric, and metric space.

1c¢) (5 pts) Define topological equivalence between two topological spaces.
1d) (5 pts) Define connectedness.

2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write
TRUE. If the proposition is false, write FALSE. No explanations are re-
quired for this problem.

2a) Let (X, 7) be a topological space. If A is compactin X, then it is closed.
2b) Let Y be a closed setin X. If 7 is closed in Y, then Z is closed in X.
2¢) Any indiscrete space is path connected.

2d) If X x Y compact, then both X and Y are compact.

3) Prove or give a counterexample for the following statements:
3a) (7 pts) Every metric space is Hausdorff.
3b) (13 pts) Let (X, d) be a metric space, and A C X. Then,

d(x, A) = 0 if and only if z € A.

4) Prove or give a counterexample for the following statements:

4a) (10 pts) Every closed subset of a metric space is the intersection of
countable number of open sets.

4b) (10 pts) If every function f : X — R is continuous, then X has discrete
topology.

5) (20 pts) Let S* be the circle. Let CS! be the cone on circle. Let D? be
the closed unit disk in R?. Show that CS' ~ D2

Bonus) (20 pts) Prove or give a counterexample for the following statement:
Let (X, 7) be a topological space, and A C X.
If A is compact in X, then A is compact in X.
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2) (5 pts each) For each of (a)-(d) below: If the proposition is true, write
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2¢) Any indiscrete space is path connected.
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2d) If X x Y compact, then both X and Y are compact.
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3) Prove or give a counterexample for the following statements:

3a) (7 pts) Every metric space is Hausdorff.
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3b) (13 pts) Let (X, d) be a metric space, and A < X. Then,

d(x, A) = 0if and only if z € A.
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4) Prove or give a counterexample for the following statements:

4a) (10 pts) Every closed subset of a metric space is the intersection of
countable number of open sets,
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4h) (10 pts) If every function f : X' —» R is continuous, then X has discrete
topology.
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5) (20 pts) Let S* be the circle. Let C.S! be the cone on circle. Let D? be
the closed unit disk in R2. Show that CS! ~ D2

| \‘xf_f)ll
Cffs §ed )M]

b (o) = D
(0,4) (,(H)Ca"?'\)'(((“'{)m\n'\)

(ﬁ ch. (%[ of) conpady )t l{,cewrl-‘//-.

OE (bl -~
Co/\ﬂq\’*/ Fc;ff(\\’\.qﬁ k’[ ;f‘(ff‘)‘ﬁx C f%[o,/'j ‘ xéﬁl]

Wy (90) 0, )1»)(9,( N,
w2 (00l =) ey () 9 Y o (J‘ 3 CJ’Q:D,L,



Bonus) (20 pts) Prove or give a counterexample for the following statement:
Let (X, 7) be a topological space, and A C X

If A is compact in X, then A is compact in X.
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