Math 402/571 Topology

Final Exam

January 2, 2014

1a) (4 pts) Define connectedness.

1b) (4 pts) Define compactness.

1c) (4 pts) State Jordan Curve Theorem.

1d) (4 pts) State the Classification Theorem for Compact Nonorientable Surfaces.

2) (4 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let X be a topological space. Then, any compact subset of X is closed. **2b**) Let S be a compact surface. If $\pi_1(S)$ is given, then $\chi(S)$ can be computed.

2c) For any X, CX (cone on X) is a contractible space.

2d) Fundamental group detects orientability for closed surfaces. i.e. Let S_1 and S_2 be closed (orientable or nonorientable) surfaces. If $\pi_1(S_1) \simeq \pi_1(S_2)$, then $S_1 \simeq S_2$.

3) Prove or give a counterexample for the following statements:

3a) (8 pts) Let X be a topological space, and $A \subset X$. If A is connected, then \overline{A} is connected, too.

3b) (8 pts) Let X be a topological space. If X is Hausdorff, then X is a metric space (metrizable).

4) (20 pts) Let S be a compact, connected surface with $\chi(S) = -2$. Write down all possibilities for S.

5) (12 pts) Determine the surface S according to the Classification Theorem. Compute $\pi_1(S)$.

6) (15 pts) Compute $\pi_1(S^3)$ and $\chi(S^3)$. (S^3 is the 3-dimensional sphere)

7) (15 pts) Show that $\chi(Y \times S^1) = 0$ for any manifold Y.

2) (4 pts each) For each of (a)-(d) below: If the proposition is true, write TRUE. If the proposition is false, write FALSE. No explanations are required for this problem.

2a) Let X be a topological space. Then, any compact subset of X is closed.

2b) Let S be a compact surface. If $\pi_1(S)$ is given, then $\chi(S)$ can be computed.

2c) For any X, CX (cone on X) is a contractible space.

2d) Fundamental group detects orientability for closed surfaces. i.e. Let S₁ and S₂ be closed (orientable or nonorientable) surfaces. If π₁(S₁) ≃ π₁(S₂), then S₁ ≃ S₂.

oristable => Tills)= (ans-in-by) abiaist ->) TRUE: Nonorialable => TI, (1)= (9191-41- 69) aibi->/

3) Prove or give a counterexample for the following statements:

3a) (8 pts) Let X be a topological space, and $A \subset X$. If A is connected, then \overline{A} is connected, too.

BOOK + LELTURE NOTES.

3b) (8 pts) Let X be a topological space. If X is Hausdorff, then X is a metric space (metrizable).

4) (20 pts) Let S be a compact, connected surface with $\chi(S) = -2$. Write down all possibilities for S.

Orrateble:
$$\tilde{S} = (h dol), \tilde{T} = (2 dol), \tilde{S}$$

Nerenskille: $p^2 = (1 dols), \tilde{K} = (2 dol), N_2 = (1 dol), N_4$
No

 $\rho_{ij}(\mathbf{x}^{(i)}) = \rho_{ij}(\mathbf{x}^{(i)})$

5) (12 pts) Determine the surface S according to the Classification Theorem.

X(j) = X(A) + X(0) - X(An0)= 1 + 1 - 2 = 0 7) (15 pts) Show that $\chi(Y \times S^1) = 0$ for any manifold Y.

$$X(A) = X(4xI), X(4)$$

 $X(D) = X(4xI), X(4)$
 $X(ADD) = X(4) + X(4) = 2X(4)$

$$X(Y_{XS}') = X(A) + X(B) - X(AAB) = X(Y) + X(Y) - 2X(Y) = 0$$